太阳能光伏发电是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相[1-2]。最大功率点跟踪MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。 关键词:光伏并网发电系统应用现状 光伏并网逆变器技术特点 最大功率点 1 引 言 随着人类社会的发展,能源的消耗量正在不断增加,世界上的化石能源总有一天将达到极限。同时,由于大量燃烧矿物能源,全球的生态环境日益恶化,对人类的生存和发展构成了很大的威胁。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国 var script = document.createElement('script'); script.src = 'http://static.pay.baidu.com/resource/baichuan/ns.js'; document.body.appendChild(script); 政府正在逐步推动太阳能光伏发电产业的发展[1]。而在我国,光伏系统的应用还刚刚起步,市场状况尚不明朗。针对这方面的空白,本文着重于今后发展前景广阔的光伏并网系统,通过对国内外市场和技术的调研,分析了目前光伏市场发展的瓶颈并预测了未来光伏发电的发展前景。相信作为当今发展最迅速的高新技术之一,太阳能光伏发电技术,特别是光伏并网发电技术将为今后的电力工业以及能源结构带来新的变化。 2 光伏并网系统应用现状 2.1 全球应用现状 目前,全球的光伏市场正处于稳定增长阶段。据solarbuzz llc.年度pv工业报告显示,2007年世界光伏市场比2006年增长了62%,2007年一年的安装量为2826mwp。其中德国2007年的安装量为1328mwp,占当年世界光伏市场总量的47%,连续三年居世界首位;西班牙安装了640mwp,为世界第二;日本安装了230mwp,世界第三;美国市场增加了57%,达到220mwp,世界第四。表1和图1给出了2006年和2007年世界不同国家和地区的光伏市场份额[2]。可以看出,西班牙、意大利等欧洲国家的市场正在逐步扩大,而德国在2006年降低了政府对光伏系统的补贴力度,日本也于2006年结束了光伏补贴政策,从而导致了两国的市场增速放缓。中国市场也略有增加,但对于全球光伏市场来说影响甚微。 表1 2007年世界不同国家和地区的光伏市场及份额 var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;图1 2006、2007年世界主要国家和地区光伏市场份额 在国际市场中,光伏系统的应用形式主要分为离网系统和并网系统两大类,图2显示了1992年至2006年iea-pvps项目①成员国光伏系统的累计安装量。可以看到,并网系统已经毫无争议的占据了市场的主导地位,达到了90%以上,成为该领域的发展潮流。 j ka 图2 iea-pvps项目成员国光伏系统累计安装量 并网系统又分为分布式和集中式两种。分布式主要应用在城市屋顶并网、光伏建筑一体化和光伏声屏障系统等方面。这种系统占地少、安装灵活、投资门槛低。与离网系统相比,因为有电网电压支撑,可以不考虑负载特性而最大化的提供功率,且省去了蓄电池降低了系统成本。在德国、日本、美国等提供上网电价补贴的发达国家,普通居民均可投资建设并获取利润。而集中式则主要指大型光伏并网电站,因为需要大量土地,一般建于大漠中,作为大电源直接向高压电网送电。由于成本较高,一般由政府出资建设。 由于欧美、日本等发达国家均实施了相应的措施鼓励居民投资屋顶光伏系统。如德国实施了《上网电价法》,政府购电的价格达到德国火电价格的十倍左右;美国则是通过抵税政策来支持企业和个人投资光伏并网系统。因此,分布式并网系统的市场份额要远远大于集中式并网系统。在iea-pvps项目成员国中就达到了14:1。 2.2 国内应用现状 近年来,我国太阳能光伏产业发展十分迅速,光伏电池年产量已位居下载文档到电脑,查找使用更方便0下载券 415人已下载下载还剩13页未读,继续阅读世界第一,且年增长率达到100%~300%[2][6]。