首页 > 期刊投稿知识库 > 用毕业论文做试讲

用毕业论文做试讲

发布时间:

用毕业论文做试讲

一、课堂提问现状反思 小学数学课堂中的提问是课堂教学的重要组成部分,是教学中使用频率最高的教学方法之一。经过教师精心设计、恰到好处的课堂提问,能有效地激发学生的好奇心和想象力,燃起学生对知识的探究热情,从而极大地提升课堂教学质量。但在日常教学中,教师的课堂提问仍然存在着一些问题。 1. 提问“只顾数量,不求质量”。课堂中过多的一问一答,常常使学生缺少思维的空间和思考时间,表面上很热闹,但是实际上学生处于较低的认知和思维水平。 2. 答案被老师完全控制。有时候,我们在不知不觉中,即使给了学生回答问题的机会,但是仍然会很不放心地打断学生的回答,或者草率地加入个人的评价,左右学生个人想法的表达。 3. 候答时间过短。学生回答问题需要酝酿和思考的时间,教师在极短的时间就叫停,学生的思维无法进入真正的思考状态。

学这个的好整撒一要技巧二要简单易懂就可以了啊

小学数学课堂中有效提问的教学策略 来源:中国教师报 作者:李红霞 韩华球 添加时间:2008-12-17 10:34:00 一、课堂提问现状反思 小学数学课堂中的提问是课堂教学的重要组成部分,是教学中使用频率最高的教学方法之一。经过教师精心设计、恰到好处的课堂提问,能有效地激发学生的好奇心和想象力,燃起学生对知识的探究热情,从而极大地提升课堂教学质量。但在日常教学中,教师的课堂提问仍然存在着一些问题。 1. 提问“只顾数量,不求质量”。课堂中过多的一问一答,常常使学生缺少思维的空间和思考时间,表面上很热闹,但是实际上学生处于较低的认知和思维水平。 2. 答案被老师完全控制。有时候,我们在不知不觉中,即使给了学生回答问题的机会,但是仍然会很不放心地打断学生的回答,或者草率地加入个人的评价,左右学生个人想法的表达。 3. 候答时间过短。学生回答问题需要酝酿和思考的时间,教师在极短的时间就叫停,学生的思维无法进入真正的思考状态。 4. 不注重利用课堂生成资源。教师不仅要会问,而且要会听,会倾听学生的回答,才能捕捉可利用的生成性资源,否则,问题就失去了它应有的意义。 上述问题的存在,严重制约着课堂提问的有效性,使其低效甚至无效。 二、有效提问的教学策略 有效提问是相对“低效提问”和“无效提问”而提出来的。所谓“有效”,《现代汉语词典》对其解释是:“能实现预期目的;有效果。”“有效提问”,意味着教师提出的问题能够引起学生的回应或回答,且这种回应或回答让学生更积极地参与学习,由此获得具体的进步和发展。 有效提问包含两个层面的含义:一是有效的问题;二是有效的提问策略。为了达到“教学过程最优化”,充分体现课堂提问的科学性与有效性,我们在实践中应注意以下几点。 1. 备教材要“懂、透、化” 这一点是绝大多数老师都知道的,但是,能否真正做到“深入”,却是我们每个老师需要反思的。笔者认为,对教材的研究,要达到“懂、透、化”的目标。 “懂”,就是要理解教材,只有理解了教材,我们才能分清哪些问题是基础性的问题,我们就可以用“是什么”“怎么样”来提问;哪些问题是拓展性问题,我们就可以用“你是怎么想的”来提问;哪些问题是探究性问题,有必要让学生讨论、探究。 “透”,就是要掌握教材的系统性、重点和难点,做到透彻掌握,融会贯通。 “化”,就是要使自己不仅能够站在教师的角度,而且能够站在学生的角度去体会、感受学生的学。只有做到这样,教师才能游刃有余地提出问题引导学生思考,才能更大限度地提高教学质量。 2.备学生要 “实” 我们常说,“我们教师备课,不仅要备教材、备教法,而且要备学生、备学法”。 所谓“实”,是指教师必须深入实际,了解自己所教学生的基础知识、接受能力、思维习惯,以及学习中的困难和问题等。只有真正了解了学生,才能有针对性地提问,恰当地把握问题的难易度,使得提问更加有效。 比如,笔者在执教三年级数学第五册“可能性”一课时,针对可能性有大有小这一知识点,想在课堂教学中加入一些生活中常用的成语,这些成语能够巧妙地体现可能性的大小。第一次试讲,本以为很简单的成语,很多学生竟然没有听说过,更别说联系数学内容了。下课后,我及时反思自己,找来一部分学生,和他们聊天,了解他们对成语的认识和掌握情况。最后,我根据学生的情况,调整了要提问的成语内容。再上课时,学生很顺利地解释了成语的内容,同时紧密联系到了课上所学的内容。课下,不少学生都对这一环节印象深刻,追着老师想要再说说。 3. 提问过程要突出学生主体 思维来自疑问。一般教师只看到让学生解答疑难是对学生的一种训练,其实,应答还是被动的。要求学生自己提出疑问,自己发掘问题,是一种更高要求的训练。教师在设疑时应设法让学生在疑的基础上再生疑,然后鼓励、引导他们去质疑、解疑。从而提高学生发现问题、分析问题、解决问题的能力。 在实际教学中,我们经常会很自然地问一问学生:“还有什么问题吗?”学生也往往很配合地回答:“没问题。”如果总是“没问题”,那这一现象就极不正常了,恐怕就真的“有问题”了。对任何一个数学问题的认识,都永远不可能所有的人始终保持在同一个水平上,必然有高有低,有学得轻松的,也有学得困难的。也就是说,应该“有问题”。 “没问题”的问题,反映了教师的一种教育观念,似乎只有顺顺利利的一节课才是好课。其实不然,课上的这种“顺利”,只会培养出唯书唯上的人,不利于学生创造性思维的发展;课上的这种“顺利”也会使学生缺少一种精神,一种实事求是、刨根问底的精神。 那么,如何解决这一问题呢? (1)改变观念,树立“问题”意识。教师要清楚地认识到:数学修养很重要的一条就是问题意识。因此,培养学生敢于提问题、善于提问题的习惯和能力,是数学教师肩负的责任之一,也是评价数学教学质量的标准之一。 (2)为学生创造机会,使学生去思、去想、去问。教师不仅要在每节课堂上创造质疑机会,还要使学生真正开动脑筋想问题,能提出有价值的问题或自己不懂的问题。把这一时间真正利用起来,而不是走走过场而已。为了使学生会提问题,教师可以有意识地进行一些训练,可以站在学生的立场上,以学生的身份去示范提问题。比如,二年级教材学习了“角的认识”,对于什么叫角,角各部分名称,“角的大小与边的长短无关”这些内容,学生已经知道了。“还有什么问题吗?”学生答道“没问题”。真的没问题了吗?“那我来问个问题”我提出了一个问题:“角的大小为什么与边的长短无关呢?”