首页 > 期刊投稿知识库 > 四轴无人机毕业论文

四轴无人机毕业论文

发布时间:

四轴无人机毕业论文

无人机概论、无人机导航学、无人机结构概论、无人机燃料概论、无人机控制概论。以及相对应的矿物和打捞件,三钛合金,逻辑电路,触发继电器。

淘宝购买基础 说明书阅读理论

为了让你看的更远、更清晰,Lightbridge 2再次突破技术难题。集成遥控器,采用先进的无线链路动态适应技术,Lightbridge 2以空前强大的功能和可靠性树立了无线影像传输的全新标准,无论用于FPV飞行还是电视直播,都能得心应手,让你获得亲临现场的体验。

广播级视频输出

用新的拍摄角度把新闻、演唱会或体育比赛现场以更清晰的画质实时呈现给观众。

Lightbridge 2支持丰富的接口输出,配备USB、mini-HDMI和3G-SDI接口,最高支持全高清1080p/60fps输出。3G-SDI接口稳定输出广播行业常用的720p/59.94fps、1080i/50fps分辨率和帧率,解决了其它接口帧率不稳定造成无法传输的问题,能适配专业级直播设备。

高性能 低延时

采用新一代编码算法,Lightbridge 2延时进一步降低至50ms*。根据图传画面操控飞行器和云台时,精准性显著提升,航拍取景一步到位。

Lightbridge 2配合低延时摄像设备使用,能带来畅快的FPV飞行体验。

*该延时不包含相机延时,并且受环境和电磁干扰的影响。

信号传输距离远达5公里

超越距离

Lightbridge 2信号传输距离远达5公里*,

让你在航拍中无需担忧飞行距离,探索更广阔的空间。

*该距离是在室外空旷无干扰情况下所测得的数据。

集成专业遥控器

告别线缆缠绕和携带多台设备不便,Lightbridge 2集成DJI专业遥控器,首次安装后只需连接显示设备,开启遥控器就能开始使用,飞行前准备更加便捷,信号传输更加安全、流畅。

遥控器设有云台俯仰拨轮、拍照和视频录制按钮,返航键和自定义按键*,为你提供专业航拍所需的控制功能。内置6000mAh可充电电池,足够完成多次航拍任务,LED指示灯可实时显示电量。配备USB、mini-HDMI和3G-SDI接口,支持两路视频同时输出,取景和直播同时进行,在复杂的专业航拍任务面前,Lightbridge 2也能游刃有余。

*遥控器部分按键功能取决于第三方相机支持。

前所未有的可靠性

Lightbridge 2采用无线链路动态适应技术,平衡了距离、电磁环境和画质的冲突。Lightbridge 2能自动选择最佳信道,并在有需要时切换信道和调整视频带宽,保障视频的流畅性,有效降低画面缺损和中断现象。结合高速处理器和先进的算法,Lightbridge 2让视频无线传输更加可靠。