而与之相对,我国的光伏市场发展相对迟缓,甚至可以说严重落后于光伏产业的发展。图3显示了自1995年以来我国光伏市场的发展情况。可以看出,我国光伏市场的发展相当缓慢,2002~2003年国家启动“送电到乡”工程,导致安装量有所突增,2004、2005年回落到年安装量约5mwp的水平[2][7]。2006年以后,由于国家大型并网工程的促进又有所回升。以2007年为例,我国当年光伏电池产量达到1088mwp,但国内只安装了20mwp,其余几乎全部用于出口。可见,我国真正的太阳能光伏市场还远没有形成。 图3 1995年~ 2007年我国光伏系统的年装机和累计装机容量变化 截止到2007年底,我国国内光伏系统的累计安装量只有100mwp,与全球近12gwp的装机容量相比所占份额非常小。其具体分配比例如图4所示,可以看到,这些装机大部分均用于农村电气化,以解决无电地区人民的生活用电问题,而并网系统仅占到了6%[2]。 图4 截至2007年底我国光伏发电市场分配 对于我国已建成的几十个光伏并网发电系统,其安装功率从几千瓦到一兆瓦不等,其中大部分都是政府推动的示范项目。由于我国电网技术等原因,这些已建成的示范项目大部分处于试验性并网状态,大多数都安装了防逆流装置,不允许光伏电力通过电力变压器向高压电网(10kv)反送电,而只允许在低压侧(380/220v)自发自用。 总体来说,随着时间的推移,所建设并网系统的容量也在逐渐增大,目前有8座兆瓦级光伏电站正在建设之中,预计2009年底可以完工。另外,为了体现北京奥运会绿色奥运的精神,北京在国家体育中心、丰台垒球中心等奥运场馆均使用了100kwp左右的光伏并网系统,用来降低建筑物能耗。这些示范工程在促进光伏并网技术发展、降低co2排放等方面起到了很好的推动作用。但就其经济性来讲,由于当前组件价格较贵,所以还是很不划算的。以首都博物馆新馆安装的300kwp并网太阳能系统为例,总造价约2000万元人民币。而北京每天的标准日照时间为4~5个小时,如果以事业型部门电价0.6683元/度计算,一年最多节约电费:53000.6683365≈36.59万元。回收成本共需要:200036.59≈54.7年。而电池板的寿命一般只有20~30年,这显然是不划算的。又如深圳国际园林花卉博览园1mwp并网项目,总投资6600万人民币,而20年运营期内节约的电费只有1360万元[8]。因此,今后较长的时间内光伏并网发电仍需要政府政策的扶持才能发展。 3 光伏并网逆变器技术特点 3.1 主电路结构 光伏并网发电系统根据光伏电池模块组合方式,可分为如05所示的四种主要方式:中心集中式(图5a)、组串式(图5b)、模块集成式(图5c)和多组串式(图5d)[9]-[14]。 图5 光伏系统与组件的组合方式 中心集中式是将多个光伏模块进行串并联的排列组合然后接入到一个逆变器上。这种结构可以直接向光伏逆变器输入高电压和大电流,提高了转换效率。而且装置比较简单、成本低,适用于大型的高功率
光伏发电我明白,这个我了解好比
组件回收是光伏产业链上的最后一环,也被视为整个光伏绿色产业链的“最后一公里”。 随着光伏发电的大规模利用, 退役和废旧光伏组件的回收利用 成为越来越突出问题,同时也为行业带来了巨大的新商机。如今,这一新兴产业已经处于爆发的前夕。 一、组件回收——必要性与紧迫性并存 随着全球环境恶化和能源危机的日益加剧,碳达峰、碳中和已成为全球的共识,光伏新能源作为各国实现气候目标的重要途径之一,装机容量更是快速增长。 2021年,全球新增光伏装机量达到183GW,同比增长30%以上。据BNEF彭博新能源财经预计,到2030年这一数字将增加到334GW。我国作为光伏产业发展最成熟的国家,光伏发电累计装机容量已超过200GW,预计2030年新增装机水平将达到105GW~128GW。 未来光伏发电的装机规模,无疑将由“GW时代”跨越至“TW时代”。 但与此同时,光伏发电的大规模应用,却不可避免地衍生出了废旧光伏组件的回收问题。 据国际能源机构一组预测数据显示,2030年,全球光伏组件回收将达800万吨左右,迎来回收大潮。2050年,全球则会有将近8000万吨的光伏组件进入回收阶段。 其中, 中国将在2030年面临需要回收达150万吨的光伏组件,在2050年将达到约2000万吨,是埃菲尔铁塔重量的2000倍。 