经过讨论,大家明白了,角的边是射线,射线是没有长短的,所以,角的大小与边的长短无关。角的大小决定于两条边张开的程度。教师从学生的角度示范提问题,久而久之,也就让学生有了提问题的意识,在引导学生提问题的同时,也培养了学生积极思考问题和解决问题的能力。 (3)“善待”学生的提问和回答。无论学生提什么样的问题,无论学生提的问题是否有价值,只要是学生真实的想法,教师都应该首先对孩子敢于提问题给予充分的肯定,然后对问题本身采取有效的方法予以解决,或请其他学生解答。对于颇有新意的问题或有独到的见解,不仅表扬他勇于提出问题,还要表扬他善于提出问题,更要表扬他提出问题的价值所在,进而引导大家学会如何去深层次地思考问题。只有这样,学生才能从提问题中感受到更大的收获,才会对提问题有安全感,才会越来越爱提问题,越来越会提问题。对于学生的回答,我们要慎用诸如“很好”、“非常好”、“不是,不对”等习惯性的评价。这样的评价过于强化对与错,天长日久,学生的注意力会集中于教师想要的东西上。我们可以适当地多使用一些中性的、接纳性的或者探究性的评价。比如:“噢,这是一种有道理的思路,还有其他思路吗?”“这个想法不错,我们还能补充点什么?”“很好的主意,但是我们怎么知道……”有针对性地鼓励学生,满足学生的需要,鼓励学生继续学习。 总之,在实践中,教师要联系实际,优化提问内容,把握提问时机,讲究提问技巧,不断提高自己提问的能力,同时也要培养学生提出问题和发现问题的能力,真正提高课堂教学质量。 (作者单位系北京师范大学实验小学、人民教育出版社) 小学数学课堂教学中“问题解决”初探小学数学课堂教学中“问题解决”初探 内容提要: 在数学课堂教学中,围绕“数学问题”这一主题,寻求切实可行的解题策略,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用问题。从问题提出——解决及应用的过程中提高学生的数学素质,提高学生的创新意识及实践能力。关键词:小学数学 问题解决正 文: 全日制义务教育《数学课程标准》(实验稿)中课程具体目标明确提出:要让学生“初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。”“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。”基于这一基本要求,在数学课堂教学中,我们可以围绕“问题”这一主题,寻求切实可行的方法,有效地进行教学活动,引导学生结合学习、生活实践,初步学会从数学的角度提出问题,灵活的理解问题,创造性的解决问题,并能合理地应用。从问题提出——解决的过程中提高学生的数学素质,提高学生的创新意识及实践能力。基于以上认识,我们在数学课堂教学中进行了初步探索,获得了一些粗浅的认识。一、引导学生从数学的角度提出问题。 爱因斯坦认为“提出一个问题往往比解决一个问题更重要,因为解决问题也仅仅是一个数学上或实验上的技能而已,而提出新的问题,新的可能性,从新的角度去看待旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。”在小学数学教学中,培养学生的提问能力,对于开发学生智力,发展学生思维,变被动学习为主动地探究,对于真正提高学生的全面素质有积极的作用。那么,怎样才能使学生从数学的角度提出问题呢? 1、创设问题情境,激发学生提问。生活蕴涵着大量的数学知识,数学问题多在具体的生活情境中产生。教师要抓住学生思维活动的热点和焦点,根据学生认知的“最近发展区”,为学生提供丰富多彩的背景材料,从学生熟悉的事物、事件等入手,采用现实再现、猜迷、讲故事、游戏、竞赛等手段,创设生动有趣的、具有挑战性的问题情境,使学生自主产生问题,激发探究的欲望。如:在教学《连乘应用题》时,教师创设这样一个问题情境:星期天,你妈妈让你去买两箱牛奶,那时你会思考那些问题?学生根据自己的生活经验,纷纷发言:每箱牛奶多少钱,至少该带多少钱?;也可以是每瓶牛奶多少钱?每箱牛奶有几瓶?至少带多少钱?······这样,学生提出了许多切题的有价值的问题。教师及时提问,“你准备怎样解决以上问题?”通过讨论得出两个方法:看标价说明;问售货员。这时可呈现两种情境: ①通过调查知,每箱牛奶48元,买2箱。 ②通过调查知,每箱牛奶24瓶,每瓶2元,买2箱。并提问:“你能根据以上两条信息,解决哪些数学问题?学生马上提出:根据调查①可解决买两箱牛奶共需多少钱?;根据调查②可解决一共买了多少瓶牛奶、买一箱需多少钱、买两箱需多少钱?等数学问题。接着教师组织学生通过独立思考、合作交流等形式解决了以上问题•……这样,教师通过创设学生熟知的生活中的购物情境,给学生提供一个广阔的思维空间,让他们自主的、全方位的、多角度的思考问题。 2、发扬民主意识,培养学生敢于提问、善于提问的能力。“好学多问”是孩子的一种天性,学生提出问题标志着其思维的萌发,小学生数学问题的提出直接体现他们对生活中数学的思考能力。但是,由于小学生没有掌握好提问的方法和技巧,课堂表现为“怕提问”。要学生提问,就要培养学生敢于提问的勇气和胆量。教师应尊重每一位学生,通过自己的言行、态度,给学生一个个安全、信任、尊重的情感信息,激发学生的情感共鸣,实现自主提出问题的学习行为。曾有这样一个课例:一位语文教师在教学中,一位学生对“四万万同胞”的“四万万”提出了疑问,许多学生发出哄笑。这位教师不但没有责怪学生愚昧无知,反而鼓励了他,同时在解决“四万万”就是“四亿”概念的基础上,进行“为什么用四万万而不用四亿“的研究,加深了学生对文章的理解。不但获得良好的教学效果,而且使提问学生增强了学习的信心,培养了学生敢于提问的决心。可见,只有当学生能积极思考,大胆表述时,教师才知道学生“疑”在哪里,“惑”于何处。才能对所教知识进行有效的指导、点拨和调整。反之,如果教师把学生的一些发自内心却又异想天开的问题,看作是旁门左道,是“有意捣乱”采取压制的方法,那么,久而久之,学生思考问题、提出问题的积极性、主动性将会大大降低,甚至被扼杀,成为真正接受知识的“容器”。所以,发扬民主意识是学生敢于提问的前提,是开启思维之门器官的钥匙。 3、引导学生积极反思,进一步掌握提出数学问题的针对性。学生在学习活动中的反思是学生以自己的学习活动过程作为思考对象来对自己的行为、决策以及所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平来促进能力发展的途径。