四旋翼无人机毕业论文

1. 引言 避障方案设计中,我们期望无人机从起始点飞到目标点,就要不断通过各种传感器获取无人机当下的位置坐标,并根据无人机的位置调整无人机的姿态,最终到达目的地。四旋翼无人机飞行时会有六个自由度,性能灵活,移动迅速,路径中的障碍物也是来自于四面八方,不仅仅局限于正前方,所以增加了无人机避障过程中检测障碍物以及规划安全路径的难度,为方便实验验证算法,减少障碍物检测方向,本文计划采取四旋翼无人机定高控制下的避障飞行实验,即四旋翼无人机在期望高度下飞行,通过前置检测装置检测障碍物,利用算法实现躲避四旋翼无人机前方的障碍物,以此将三维空间中的避障转化为二维平面中的避障飞行,本章主要分析四旋翼无人机的高度解算以及姿态解算,然后利用PID控制方法简历四旋翼无人机的控制器。 定高飞行指无人机在不接受遥控器飞行指令的情况下,飞控板会自动控制无人机的友们,从而保持无人机飞行高度不变,无人机所受升力等于自身重力,定高模式下,遥控器油门输入不再控制无人机的高度,但是仍然可以控制无人机的俯仰、偏航、横滚运动,即无人机会在期望高度平面自由运动,无人机常用的几种高度信息整理如下: 绝对高度:当期位置于平均海平面的垂直距离,也叫做海拔高度。 相对高度:指两个测量地之间的绝对高度之差。 真实高度:无人机飞行过程中,飞控距离地面的实际高度即为真实高度,又称几何高度。 2. 基于互补滤波的信息融合 关于四旋翼无人机的高度以及姿态解算,需要用到数据融合,数据融合也成为信息融合,是将来自多个传感器信息进行处理,从而得出更为全面、可靠的结论,本节采用互补滤波器进行数据融合,将多传感器信息融合解算得到高度以及姿态信息,互补滤波法要求融合的信号的干扰噪声处在不同的频率,通过设置两个滤波器的截止频率,确保融合后的信号能够覆盖需求频率,通过预测---矫正融合两种信息来源,一般是预测其中一种信息,然后利用另外一种信息进行校正。 2.1 基于互补滤波的高度解算 定高控制需要获取无人机的高度信息,绝大多数情况下,飞控的高度信息是由飞控内部的气压计来提供的,气压计测量的是绝对高度,利用大气气压伴随高度的增加而降低的原理测量,测量公式:所以气压计高度测量可以表示为:即气压计所测高度等于实际高度加上测量误差高度。 实际飞控板内计算气压计数据时,会采集多次数据求均值然后进行计算,但是单一的传感器所提供的信息似乎不能够满足实际飞行的要求,而且气压计有其难以忽视的缺陷: (1)气压计测量时,噪声干扰很大,数据不够平滑; (2)气压计所测数据会存在漂移现象; (3)经实验证明,气压计测量受温度以及气流干扰严重,低温、强气流环境下,气压计均无法测得准确数值。 加速度计也可以获取飞控的位置信息,飞控通过加速度计获取到当前的加速度以后,通过积分得到垂直速度信息,再积分即可获取高度信息,如下:但是加速度计同样存在固有的缺陷问题,多次积分会使结果产生累积误差,且加速度计的瞬时测量值误差会比较大。 显然,无法单独依靠气压计或者加速度计提供准确的高度信息反馈到实际地控制中,考虑通过其他传感器与气压计的数据进行数据融合处理,以期望得到良好精确的高度信息。 互补滤波算法是通过将气压计于加速度计测量得到的高度信息按照权重进行融合,以此为基础结算高度信息,采用高通滤波器处理加速度细心,低通滤波器处理气压计信息,其中加速度计可以获取飞控的垂直方向上的加速度,经过积分可以化的垂直方向的速度信息,整个算法的核心思想是由地理坐标系下的加速度通过积分,来获得速度、位置信息;经过2次修正陈尚可利用的信息,第一次是李忠传感器计算修正系数产生加速度的偏差修正加速度,第二次是利用修正系数修正位置;最后可利用速度经过加速度修正,可利用的位置经过了加速度和位置修正,加速度的修正过程是由机体测量的加速度通过减去偏差,再转换到地理坐标系。 气压计主要的作用就是计算一个校正系数来对加速度偏移量进行校正。数据融合过程如图所示:加速度计测量的是无人机的加速度,测量值是机体坐标系下的,所以需将加速度值利用旋转矩阵转换为地面参考坐标系下的加速度。具体融合信息的实现过程如下:(2)将加速度计测量的加速度通过旋转矩阵转换到地面参考坐标系下,转换之前注意需要先去除加速度计的偏移量,因为地理坐标系下 z 轴加速度包含重力加速度,所以需要将重力加速度补偿上去; (3)计算气压计的校正系数,这个系数也就是需要用来校正加速度计的系数,具体公式为(4)利用所求的气压计校正系数计算加速度计的偏移向量。  (5)将加速度偏移向量转换回机体坐标系,将转换后的加速度积分,得到融合后的速度信息,再对速度信息积分,即可得到最终的高度估计值,最后将气压计矫正系数二次校正。 采集飞行数据并通过 Matlab 软件仿真以后的结果如图所示,可见融合以后的高 度较加速度计以及气压计单独测的高度准确。2.2 基于互补滤波的姿态解算 从飞行原理可以看出,无人机飞行过程中,最终的控制要回到姿态控制上面,通过具体的欧拉角度调整,从而控制无人机的飞行姿态。要完成无人机的e姿态控制,就需要采集到无人机当前的姿态,然后经过控制算法,将无人机当前姿态调整到期望的姿态,姿态采集主要依靠飞控的惯性测量单元IMU,姿态解算精确与否直接关联到无人机飞行位置精确与否。 飞行过程中,陀螺仪测量无人机的角速度,具有高动态性能,将角速度对时间积分可以得到三个欧拉角角度,陀螺仪数据在积分过程中,会形成累计误差,累计误差随着时间增加不断变大,所以短时间内陀螺仪测量值比较可靠。磁力计主要测量当前的磁场分布,即无人机与磁场之间的角度,这个角度即为偏航角,但是磁力计受周围磁场干扰严重,实际测量中误差较大。加速度计之前已经介绍过,不再赘述。 三种传感器再频域上特性互补,所以本文考虑采用互补滤波融合这三种传感器的数据,实际是利用加速度计与磁力计融合后补偿陀螺仪所测的姿态信息,提高测量精度和系统的动态性能。 三种传感器的数据融合过程如图所示,陀螺仪经过高通滤波器,消除低频噪声,加速度计与磁力计经过低通滤波器,消除高频噪声。利用旋转矩阵将三个传感器所测量的欧拉角转换为四元数形式,然后计算磁场的参考方向计算重力分v与磁场分量w:利用加速度,磁力计的值与重力分量,磁场分量求取误差:利用比例-积分处理上步所求误差,然后利用所求的值补偿陀螺仪产生的零漂现象, 最终结算得到当前姿态信息。 采集飞行数据并通过滤波以后的结果如图 5.4 俯仰角,图 5.5 滚转角,图 5.6 偏航角。3. PID控制器设计 无人机定高飞行主要分两种情况,一种是手动控制定高模式,此种模式下,无人机飞控仍然接收并执行遥控器指令信号,另一种是无人机自主飞行时,如航点飞行或者 offboard 模式等,设定无人机在一定高度下执行预设飞行任务,而不依靠遥控器信号指 令控制自身运动,而本文研究的是第二种定高模式。 在位置控制的背景下,本文中串级双环 PID 控制系统专为实现避障系统而设计,保证四旋翼无人机可以准确的到达目标位置,并且在悬停时保持四旋翼的稳定性。整个双回路控制系统分为内环控制(姿态控制)和外环控制(位置控制)两部分,其中外环控制中主要研究定高控制部分。 3.1 PID控制原理 PID 控制器是控制理论中最经典的控制算法,PID 算法简单,可靠性高,被广泛应用于过程控制与运动控制,PID 控制主要由比例,积分以及微分三个环节组成,通过这三个环节对输入值与输出值形成的差值分别做比例运算,积分运算和微分运算,将控制结果发送到被控对象以实现对系统的控制作用,闭环 PID 控制系统原理图如图所示。PID 的三种环节中比例环节 P 的作用是直接将误差的比例作为输出,加快系统的响应速度,提高系统调节精度,但是较大的比例作用会使对象的输出产生较大波动,太小的比例作用会使对象的输出变换缓慢。积分用于将之前的误差值与时间的比例累加起来作为输出,积分环节 I 主要用于消除对象输出稳定时的稳态误差,但是会存在积分饱和情况。微分环节 D 将误差随时间的变化的斜率以比例的形式输出,改善系统的动态性能, 主要用于缩短对象的上升时间,加快响应速度,达到超前调节的作用。使用 PID 控制器的过程中,既可以使用 PID 控制,也可以单独使用 P、PI、PD 等控制,使用的过程即3.2 串级PID控制器设计 本文把避障研究简化到二维平面以后,整体的位置控制就被分为了两部分:定高控制与平面位置控制。其中平面的位置控制即由机载设备发送平面位置,然后由飞控执行。(1)高度控制器 因为高度信息是三维位置的垂直方向信息,所以在实际的飞控控制的无人机飞行的过程中,高度控制属于位置控制的一部分,其中关于高度控制器的流程图可以总结为下图所示。(2)姿态控制器4. 本文小结 本文主要介绍避障过程中相关姿态以及位置高度的控制设计过程,要想控制效果好,首先解算要准确,再飞控资深所带传感器具有固有缺陷的前提下,通过互补滤波算法融合传感器数据,通过融合加速度计与气压结算无人机实际高度,融合加速度计、磁力计与陀螺仪数据解算无人机当前姿态信息;最后利用PID控制算法,设计了串级PID高度控制器与串级PID姿态控制器。