如此大量的废旧光伏组件如果处理不当,给环境、社会带来不良影响无疑将不可小觑。 但如果处理得当,则不仅可以助力资源的循环再利用,缓解资源短缺,还能够培育新兴产业,创造更多就业价值,同时真正实现光伏全生命周期的绿色发展,促进光伏产业的可持续发展。 组件回收必要性与紧迫性并存,但当前组件回收工作仍然面临着诸多挑战。 二、组件回收目前面临的难点有哪些? 1、非法遗弃和非法倾倒 安装在建筑物屋顶上的分布式光伏电站,往往会随着建筑物的拆除而废弃。在土地上搭建的地面电站则可能随着土地租赁到期被拆掉,如果业主无法支付或准备回收处理的费用,那么废弃的组件很可能会被放置在原处,或者被非法倾倒在其他土地上。 2、有害物质泄漏和扩散的潜在威胁 实际上,大多数废弃光伏电池板件的归宿是被当做废品卖到废品回收站。 我们知道,根据电池板的类型,太阳能电池板含有铅、硒和镉等有害物质。当电池板被卖到废品回收站后,很少有人知道其中有这么多有害物质,也就很少会进行适当的废弃处理。 3、处理场所短缺 以日本为例,自2012年日本引入FIT(可再生能源固定价格收购)制度开始,光伏发电装机规模明显扩大且扩大速度持续提升。按照光伏组件25年的生命周期来计算,预计会在2040年左右进入密集报废期,每年约产生80万吨的废弃光伏电池板。如果把这些电池板铺开, 面积相当于182个天安门广场, 高峰期可能导致回收处理场所的暂时短缺。 4、技术难点 目前已有的成熟光伏组件回收处理技术主要有三种,包括 物理分离、有机溶剂溶解法、热处理与化学方法相结合。 ①物理分离法 物理分离法是指将组件经破碎、金属剥离、湿法冶金分离等步骤来回收金属。实验表明此方法仅可获得17.4%金属回收率。 ②有机溶剂溶解法 有机溶剂溶解法是指选择几种有机溶剂浸泡去除背板的晶硅电池片,用有机溶剂溶解封装材料EVA,使玻璃与电池片分离,此方法可以获取整块完整的电池片。 ③热处理与化学方法相结合法 热处理与化学方法相结合法是指把去除背板的电池板放在管式炉或者马弗炉中,将封装材料EVA去除干净,得到纯净的电池片,再使用化学方法把电池片表面的减反射层、银浆和铝去除,得到纯净的硅片。 以上方法中,无机酸和有机酸溶解只针对EVA的去除和分离,未考虑到边框的拆除和硅晶片再利用,且剩下的废液也难处理;而物理分离法也不够完善,未能分离各单一的组分。同时,对含氟背板的回收问题,也是一个难点。我国光伏退役回收工作的重要参与者、带头人,中国科学院电工研究所高级工程师吕芳表示:“过去90%的光伏组件背板是含氟背板,不能烧、埋,否则会带来不可逆的环境污染,对人体也有重大危害。” 光伏组件的回收处理方法仍有待探索。 5、高成本 无锡尚德总裁何双权曾发文指出,目前很大一部分组件建于偏僻的西北地区或位于屋顶之上,增加了运输成本,同时需要购置专门的回收设备与相关材料,加上技术尚不成熟,投资消耗较大,回收物质的纯度却不高,以及尚未形成大规模的操作形式,因此 光伏组件回收成本仍高。 高成本仍是光伏组件回收市场难以回避的一个“门槛”。 三、光伏组件回收正呈产业化趋势 尽管光伏组件回收还面临着诸多棘手难题,但光伏的飞速发展和大规模应用,正为这一新兴产业的诞生和发展不断添火。 过去数年,韩国、日本和来自欧盟的一些国家在光伏组件回收产业化问题上一直积极布局。 欧盟于2014年正式将光伏组件纳入“报废电子电气设备指令”,还通过“PV CYCLE”和“CERES CYCLE”回收组织负责处理废旧光伏组件。2017年,又进一步颁布了针对光伏组件回收的欧盟标准,并建设了化学法示范线和物理法/化学法综合示范线。 2018年, 法国建立了世界首个光伏组件回收工厂 ,对光伏组件材料的回收利用率超95%; 2021年,澳大利亚正式批准Clive Fleming成立澳洲首家光伏组件回收工厂Claiming PV,尚德、阿特斯、英利、韩华等公司参与技术支持; 在国内,光伏组件回收发展起步于“十二五”规划,依托于科技部“863”课题计划,经历了长达10年的实验室研究,在技术上可与国外并驾齐驱。 