在数学教学过程中,经常引导学生对本堂课所涉及的数学问题进行自觉反思,逐渐明确哪些问题是有价值的,哪些问题是无关紧要的,使以后提问更贴近所学数学内容,从而提高学生善于提出数学问题的能力。二、引导学生灵活地、创造性地解决问题。 引导学生从数学的角度提出问题仅仅是教学的开始,“问题解决”的核心内容就是要让学生灵活地解决问题。同时,在解决问题过程中,其活动的价值不只是获得具体的结论,更多的是使学生在解决问题的过程中经历、体验知识产生的原始状态,体会到解决问题的不同策略,每一个人都应当有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。这样,在鼓励个性发挥的意义之下,学生的创新精神的培养才成为可能。怎样丰富学生“问题解决”的实践过程,在灵活多样的问题解决过程中,尽量使每位学生发挥其思维的最大潜能,使他们感到脑力劳动中取得成功的喜悦,已成为我们数学课堂教学中思考的重要课题。 首先,要激励学生自主探究,寻求方法。数学学习活动中,学生是学习的主体,在学生进入角色以后,教师应留出足够的时间让学生探究交流,寻求解决问题的方法,并发表自己的独特见解和感受。有一位教师在叫“两位数加一位数(进位)”时,一改往常教材中的“讲解式”(摆小棒)的呈现方式为学生自主探究的“问题发现式”,这位教师是这样设计的: “爸爸让明明计算18+7,明明冥思苦想了一会儿,向同学们求助,谁有妙法帮我吗?”一石激起千层浪,同学们顿时情绪高涨,积极思考,此刻教师及时组织学生讨论,通过小组讨论、同桌互说等形式,充分发挥集体的作用,体现团结合作的精神,让每个学生都有主动参与的机会,加强了学生间多向交流。最后,学生想出了多种方法:有把18看成20(20+7-2)的;有把18分成13和5(13+7+5)的;有把7分成2和5(18+2+5)的;有数手指的;也有用竖式计算的,等等。 学生通过自主探究后,用语言表达出自己的思维过程,这正是学生自主创新的一种体现。 问题一旦经过一番努力后被解决,学生就会有紧张愉快的体验,有成就感、自豪感、价值感,这些心理倾向是激励学生进一步探究的源动力。 其次,可建立学习小组。学生的发展存在者不平衡性,无论哪个班的学生,他们的智力发展水平、所具有的能力以及他们对生活、对数学问题的认识是各不相同的。在课堂上,面临着要解决的一个个数学问题,学生的解决方法是各不相同的。为了使不同发展水平的学生都能解决问题,我们可采用小组学习的方法,建立学习小组,小组中学习水平上、中、下的学生进行合理搭配,推荐一个学习水平较高的学生担任组长,让不同水平的层次的学生的信息联系和反馈信息在多层次、多方位上展开。这样,小组成员对所要解决的数学问题进行适时的合作交流,互相探讨解决问题的最佳策略与方法,互相取长补短,共同达到圆满解决问题的目的。在经常性的合作交流中,提升理解问题、解决问题的能力。 再次,要鼓励学生动手实践,在操作探索中解决数学问题。皮亚杰认为:“认识一个客体,必须动之与手”、“一切真知都应由学生自己获得,或由他重新‘发明’,至少由他重新构建,而不是草率地传递给他。”因此,教师在教学中因突破教材的局限,变传递结论为鼓励发现新知。事实证明,学生提出的问题,有很多可以让学生自己通过操作探究而获得。如针对学生所提问题“圆柱上下两个底面的面积相等吗?”教师可以不直接告诉学生,而引导学生动手操作,让他们对自己的圆柱模型进行自主操作,讨论“有什么方法验证圆柱两个底面是否相等?”这样学生通过剪、量、叠等多种方法,进行积极地讨论、探索,得出“把上下两个底面剪下叠起来,是否完全重合”;“量上下两个底面的直径、半径、周长,是否相等”;“上下两个底面的对称轴是否相等”等多种检验方法,并从中得出“圆柱上下两个底面面积相等”这一结论。学生通过这样的学习过程,自己动手、动脑、动口、动眼,解决了问题,使其即知其然,又知其所以然。 又如,在学习“平行四边形”这一内容时,一位教师设计了这样一题:“请在下面平行四边形上画一直线,使分成的两部分面积相等。”于是学生纷纷投入“如何分”的学习活动中,热烈地讨论、大胆地尝试、独立地操作、积极地思考……结果找到了不同的解题方法。(如图) ……得出,这样的线可画无数条。 但教师并不到此为止,而是接着提问:这些平分线有什么共同的特点吗?再次激起了学生的探究热情,学生通过讨论明白了只要是通过平行四边形中心点的直线,都能平分这个平行四边形,同时孕伏了平行四边形是中心对称图形这一知识。这样的处理使学生获取知识、拓展思路、培养能力有机的结合起来了。三、引导学生合理地应用知识,发展学生的应用意识。 学生的应用意识主要表现在“认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其现实背景,并探索其应用价值。”(数学课程标准) 学生学习数学不但要弄清课堂所提的问题,掌握现成的数学知识和技能,而且要知道如何运用课堂上所解决问题的方法自觉地、有意识地认识周围的事物,理解并处理有关问题,使所学知识成为与生活和社会有密切联系的内容,真正做到数学“从生活中来,再用之于生活”。在这方面,教师要自觉做到学生“用数学”的引导者。例如,学了“统计知识、价格与购物计算、长度、面积、体积、容积等测定”后,我们要尽可能提供给学生实际操作的机会,引导学生把数学用之于生活,我们可以让学生量一量教室的长、宽;量一量黑板、课桌、书本的长和宽;量一量家中家具的长和宽、爸爸妈妈的身高;测一测爸爸妈妈的体重;算一算逛街所购货物的价格等,在“用数学”中,体验所学知识的作用,更大地调动学生学习的积极性,激发学生解决问题的兴趣,又使学生从中品尝到学以致用的乐趣。又如,在学习了“利率、利息”等概念后,一位教师创设情景,引导学生沟通数学与现实的联系,他编制了这样的题目:“今天,爸爸把这月领到的工资1850元存入银行,所存定期三年,那么三年后的今天,爸爸取钱时,可取回多少元?” 这样的问题,与生活非常贴近,容易激起学生的兴趣,他们通过调查,了解银行利率,并应用自己刚学的百分数知识,通过实际计算,学生不仅巩固学习知识,了解了金融知识,从而增长了见识,培养了实际应用数学的能力。 学生的数学知识就是在不断地发现问题、不断地探究问题、不断地解决问题、不断地应用问题的过程中不断地提高、和谐地发展。