浅谈多旋翼无人机任务系统的优秀论文

前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。

1 多旋翼无人机定义概述

我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。

多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。

2 控制系统改进发展阶段

多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。

3 技术原理

3.1系统组成

无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。

3.2系统技术原理

3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。

3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。

但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。

3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。

4 技术关键点及创新点

4.1技术关键点:

4.1.1地空信息的的数据通信。

先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。

4.1.2解决飞行姿态操控问题

嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。

4.1.3在工业控制领域应用的扩展

本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。

4.1.4增强地面工作站功能

通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。

4.2项目的技术创新性

4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。

4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。

4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。

4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。

5 总结

综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。

研究四翼无人机论文

研究人员未来可能改善无人机的视野、提高它的着陆技术或者进一步对抓爪进行改善。研究人员提出,增加一个运动捕捉系统能够让机器人追踪它的猎物,并且使用机载摄像机收集到数据在飞行中做出调整。最终的改善可能想要使用一种沉积成型的制造工艺来改善它的抓爪。他们希望下一代无人机能够更强、更准确,并且能够找到着陆点并且实现真正的隐形。

1. 引言 避障方案设计中,我们期望无人机从起始点飞到目标点,就要不断通过各种传感器获取无人机当下的位置坐标,并根据无人机的位置调整无人机的姿态,最终到达目的地。四旋翼无人机飞行时会有六个自由度,性能灵活,移动迅速,路径中的障碍物也是来自于四面八方,不仅仅局限于正前方,所以增加了无人机避障过程中检测障碍物以及规划安全路径的难度,为方便实验验证算法,减少障碍物检测方向,本文计划采取四旋翼无人机定高控制下的避障飞行实验,即四旋翼无人机在期望高度下飞行,通过前置检测装置检测障碍物,利用算法实现躲避四旋翼无人机前方的障碍物,以此将三维空间中的避障转化为二维平面中的避障飞行,本章主要分析四旋翼无人机的高度解算以及姿态解算,然后利用PID控制方法简历四旋翼无人机的控制器。 定高飞行指无人机在不接受遥控器飞行指令的情况下,飞控板会自动控制无人机的友们,从而保持无人机飞行高度不变,无人机所受升力等于自身重力,定高模式下,遥控器油门输入不再控制无人机的高度,但是仍然可以控制无人机的俯仰、偏航、横滚运动,即无人机会在期望高度平面自由运动,无人机常用的几种高度信息整理如下: 绝对高度:当期位置于平均海平面的垂直距离,也叫做海拔高度。 相对高度:指两个测量地之间的绝对高度之差。 真实高度:无人机飞行过程中,飞控距离地面的实际高度即为真实高度,又称几何高度。 2. 基于互补滤波的信息融合 关于四旋翼无人机的高度以及姿态解算,需要用到数据融合,数据融合也成为信息融合,是将来自多个传感器信息进行处理,从而得出更为全面、可靠的结论,本节采用互补滤波器进行数据融合,将多传感器信息融合解算得到高度以及姿态信息,互补滤波法要求融合的信号的干扰噪声处在不同的频率,通过设置两个滤波器的截止频率,确保融合后的信号能够覆盖需求频率,通过预测---矫正融合两种信息来源,一般是预测其中一种信息,然后利用另外一种信息进行校正。 2.1 基于互补滤波的高度解算 定高控制需要获取无人机的高度信息,绝大多数情况下,飞控的高度信息是由飞控内部的气压计来提供的,气压计测量的是绝对高度,利用大气气压伴随高度的增加而降低的原理测量,测量公式:所以气压计高度测量可以表示为:即气压计所测高度等于实际高度加上测量误差高度。 实际飞控板内计算气压计数据时,会采集多次数据求均值然后进行计算,但是单一的传感器所提供的信息似乎不能够满足实际飞行的要求,而且气压计有其难以忽视的缺陷: (1)气压计测量时,噪声干扰很大,数据不够平滑; (2)气压计所测数据会存在漂移现象; (3)经实验证明,气压计测量受温度以及气流干扰严重,低温、强气流环境下,气压计均无法测得准确数值。 加速度计也可以获取飞控的位置信息,飞控通过加速度计获取到当前的加速度以后,通过积分得到垂直速度信息,再积分即可获取高度信息,如下:但是加速度计同样存在固有的缺陷问题,多次积分会使结果产生累积误差,且加速度计的瞬时测量值误差会比较大。 