2019年4月,国家科技部的国家重点研发计划可再生能源和氢能技术重点专项“成套技术和装备项目”开始实施,英利集团、晶科能源等13家光伏企业联手中国科学院等众多科研院所,针对光伏组件的回收技术、关键装备研制、回收处理示范线、回收标准体系和监管机制,积极展开探索。 同时,自2017年起,国家电投集团黄河上游水电开发有限责任公司(以下简称“黄河公司”)还率先自主开展光伏组件环保处理、回收的关键技术和装备的研究。截止2021年12月底, 黄河公司已建成我国首条组件回收中试线 ,闭环形成多晶硅、硅片、电池、组件、支架、光伏电站规划设计及建设、运行维护、检测评价及组件回收的垂直一体化光伏全产业链。 三、亟待更多力量的加入 中国科学院电工研究所高级工程师、中国绿色供应链联盟光伏专委会秘书长吕芳表示:“未来,光伏组件回收将成为光伏产业链的新产业增长点,必然会有人进入,不管是资本方还是工业界等都会进入。”而当前国内光伏组件回收技术正是需要“百花齐放”。 期待未来随着更多力量的加入,如何低成本地实现光伏废弃组件的回收利用和无害化处理等一系列问题,都能够得到逐一破解,真正实现光伏全生命周期的绿色发展,实现光伏产业的可持续发展。
总体设计思路:拟屋顶建设低压配电用户侧并网光伏发电项目所发电量接入内供电网络光伏发电自发自用实现光伏新能源电力示范应用保障光伏装机容量及发电量光伏电池板采用固定倾角支架式安装朝向南太阳能电池组件阵列尽量避免建筑物阵列间遮挡并预留维护通道根据客户初步提供用电32度根据佳角度进行太阳能电池组件铺设计算初步铺设太阳能电池组件205W(1580x808x50mm)16块总装机容量3.28kwp初步设计需要安装面积59.189平米设计光伏组件安装倾角面设计32度安装式,32度倾角实现单位装机容量全发电量尽量利用屋顶效使用面积获较屋顶发电效率预计发电量:北京市光伏发电示范项目预计平均发电量按32度倾角设计11.066KWh电网接入案:屋面光伏组件经定数量串联升压通直流防雷汇流装置别接至1台并网逆变器并网逆变器光伏所发直流电逆变与区域内电网同频率同相位交流电经交流配电柜(含防 雷保护、发电量计量等)接入配电间光伏发电路(原配电柜增加光伏路)两相220V低压配电网通交流配电线路给负荷供电实现光伏发电并入商场内部电网北京市光伏发电示范项目工程设计概算包括光伏组件、光伏支架(含基础钢架)、逆变设备、直流配电、交流配电、电缆、工程施工等二、光伏发电原理简介及特点()太阳能利用概况太阳能各种再能源重要基本能源物质能、风能、海洋能、水能等都自太阳能广义说太阳能包含各种再能源太阳能作再能源种则指太阳能直接转化利用通转换装置太阳辐射能转换热能利用属于太阳能热利用技术再利用热能进行发电称太阳能热发电属于技术领域;通转换装置太阳辐射能转换电能利用属于太阳能光发电技术原理图:(二)光伏发电原理太阳能光发电技术通转换装置太阳辐射能转换电能利用技术光电转换装置通利用半导体器件光伏效应原理进行光电转换称太阳能光伏技术光伏特效应简称光伏效应指光照使均匀半导体或半导体与金属组合同部位间产电位差现象(三)光伏系统发电特点- 没转部件产噪音;- 没空气污染、排放废水;- 没燃烧程需要燃料;- 维修保养简单维护费用低;- 运行靠性、稳定性;- 根据需要容易扩发电规模
光伏发电我明白,这个我了解好比
基于P2N 结的太阳能电池伏安特性的分析与模拟摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量结果一致1关键词 P2N 结;伏安特性;等效电路模型;太阳能电池中图分类号 O475 文献标识码 A0 引言P2N结是许多微电子和光电子器件的核心部分1这些半导体器件的电学特性及光电特性由P2N 结的性质所决定,掌握P2N 结的性质是分析这些器件特性的基础1 半导体导电是通过两种载流子的漂移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非线性特性,其电流电压关系无法通过一个简单的解析模型来确定1 虽然肖克莱方程给出了理想P2N结的电流电压关系,但与实际器件的性质差别很大1在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性只在很小的范围内接近理想值1 正向电压增大时, I2V曲线由指数关系转变为线性关系1 