1、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期; 2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些; 3、接下来,就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义; 4、之后,是对于研究内容的理论基础做一个介绍,这一部分简略清晰即可; 5、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样; 6、最后,是对工作的一个总结和展望。 7、结束要感谢一下各位老师的指导与支持。

毕业论文正交试验怎么做

正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本思想。[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:A1=80℃,A2=85℃,A3=90℃B:B1=90分,B2=120分,B3=150分C:C1=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。

正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行资料分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本思想。 [例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围: A:80-90℃ B:90-150分钟 C:5-7% 试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。 这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平: A:A1=80℃,A2=85℃,A3=90℃ B:B1=90分,B2=120分,B3=150分 C:C1=5%,C2=6%,C3=7% 当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。

我的实验是三因素三水平,做正交的话就是9次实验(我做一次实验得出一组资料就是一个月啊)。 我看不少论文上都是分两大步骤: 一、正交设计 1、进行正交设计,设计出后续的实验方案。 2、根据正交设计的实验方案进行试验(不写出过程,不做图表,因为各单因素的搭配是随机的,没法画曲线图分析),只给出结果。 3、根据实验结果,进行正交分析,得出各单因素的影响大小。 (在正交设计这部分,我就得做九个实验啊) 二、单因素实验 对正交设计的分析结果进行验证所补充的实验,这次所做的实验具有可比性,可以对单个因素影响效果做曲线图分析。 如此一来,那我的实验岂不是就做了两遍(虽然这两遍实验的控制因素水平可能不一样)。 做这么多实验就啥时候毕业呀。 我的问题是: 有人说先单因素方便确定正交设计的因素水平。 2 ,我不想做正交设计。想直接用简单比较法得出最优实验方案算了,不过这样做出的论文不够炫,感觉没有技术含量,和人家做正交设计的相比就差了一大截。 很是头疼,定不下来方案。希望各位走过路过的朋友帮帮忙,