显然,无法单独依靠气压计或者加速度计提供准确的高度信息反馈到实际地控制中,考虑通过其他传感器与气压计的数据进行数据融合处理,以期望得到良好精确的高度信息。 互补滤波算法是通过将气压计于加速度计测量得到的高度信息按照权重进行融合,以此为基础结算高度信息,采用高通滤波器处理加速度细心,低通滤波器处理气压计信息,其中加速度计可以获取飞控的垂直方向上的加速度,经过积分可以化的垂直方向的速度信息,整个算法的核心思想是由地理坐标系下的加速度通过积分,来获得速度、位置信息;经过2次修正陈尚可利用的信息,第一次是李忠传感器计算修正系数产生加速度的偏差修正加速度,第二次是利用修正系数修正位置;最后可利用速度经过加速度修正,可利用的位置经过了加速度和位置修正,加速度的修正过程是由机体测量的加速度通过减去偏差,再转换到地理坐标系。 气压计主要的作用就是计算一个校正系数来对加速度偏移量进行校正。数据融合过程如图所示:加速度计测量的是无人机的加速度,测量值是机体坐标系下的,所以需将加速度值利用旋转矩阵转换为地面参考坐标系下的加速度。具体融合信息的实现过程如下:(2)将加速度计测量的加速度通过旋转矩阵转换到地面参考坐标系下,转换之前注意需要先去除加速度计的偏移量,因为地理坐标系下 z 轴加速度包含重力加速度,所以需要将重力加速度补偿上去; (3)计算气压计的校正系数,这个系数也就是需要用来校正加速度计的系数,具体公式为(4)利用所求的气压计校正系数计算加速度计的偏移向量。  (5)将加速度偏移向量转换回机体坐标系,将转换后的加速度积分,得到融合后的速度信息,再对速度信息积分,即可得到最终的高度估计值,最后将气压计矫正系数二次校正。 采集飞行数据并通过 Matlab 软件仿真以后的结果如图所示,可见融合以后的高 度较加速度计以及气压计单独测的高度准确。2.2 基于互补滤波的姿态解算 从飞行原理可以看出,无人机飞行过程中,最终的控制要回到姿态控制上面,通过具体的欧拉角度调整,从而控制无人机的飞行姿态。要完成无人机的e姿态控制,就需要采集到无人机当前的姿态,然后经过控制算法,将无人机当前姿态调整到期望的姿态,姿态采集主要依靠飞控的惯性测量单元IMU,姿态解算精确与否直接关联到无人机飞行位置精确与否。 飞行过程中,陀螺仪测量无人机的角速度,具有高动态性能,将角速度对时间积分可以得到三个欧拉角角度,陀螺仪数据在积分过程中,会形成累计误差,累计误差随着时间增加不断变大,所以短时间内陀螺仪测量值比较可靠。磁力计主要测量当前的磁场分布,即无人机与磁场之间的角度,这个角度即为偏航角,但是磁力计受周围磁场干扰严重,实际测量中误差较大。加速度计之前已经介绍过,不再赘述。 三种传感器再频域上特性互补,所以本文考虑采用互补滤波融合这三种传感器的数据,实际是利用加速度计与磁力计融合后补偿陀螺仪所测的姿态信息,提高测量精度和系统的动态性能。 三种传感器的数据融合过程如图所示,陀螺仪经过高通滤波器,消除低频噪声,加速度计与磁力计经过低通滤波器,消除高频噪声。利用旋转矩阵将三个传感器所测量的欧拉角转换为四元数形式,然后计算磁场的参考方向计算重力分v与磁场分量w:利用加速度,磁力计的值与重力分量,磁场分量求取误差:利用比例-积分处理上步所求误差,然后利用所求的值补偿陀螺仪产生的零漂现象, 最终结算得到当前姿态信息。 采集飞行数据并通过滤波以后的结果如图 5.4 俯仰角,图 5.5 滚转角,图 5.6 偏航角。3. PID控制器设计 无人机定高飞行主要分两种情况,一种是手动控制定高模式,此种模式下,无人机飞控仍然接收并执行遥控器指令信号,另一种是无人机自主飞行时,如航点飞行或者 offboard 模式等,设定无人机在一定高度下执行预设飞行任务,而不依靠遥控器信号指 令控制自身运动,而本文研究的是第二种定高模式。 在位置控制的背景下,本文中串级双环 PID 控制系统专为实现避障系统而设计,保证四旋翼无人机可以准确的到达目标位置,并且在悬停时保持四旋翼的稳定性。整个双回路控制系统分为内环控制(姿态控制)和外环控制(位置控制)两部分,其中外环控制中主要研究定高控制部分。 3.1 PID控制原理 PID 控制器是控制理论中最经典的控制算法,PID 算法简单,可靠性高,被广泛应用于过程控制与运动控制,PID 控制主要由比例,积分以及微分三个环节组成,通过这三个环节对输入值与输出值形成的差值分别做比例运算,积分运算和微分运算,将控制结果发送到被控对象以实现对系统的控制作用,闭环 PID 控制系统原理图如图所示。PID 的三种环节中比例环节 P 的作用是直接将误差的比例作为输出,加快系统的响应速度,提高系统调节精度,但是较大的比例作用会使对象的输出产生较大波动,太小的比例作用会使对象的输出变换缓慢。积分用于将之前的误差值与时间的比例累加起来作为输出,积分环节 I 主要用于消除对象输出稳定时的稳态误差,但是会存在积分饱和情况。微分环节 D 将误差随时间的变化的斜率以比例的形式输出,改善系统的动态性能, 主要用于缩短对象的上升时间,加快响应速度,达到超前调节的作用。使用 PID 控制器的过程中,既可以使用 PID 控制,也可以单独使用 P、PI、PD 等控制,使用的过程即3.2 串级PID控制器设计 本文把避障研究简化到二维平面以后,整体的位置控制就被分为了两部分:定高控制与平面位置控制。其中平面的位置控制即由机载设备发送平面位置,然后由飞控执行。(1)高度控制器 因为高度信息是三维位置的垂直方向信息,所以在实际的飞控控制的无人机飞行的过程中,高度控制属于位置控制的一部分,其中关于高度控制器的流程图可以总结为下图所示。(2)姿态控制器4. 本文小结 本文主要介绍避障过程中相关姿态以及位置高度的控制设计过程,要想控制效果好,首先解算要准确,再飞控资深所带传感器具有固有缺陷的前提下,通过互补滤波算法融合传感器数据,通过融合加速度计与气压结算无人机实际高度,融合加速度计、磁力计与陀螺仪数据解算无人机当前姿态信息;最后利用PID控制算法,设计了串级PID高度控制器与串级PID姿态控制器。

无人机研究所主任告诉我们,无人机的开发研制,是当今国际航空领域一个重要发展方向,它具有体积小、重量轻、机动性好、飞行时间长、成本低、便于隐蔽、无需机场跑道、可多次回收重复使用等优点,它现已成为世界各军事大国武器装备的重点。中国的无人机研究所有很多,而阅兵方队的无人机全部由西北工业大学无人机研究所研制,说明我们的技术更先进、质量更过硬。作为一名附中的学生,我感到无比的骄傲与自豪。研究所主任还告诉我们,参加阅兵的无人机共三种型号,它们都有不同的性能。那个机顶上带个大球球的,就是装有雷达的无人机。绕着方阵参观的时候,我看到无人机雪白的机身,十分耀眼,在阳光的照耀下,我仿佛看到了研究人员的汗水,仿佛看到了他们在研制时的情景,仿佛看到了祖国的腾飞!想当年,我们头上扣着“东亚病夫”的帽子;而现在,祖国屹立在世界的东方!六十年,在人类的历史长河中或许微不足道,但在祖国的成长历程中却足以刻骨铭心

电动四轴机械手的毕业论文

这方面做的比较好的推荐doc163毕业设计网,机械手毕业设计可以去doc163毕业设计网的机械手栏目看看,里面有很多成品机械手毕业论文

毕业论文《工业自动化生产中机械手的设计》,5000字,我好可以好,对待好

引 言在现代工业中,生产过程的机械化、自动化已成为突出的主题。随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,已经随处可见。同时,现代生产中,存在着各种各样的生产环境,如高温、放射性、有毒气体、有害气体场合以及水下作业等,这些恶劣的生产环境不利于人工进行操作。工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。本课题拟开发物料搬运机械手,采用日本三菱公司的FX2N系列PLC,对实验室现有的TVT—99D机械手模型进行开发。该装置机械部分有滚珠丝杠、滑轨、汽缸、气控机械抓手等;电气方面由步进电机、驱动模块、传感器、开关电源、电磁阀、旋转码盘、操作台等部件组成。我们利用可编程技术,结合相应的硬件装置,控制机械手完成各种动作。本课题是有我和徐立同同学合作共同完成,在整个设计过程中徐立同同学主要负责硬件方面如接线、画各个电气设备的电路接线图等;而我则是主要负责软件部分,在实际的设计调试过程中我主要负责PLC的接线编程、调试等工作。当然了硬件和软件是不分家的,谁也离不开谁,因此,在整个设计过程中各种方案的敲定与实施均是由我们俩个在指导老师的帮助下共同研究、推敲、讨论试验调试中确定的。为了能够实现机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中小批量自动化生产,广泛应用于柔性自动线。再加上本课题开发的机械手采用的日本三菱公司的FX2N系列PLC控制,是一种按预先设定的程序进行工件的搬运的自动化装置,可部分代替人工在高温和危险的作业区进行单调持久的作业,并要实现根据工件的简单的变化要求随时更改相关控制参数。为达到这些要求,我们设计的控制方案尽量在我们力所能及的范围内选择最佳的方案。如在本设计中遇到的对直流电机的控制问题中,在控制直流电机正反转的问题上通过老师的指导我们想到了两种控制方案:一种是在原设备的基础上加上四个继电器实现其控制功能;另一种则是根据三菱公司的FX2N系列PLC的输出端的内部电路的特点,可以在不增加其他设备的情况下实现控制要求。我在最大限度的满足工艺流程和控制要求的同时,还要考虑要有很高的性价比,因此我们选择了后一种方案。也许后一种方案有其弊端,但目前还没有发现。望大家多多指教。当然了,由于我们水平的限制和时间的仓促,在很多地方的控制方案还不是很理想,同时还遗留有很多的问题,需要进一步的研究中才能解决,望各位老师和广大同学批评和指教。 机械手的毕业设计说明书一.前言1.1设计的意义与作用机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 在工业生产过程中,尤其在自动流水线上,零件的加工和搬运都可能用到机械手。本课题就为解决海门恒豪制针有限公司在缝纫机针的生产过程中,抛光这一工艺工作。缝纫机针且夹紧不方便,要使用一个专用夹具用于抛光工作,为了解决以上传统的缺点,设计了该液压式摆动机械手。