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行3的3次方=27 种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3 正交表按排实验,只需作9 次,按L18(3)7 正交表进行18 次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。(汗,这里不能打出来正确的表达,反正学这个的都知道具体的写法) 正交表是一整套规则的设计表格,L 为正交表的代号,n 为试验的次数,t为水平数,c 为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4 个因素,每个因素均为3 水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) ,此表的5 列中有1 列为4 水平,4 列为2水平。根据正交表的资料结构看出,正交表是一个n 行c 列的表,其中第j 列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11 中,第二列的数码个数为3,S=3 ,即由1、2、3 组成,各数码均出现N/3=9/3=3次。

正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 1.正交表 正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的资料结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。 正交表具有以下两项性质: (1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。 (2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。 以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。 2. 互动作用表 每一张正交表后都附有相应的互动作用表,它是专门用来安排互动作用试验。表14就是L8(27)表的互动作用表。 安排互动作用的试验时,是将两个因素的互动作用当作一个新的因素,占用一列,为互动作用列,从表14中可查出L8(27)正交表中的任何两列的互动作用列。表中带( )的为主因素的列号,它与另一主因素的互动列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的互动作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B互动作用列。又如可以看到第4列与第6列的互动列是第2列,等等。 3.正交实验的表头设计 表头设计是正交设计的关键,它承担著将各因素及互动作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。 表头设计的主要步骤如下: (1)确定列数 根据试验目的,选择处理因素与不可忽略的互动作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验资料时,可设2个或多个空白列,作为计算误差项之用。 (2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。 (3)选定正交表 根据确定的列数(c)与水平数(t)选择相应的正交表。例如观察5个因素8个一级互动作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。 (4)表头安排 应优先考虑互动作用不可忽略的处理因素,按照不可混杂的原则,将它们及互动作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某专案考察4个因素A、B、C、D及A×B互动作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其互动作用,故将二者优先安排在第1、2列,根据互动作用表查得A×B应排在第3列,于是C排在第4列,由于A×C互动在第5列,B×C互动作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。

(5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果资料记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横著作”。 4.二水平有互动作用的正交实验设计与方差分析 例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。 首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为: 求:总离差平方和 各列离差平方和 SSj= 本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和 自由度v为各列水平数减1,互动作用项的自由度为相交因素自由度的乘积。 分析结果见表18。 从表18看出,在α=0.05水准上,只有C因素与A×B互动作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到互动作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。 如果使用计算机进行统计分析,在资料是只需要输入试验因素和实验结果的内容,互动作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。

L44 正交实验表 所在列 1 2 3 4 因素 A B C D 实验01 1 1 1 1 实验02 1 2 2 2 实验03 1 3 3 3 实验04 1 4 4 4 实验05 2 1 2 3 实验06 2 2 1 4 实验07 2 3 4 1 实验08 2 4 3 2 实验09 3 1 3 4 实验10 3 2 4 3 实验11 3 3 1 2 实验12 3 4 2 1 实验13 4 1 4 2 实验14 4 2 3 1 实验15 4 3 2 4 实验16 4 4 1 3 L46 实验计划表 所在列 1 2 3 4 5 6 因素 A B C D E F 实验01 1 1 1 1 1 1 实验02 1 2 2 2 2 2 实验03 1 3 3 3 3 3 实验04 1 4 4 4 4 4 实验05 2 1 1 2 2 3 实验06 2 2 2 1 1 4 实验07 2 3 3 4 4 1 实验08 2 4 4 3 3 2 实验09 3 1 2 3 4 1 实验10 3 2 1 4 3 2 实验11 3 3 4 1 2 3 实验12 3 4 3 2 1 4 实验13 4 1 2 4 3 3 实验14 4 2 1 3 4 4 实验15 4 3 4 2 1 1 实验16 4 4 3 1 2 2 实验17 1 1 4 1 4 2 实验18 1 2 3 2 3 1 实验19 1 3 2 3 2 4 实验20 1 4 1 4 1 3 实验21 2 1 4 2 3 4 实验22 2 2 3 1 4 3 实验23 2 3 2 4 1 2 实验24 2 4 1 3 2 1 实验25 3 1 3 3 1 2 实验26 3 2 4 4 2 1 实验27 3 3 1 1 3 4 实验28 3 4 2 2 4 3 实验29 4 1 3 4 2 4 实验30 4 2 4 3 1 3 实验31 4 3 1 2 4 2 实验32 4 4 2 1 3 1

L44 正交实验表 所在列 1 2 3 4 因素 A B C D 实验01 1 1 1 1 实验02 1 2 2 2 实验03 1 3 3 3 实验04 1 4 4 4 实验05 2 1 2 3 实验06 2 2 1 4 实验07 2 3 4 1 实验08 2 4 3 2 实验09 3 1 3 4 实验10 3 2 4 3 实验11 3 3 1 2 实验12 3 4 2 1 实验13 4 1 4 2 实验14 4 2 3 1 实验15 4 3 2 4 实验16 4 4 1 3