1.2机械手的工作原理 该机械手采用了液压驱动方式来实现其工作的要求,工作要求就是机械手臂的上下能够摆动,手臂的回转运动,手腕的回转运动及手部的夹持运动,本次设计的机械手主要用于缝纫机针的抛光工作,可用几台液压摆动机械手与抛光机相配合,进行协调实现抛光工作的自动化生产线,机械手的手指夹持缝纫机针,在即旋转又往复移动的抛光机上进行上下摆动,根据抛光工艺过程,自动线上有4台机械手,各机械手间互传递着缝纫机针,调换缝纫机针的大小头,并进行粗精抛光操作。1.3抛光自动生产线的组成及工作原理抛光自动生产线的平面布置图如下:1.4.自动生产线的工作方式及组成: 全线由震动式顺针机,上料工作台,4台机械手,4台抛光机和装针斗组成。4只抛光轮分别由电动机带动旋转,由另外的电动机经传动装置(如曲柄滑块机构)带动4只抛光轮一同作左右往复运动,每台机械手分别由自身的电子程序控制器控制,根据抛光工艺要求所编制的程序,依次进行程序转换,控制机械手液压系统的电磁换向阀,从而使机械手按程序进行各种动作。 4台机械手动作相同,全自动线动作过程如下:机械手1在上料位置工人将待抛光的针70-80支,经震动式顺针机整齐后送到待夹料位置,发信号启动,机械手1的手指将针夹牢,手臂顺时针回转90°到抛光位置(此时抛光机已经旋转并左右移动),手臂上下摆动一次,手腕回转180°手臂再上下摆动一次(手臂两次下摆动作时间不同,根据需要可自行调整),手臂顺时针再回转90°(即到180°位置),机械手1和机械手2同到换夹针位置,机械手2先将缝纫机针夹牢后再发信号,机械手1的手指才松开,并开始复原,即手臂逆时针回转180°,同时手腕反向回转180°,到达上料位置,等待下个工作循环,机械手2,机械手3,机械手4的动作程序与机械手1相同。缝纫机针就在各机械手间依次传递,调换针的大小头,进行粗抛和精抛操作。当机械手4抛光程序完成后,其手臂转到下料位置时手指松开,将抛光好的针卸到装针2.1液压摆动机械手的工作参数 抓针数量:一次夹持缝纫机针70-80只 座标型式:球坐标 自由度数:3个 手臂回转范围:0°-180° 手臂回转速度:90°/S 手臂的俯仰范围:0°-180° 驱动方式:液压驱动 控制方式:采用电子程序控制 定位方式:手臂回转的两端位置用死挡铁定位 手臂俯仰两端点:用活塞与端盖相碰定位2.2液压摆动机械手的工作原理简图:结论 液压摆动机械手能将工件从一个工位,传到下一个工位的工作,它从外部结构上把自动线中的各台自动机床联系成一个整体。有一定的握力和工作速度,有准确的定位精度,将零件可靠地装上夹具,能准确可靠的完成预定工作。参考文献

四旋翼无人机设计与制作毕业论文

无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。

无人机航测技术的应用分析

【摘 要】以生产项目为例,以无人机航测的技术流程为主线,介绍了无人机航测技术方面的应用分析。

【关键词】无人机、航测技术

【Abstract】Production project as an example, the unmanned aerial technology process, introduced the UAV aerial application analysis.

【Key woerds】UAV、aerial surveying technology

中图分类号:V279+.2文献标识码:A 文章编号:

0 引言

无人机航测遥感技术是继卫星遥感、飞机遥感之后发展起来的一项新型航空遥感技术,在应急测绘保障、国土资源监测、重大工程建设等方面得到广泛应用。它是一种机动灵活、可以实现快速响应的一种航测技术。但也存在影像重叠度不规则、像幅小、影像倾角大、旋偏角大,影像有明显畸变等问题,这些情况都对现有无人机航测技术提出了挑战。

本文从生产案例出发,以无人机航测技术为主线,对生产过程中无人机航测出现的一些问题进行了分析探讨。

1 生产实践

1.1主要技术依据

《无人机航摄系统技术要求》(CH/Z3002-2010);

《低空数字航空摄影规范》(CH/Z3005-2010);

《低空数字航空摄影测量内业规范》(CH/Z 3003-2010);

《低空数字航空摄影外业规范》(CH/Z 3004-2010) ... ...