L46 实验计划表

所在列 1 2 3 4 5 6 因素 A B C D E F 实验01 1 1 1 1 1 1 实验02 1 2 2 2 2 2 实验03 1 3 3 3 3 3 实验04 1 4 4 4 4 4 实验05 2 1 1 2 2 3 实验06 2 2 2 1 1 4 实验07 2 3 3 4 4 1 实验08 2 4 4 3 3 2 实验09 3 1 2 3 4 1 实验10 3 2 1 4 3 2 实验11 3 3 4 1 2 3 实验12 3 4 3 2 1 4 实验13 4 1 2 4 3 3 实验14 4 2 1 3 4 4 实验15 4 3 4 2 1 1 实验16 4 4 3 1 2 2 实验17 1 1 4 1 4 2 实验18 1 2 3 2 3 1 实验19 1 3 2 3 2 4 实验20 1 4 1 4 1 3 实验21 2 1 4 2 3 4 实验22 2 2 3 1 4 3 实验23 2 3 2 4 1 2 实验24 2 4 1 3 2 1 实验25 3 1 3 3 1 2 实验26 3 2 4 4 2 1 实验27 3 3 1 1 3 4 实验28 3 4 2 2 4 3 实验29 4 1 3 4 2 4 实验30 4 2 4 3 1 3 实验31 4 3 1 2 4 2 实验32 4 4 2 1 3 1

以上仅供参考 希望能解决您的问题。

正交实验设计 当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。 1.正交表 正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的资料结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。 正交表具有以下两项性质: (1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。 (2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。 以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。 2. 互动作用表 每一张正交表后都附有相应的互动作用表,它是专门用来安排互动作用试验。表14就是L8(27)表的互动作用表。 安排互动作用的试验时,是将两个因素的互动作用当作一个新的因素,占用一列,为互动作用列,从表14中可查出L8(27)正交表中的任何两列的互动作用列。表中带( )的为主因素的列号,它与另一主因素的互动列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的互动作用列。例如将A因素排为第(1)列,B因素排为第(2)列,两数字相交为3,则第3列为A×B互动作用列。又如可以看到第4列与第6列的互动列是第2列,等等。 3.正交实验的表头设计 表头设计是正交设计的关键,它承担著将各因素及互动作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。 表头设计的主要步骤如下: (1)确定列数 根据试验目的,选择处理因素与不可忽略的互动作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。当每个试验号无重复,只有1个试验资料时,可设2个或多个空白列,作为计算误差项之用。 (2)确定各因素的水平数 根据研究目的,一般二水平(有、无)可作因素筛选用;也可适用于试验次数少、分批进行的研究。三水平可观察变化趋势,选择最佳搭配;多水平能以一次满足试验要求。 (3)选定正交表 根据确定的列数©与水平数(t)选择相应的正交表。例如观察5个因素8个一级互动作用,留两个空白列,且每个因素取2水平,则适宜选L16(215)表。由于同水平的正交表有多个,如L8(27)、L12(211)、L16(215),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。 (4)表头安排 应优先考虑互动作用不可忽略的处理因素,按照不可混杂的原则,将它们及互动作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。例如某专案考察4个因素A、B、C、D及A×B互动作用,各因素均为2水平,现选取L8(27)表,由于AB两因素需要观察其互动作用,故将二者优先安排在第1、2列,根据互动作用表查得A×B应排在第3列,于是C排在第4列,由于A×C互动在第5列,B×C互动作用在第6列,虽然未考查A×C与B×C,为避免混杂之嫌,D就排在第7列。 (5)组织实施方案 根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n次实验,每次实验按表中横行的各水平组合进行。例如L9(34)表,若安排四个因素,第一次实验A、B、C、D四因素均取1水平,第二次实验A因素1水平,B、C、D取2水平,……第九次实验A、B因素取3水平,C因素取2水平,D因素取1水平。实验结果资料记录在该行的末尾。因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横著作”。 4.二水平有互动作用的正交实验设计与方差分析 例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。选用L8(27)正交表进行实验,实验结果见表17。 首先计算Ij 与IIj ,Ij为第j列第1水平各试验结果取值之和,IIj为第j列第2水平各试验结果取值之和。然后进行方差分析。过程为: 求:总离差平方和 各列离差平方和 SSj= 本例各列离均差平方和见表10最底部一行。即各空列SSj之和。即误差平方和 自由度v为各列水平数减1,互动作用项的自由度为相交因素自由度的乘积。 分析结果见表18。 从表18看出,在α=0.05水准上,只有C因素与A×B互动作用有统计学意义,其余各因素均无统计学意义,A因素影响最小,考虑到互动作用A×B的影响较大,且它们的二水平为优。在C2的情况下, 有B1A2和B1,A1两种组合状况下的回收率最高。考虑到B因素影响较A因素影响大些,而B中选B1为好,故选A2B1。这样最后决定最佳配方为A2B1C2,即80℃,反应时间2.5h,原料配比为1.2:1。 如果使用计算机进行统计分析,在资料是只需要输入试验因素和实验结果的内容,互动作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。

需要资料分析+qq

F值是均方与自由度的比值,F比值是F值与其在相应显著性水平下的F临界值的比值,二者都可以作为反应显著性差异的引数

我的实验是三因素三水平,做正交的话就是9次实验(我做一次实验得出一组数据就是一个月啊)。我看不少论文上都是分两大步骤:一、正交设计1、进行正交设计,设计出后续的实验方案。2、根据正交设计的实验方案进行试验(不写出过程,不做图表,因为各单因素的搭配是随机的,没法画曲线图分析),只给出结果。3、根据实验结果,进行正交分析,得出各单因素的影响大小。(在正交设计这部分,我就得做九个实验啊)二、单因素实验对正交设计的分析结果进行验证所补充的实验,这次所做的实验具有可比性,可以对单个因素影响效果做曲线图分析。如此一来,那我的实验岂不是就做了两遍(虽然这两遍实验的控制因素水平可能不一样)。做这么多实验就啥时候毕业呀。我的问题是:有人说先单因素方便确定正交设计的因素水平。2,我不想做正交设计。想直接用简单比较法得出最优实验方案算了,不过这样做出的论文不够炫,感觉没有技术含量,和人家做正交设计的相比就差了一大截。很是头疼,定不下来方案。希望各位走过路过的朋友帮帮忙,