1.2 数据源及预处理

1.2.1 数据源

本测区选用无人机航空摄影获取的真彩色影像,航摄面积为10平方公里。航摄仪采用Canon EOS 5DMarkⅡ,焦距为:35mm,相幅大小为:5616×3744,像元分辨率为6.41um。影像地面分辨率为0.2米。

1.2.2遥感影像预处理

无人机航空摄影采用的相机为非量测型相机,因此,在进行空中三角测量恢复影像空中姿态时,需要对相机进行像片畸变差改正。(相机畸变改正在四维公司检校完成)

1.3 无人机航测总体作业流程

1.4无人机航空摄影

本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度。飞行质量和影像良好,影像清晰度高、色彩均匀、饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。

像片航向重叠度为75%,旁向重叠一般为35%-45%,旋偏角一般控制在12度以下。

1.5 像片控制测量

1.5.1 像控点精度要求

像控点对最近基础控制点的平面位置中误差不大于0.2米,高程中误差不大于0.2米。

1.5.2 像控点布点方案

项目布点方案确定为双模型布点,全部布设为平高点。

1.5.3 像控点测量

在像控测量之前,首先对测区内收集到的已知控制点进行联测,检核控制点情况;为满足后续像控测量,联测已知点的同时加密了2个控制点。联测采用GPS静态相对定位方式施测,采用边连式的布网形式。全网共联测已有已知点4个,新设控制点2个,观测时具体技术参数依据规范,像控点采用GPS实时动态定位(RTK)的方法进行测量,满足要求。

1.6 空中三角测量

本项目采用Virtuozo工作站进行空三加密,根据航飞及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,检查点平面中误差为0.3米,高程中误差为0.17米,最终加密成果符合1:2000数据采集要求。

1.7 数据采集

在空三完成后,利用空三成果进行单模型定向时我们发现有模型无法定向的情况,第一架次无法建立的模型有29个,占总模型数的4%。第二架次有67个无法建立的模型占总模型数的9%。主要原因为无人机航摄姿态不稳定导致的飞行倾角、旋偏角过大,航线弯曲、像片比例不一致等现象都是导致单模型定向精度差的原因。考虑到1:2000地形图精度要求,我们提出了如下解决方案:在测图定向超限点的周围进行野外实测用来检核分析数据并进行必要的修正。

1.8 项目精度报告

根据1:2000精度要求对测绘产品检进行了精度的统计,统计了3幅地形图,其中高程精度中误差最大为0.36米,最小为0.27米,从统计的结果看,粗差率比较高,有的达到了5%,平面精度中误差为0.75米。

2 结 论

(1)无人机航空摄影测量技术应用于地形图的生产存在不确定性,比如,区域网整体加密精度评定良好,但单模型定向精度存在超限情况,在测图过程中表现为测图定向点和立体模型套合差大、接边误差大等,可以通过外业实测进行补充测量、验证。

(2)利用无人机航测进行航空摄影测量时,应采用试验区的作业方法,即在确定布点方案前选取一定面积的试验区进行布点方案试验,分析精度指标后确定作业方案。

(3)目前,无人机航测技术主要应用于载人飞机航测技术的补充方面,如多块小面积、危险场所、远离机场或没有可供其起降场地的区域,在载人机不便或无法完成的情况下,由无人机来完成。

参考文献:

[1] 范承啸,韩俊,熊志军,赵毅。 无人机遥感技术现状与应用[J] 测绘科学 2009,34(5):214-215;

[2] 崔红霞,李杰,林宗坚,储美华。非量测数码相机的畸变差检测研究[J] 测绘科学2005,30(1):105-107;

[3] 连镇华。无人机航摄相片倾角对立体高程扭曲的影响分析[J] 地理空间信息2010,8(1):20-22;

作者简介:徐锦前(1982-),男,辽宁铁岭人,工程师,主要从事摄影测量和地理信息系统建库等测绘工作。

点击下页还有更多>>>无人机应用技术论文

浅谈多旋翼无人机任务系统的优秀论文

前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。

1 多旋翼无人机定义概述

我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。

多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。

2 控制系统改进发展阶段

多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。

3 技术原理

3.1系统组成

无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。

3.2系统技术原理

3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。

3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。

但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。

3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。

4 技术关键点及创新点

4.1技术关键点:

4.1.1地空信息的的数据通信。

先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。

4.1.2解决飞行姿态操控问题

嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。

4.1.3在工业控制领域应用的扩展

本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。

4.1.4增强地面工作站功能

通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。

4.2项目的技术创新性

4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。

4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。

4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。

4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。

5 总结

综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。

  • 索引序列
  • 四轴无人机毕业论文
  • 四旋翼无人机毕业论文
  • 研究四翼无人机论文
  • 电动四轴机械手的毕业论文
  • 四旋翼无人机设计与制作毕业论文
  • 返回顶部