讲话毕业论文引用

引言作为论文的开头,以简短的篇幅介绍论文的写作背景和目的:缘起和提出研究要求的现实情况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给读者以引导。

前言也叫引言,是正文前面一段短文。前言是论文的开场白,目的是向读者说明本研究的来龙去脉,吸引读者对本篇论文产生兴趣,对正文起到提纲掣领和引导阅读兴趣的作用。在写前言之前首先应明确几个基本问题:你想通过本文说明什么问题?有哪些新的发现,是否有学术价值?一般读者读了前言以后,可清楚地知道作者为什么选择该题目进行研究。为此,在写前言以前,要尽可能多地了解相关的内容,收集前人和别人已有工作的主要资料,说明本研究设想的合理性。 1、 引言应含概的内容 引言作为论文的开头,以简短的篇幅介绍论文的写作背景和目的,缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给读者以引导。 引言也可点明本文的理论依据、实验基础和研究方法,简单阐述其研究内容;三言两语预示本研究的结果、意义和前景,但不必展开讨论。前言在内容上应包括:为什么要进行这项研究?立题的理论或实践依据是什么?拟创新点?理论与(或)实践意义是什么?首先要适当介绍历史背景和理论根据,前人或他人对本题的研究进展和取得的成果及在学术上是否存在不同的学术观点。明确地告诉读者你为什么要进行这项研究,语句要简洁、开门见山。如果研究的项目是别人从未开展过的,这时创新性是显而易见的,要说明研究的创新点。但大部分情况下,研究的项目是前人开展过的,这时一定要说明此研究与被研究的不同之处和本质上的区别,而不是单纯的重复前人的工作。 2、 前言的写作方法 (1)、开门见山,不绕圈子。避免大篇幅地讲述历史渊源和立题研究过程。 (2)、言简意赅,突出重点。不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。在引言中提示本文的工作和观点时,意思应明确,语言应简练。 (3)、回顾历史要有重点,内容要紧扣文章标题,围绕标题介绍背景,用几句话概括即可;在提示所用的方法时,不要求写出方法、结果,不要展开讨论;虽可适当引用过去的文献内容,但不要长篇罗列,不能把前言写成该研究的历史发展;不要把前言写成文献小综述,更不要去重复说明那些教科书上已有,或本领域研究人员所共知的常识性内容。 (4)、尊重科学,实事求是。在前言中,评价论文的价值要恰如其分、实事求是,用词要科学,对本文的创新性最好不要使用“本研究国内首创、首次报道”、 “填补了国内空白”、“有很高的学术价值”、“本研究内容国内未见报道”或“本研究处于国内外领先水平”等不适当的自我评语。 (5)、前言的内容不应与摘要雷同,注意不用客套话,如“才疏学浅”、“水平有限”、“恳请指正”、“抛砖引玉”之类的语言;前言最好不分段论述,不要插图、列表,不进行公式的推导与证明。 李翰君,曲峰 目前,我国对撑竿跳高运动生物力学分析的主要研究成果集中在起跳时速度的变化、腾起角、竿弦角等方面。但是,这种研究方法的局限性是显而易见的:忽视了人与竿子的相互作用,没有合适的指标反映运动员利用竿子弹性能力。国外已经使用能量分析法来解决这个问题,也就是分析人体机械能的变化来反映竿子与人之间的能力传递,所以,把能量分析法引入我国撑竿跳高的运动生物力学分析很有必要。但是,国外文献在能量分析时,只给出了一个简化公式,而没有说明具体的计算方法。(北京体育大学学报2006年第12期)例二:大强度运动对脑电活动影响的研究 何叙,律海涛 脑电图反映的是人脑皮层神经元的活动规律,可以反映中枢神经系统的机能状态,是检测脑功能的唯一可靠方法。关于大强度长时间运动后脑电的变化情况,目前尚无详细报道,本文目的是利用脑电分析监护系统,了解大强度运动后脑电变化情况,掌握在大强度负荷后脑电各项指标的变化幅度以及改变特点,探讨活动的基本规律,为科学地安排体育教学与训练提供理论依据。 言又称绪论,前言或导论。科技论文主要由绪论、本论(结果和讨论)、结论三部分组成。绪论提出问题,本论分析问题,结论解决问题。引言是开篇之作,写引言于前,始能疾书于后,正所谓万事开头难。古代文论中有“凤头、猪肚、豹尾”之称。虽然科技论文不强调文章开头象凤头那样俊美、精采、引人入胜,但引言是给读者的第一印象,对全文有提纲挈领作用,不可等闲视之。 1. 引言书写内容和格式 (1)说明论文的主题、范围和目的。 (3)预期结果或本研究意义。 (4)引言一般不分段,长短视论文内容而定,涉及基础研究的论文引言较长,临床病例分析宜短。国外大多论文引言较长,一般在千字左右,这可能与国外内数期刊严格限制论文字数有关 所谓的引言就是为论文的写作立题,目的是引出下文。一篇论文只有“命题”成立,才有必要继续写下去,否则论文的写作就失去了意义。一般的引言包括这样两层意思:一是“立题”的背景,说明论文选题在本学科领域的地位、作用以及目前研究的现状,特别是研究中存在的或没有解决的问题。二是针对现有研究的状况,确立本文拟要解决的问题,从而引出下文。一般作者在引言写作中存在这样两方面的问题。 1)文不着题,泛泛而谈。一些作者似乎把论文的引言看成是一种形式,是可有可无的部分,将引言的写作和正文的写作相分离,只是为了给论文加一顶帽子。常见的现象是,一般化地论述研究的重要性,甚至从技术所涉及的行业在国民经济中的地位开始谈起,就像一篇领导的讲话稿。就是落脚于研究的主题,也是从宏观谈起到微观结束,停留在一般性的论述较多。显然,这样做的结果是使读者无法准确地判断“论文命题”的具体价值,缺少对当前研究状况的概括和介绍,不知道作者的研究与以往的研究工作有什么不同?因此,科技论文的引言必须交代研究工作的背景,概括性地论述所研究问题的现状。对研究现状的论述,不仅是考查作者对资料的占有程度和熟悉程度,更重要的是从资料的全面程度和新旧程度可以判断研究工作的意义和价值,以及研究结果的可信度。 2)引文罗列,缺少分析和概括。引言不仅要反映背景的广度,更重要的是要考查作者对研究背景了解的深度。一般作者对研究的问题了解不深,在介绍研究现状时往往是列出一大堆参考文献,罗列出不同研究者的不同作法和结论,缺乏作者的分析和归纳,没有概括出研究的成果和存在的问题,有的甚至将一些与本文研究没有直接关系的文献也列在其中,片面地强调资料占有的丰富性。尽管有人认为,对研究现状的介绍不同的杂志有不同的要求,但从论文写作的角度出发,引言的目的是阐述论文命题的意义,而并非是研究资料的综述,尽管综述对读者查找资料提供了方便。因此,应当用作者自己的语言概括出研究的现状,特别是存在的难点和不足,从而引出论文研究的主题。

不会的 亲~~

引用的参考文献应指明序列号,作品或文章的标题,作者和出版物信息。

毕业论文问卷可以不做测试吗

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

不是的,本科毕业论文不一定要用问卷调查,也可添加自己的实验数据,以及实验心得。

毕业论文是一名学生从事某项研究的总结,内容必须有自己的创造,即自己的创新实践:

1、可以是在实验室研究的实验数据---理工科学生;

2、可以是某项研究中所需的其它素材,如社会调查数据等----文科学生。

毕业论文的基本要求是:

1、学生综合运用、巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力。

2、学生正确的理论联系实际的工作作风,严肃认真的科学态度。

3、学生进行社会调查研究;文献资料收集、阅读和整理、使用;提出论点、综合论证、总结写作等基本技能。

毕业论文是毕业生总结性的独立作业,是学生运用在校学习的基本知识和基础理论,去分析、解决一两个实际问题的实践锻炼过程,也是学生在校学习期间学习成果的综合性总结,是整个教学活动中不可缺少的重要环节。

毕业论文在进行编写的过程中,需要经过开题报告、论文编写、论文上交评定、论文答辩以及论文评分五个过程,其中开题报告是论文进行的最重要的一个过程,也是论文能否进行的一个重要指标。

不需要的。

以长江师范学院为例,指导教师填写《长江师范学院毕业设计(论文)任务书》,在毕业设计(论文)工作开始时发给学生。任务书应包括毕业设计(论文)课题的来源、应完成的主要内容、基本要求、成果形式、进度计划等。

学生根据指导教师拟定的任务书,在查阅相关资料后遵照教师要求填写《长江师范学院毕业设计(论文)开题报告》。学院可根据情况采取多种形式组织开题报告会。毕业设计(论文)工作在学院领导下,实行毕业设计(论文)领导小组、专业教研室、指导教师三级管理,分层负责毕业设计(论文)工作的管理、指导、检查、考核和总结归档工作。

扩展资料:

本科毕业设计(论文)的相关要求规定:

1、每学年秋季学期初由毕业设计(论文)领导小组确定毕业设计指导教师人选。毕业设计方向由指导教师提出,报专业教研室集体研究,并获教研室主任批准,由教研室主任将批准后的毕业设计方向汇总并报主管教学院长及系主任审核,通过后确定为该专业学生毕业设计(论文)方向。

2、答辩委员会指定教师对学生提交的毕业设计(论文)进行评阅, 评阅教师填写《长江师范学院毕业设计(论文)成绩评定表(评阅人用)》,主要应针对选题方向、研究思路、设计能力、设计内容及与开题报告的符合度等方面做出评价,写出具体评阅意见。

参考资料来源:长江师范学院-本科毕业设计(论文)工作管理办法和实施细则

复试用带毕业论文吗

如果你联系的导师要求,通常也就是在邮件中让你发给他看看,如果导师没有说,复试的时候不需要,如果你觉得你的毕业论文写的很好,你也可以在复试中带着文本,在复试的过程中提及你的毕业论文,但是你这样一提老师们可能会围绕你的论文问一堆问题,如果没有信心回答好,还是不提的好。老师明白的,本科生的毕业论文在老师看来一般都是很菜的,通常情况他们不会太有兴趣的。祝你好运!

西南政法大学复试是要交毕业论文的。毕业论文、科研成果、社会实践等体现综合能力的材料, 复试时尚未取得本科毕业证的自考和网络教育考生,已符合毕业条件,确因疫情影响未能在复试时取得毕业证的,提供毕业院校出具的相关证明。

  • 索引序列
  • 用毕业论文做试讲
  • 毕业论文正交试验怎么做
  • 讲话毕业论文引用
  • 毕业论文问卷可以不做测试吗
  • 复试用带毕业论文吗
  • 返回顶部