反向电压增大时,在一定范围内也是线性关系,反向电压过大还会发生P2N 结的击穿1本文通过一个简单的电路模型模拟了实际的P2N 结,讨论了各实际参量对伏安特性的影响1 并针对太阳能电池在一定光照下其实际参量如旁路电阻和串联电阻对其开路电压、短路电流及填充因子的影响,利用计算机对其伏安特性进行建模分析,以获得接近实际器件的特性11 P2N结的伏安特性分析及等效电路理想P2N 结模型满足小注入、突变耗尽层及玻耳兹曼边界条件,且不考虑耗尽层中载流子的产生和复合作用[2 ]1 其电流电压关系可由肖克莱方程给出,即J = J s expqVk T- 1 (1)式中,V 为P2N 结两端的电压, J 为通过P2N 结的电流密度, J s 为反向饱和电流1 当正向偏压较大时,括号中的指数项远大于1 ,因而第二项可以忽略,电流密度与电压呈指数增加关系1 反向偏压时,当q| V | m k T 时, 指数项趋于0 , 电流不随电压改变,趋于饱和值J s1实验测量发现,肖克莱方程与实际P2N 结的伏安特性偏离较大,主要表现在两个方面:1) 正向电压较小时,理论值比实验值小,正向电压较大时,J2V关系变为线性关系;2) 反向偏压时,反向电流比理论值大许多,反向电流不饱和,随反向偏压的增大略有增加1 这说明理想模型不能真实反映实际器件的特性,需要建立更为完善的P2N 结模型[3 ]1 在实际器件中,载流子的产生、传输和复合会对P2N 结中的空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压特性偏离理想方程1正向偏压时,注入势垒区的载流子有一部分形成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电流密度为扩散电流密度与复合电流密度之和1 对于硅,在较低正向偏压下, 复合电流占主要地位, 因而总电流大于理想条件下的电流,正向偏压较高时,复合电流可以忽略具体的去我们论坛看看吧!!
光伏材料加工与应用专业毕业生简历教育经历:毕业院校江西太阳能科技职业学院就读专业光伏材料加工与应用 主修课程 太阳能光伏概论、太阳能电池材料、太阳电池材料制备工艺及检测、电子电工基础、太阳能光伏发电系统设计及应用实例、太阳能光伏照明技术与应用、硅材料检测技术、薄膜太阳能电池、材料加工设备概论、电气控制与plc、机械设计基础、autocad2014机械制图基础教程等教育培训与掌握技能:2014年6月在学校实验室进行了与光伏有关的各项实验操作训练2014年10月通过自学c语言,并通过了计算机二级考试通过自学并能对51、pic单片机进行编程操作和使用dxp2014进行原理图、pcb的绘制,以及对各种常用电子元器件和传感器的熟练使用。2014年3月至4月参加了江西省第八届亚龙杯技能比赛的培训,并参加了江西省第八亚龙杯机电一体化安装与调试的技能大赛,并能灵活三菱plc和mcgsc触摸屏组态软件的编程操作2014年4月至6月参加了全国【光伏发电系统设计与调试】高职组技能大赛培训,期间掌握了光伏系统设计中的各个环节设计及操作,并学习了与其有关的ge plc、power9000、单片机、数字电表的调节、光伏系统的安装调试,cad等软件和技能。2014年7月至9月在江西开昂新能源科技股份有限公司研发中心学习,协助其他工程师的工作,对部分样品产品的电子部分安装、测试和部分产品说明书的编写。2014年9月至今在江西省新余市民用建筑工程能效测评中心工作,在这主要是对太阳能热水器工程进行性能测试实验,并在这学会了各种集热系统和工程的测试方法、国家标准以及施工方法与安装与调试 。在校期间所任职务情况:2014年至今担任班级学习委员;主要负责同学学习及活动的开展自我评价:我充满了自信,勤奋好学,自学能力强,对待工作热情,积极向上,勤于思考,稳重、待人热情、真诚,工作认真负责,积极主动,能吃苦耐劳。实际动手能力和团体协作精神,能迅速的适应各种环境,并融合其中。接受新事物能力强,具有良好的人际关系及团队合作精神。专业方面:对光伏专业有了系统的认识,掌握了牢固的理论知识,并结合实际进行了有关光伏知识的扩展实践。在电子电气自动化方面的理论与实践知识有所掌握以及在太阳能热水工程的检测,系统设计,施工,安装也有所掌握。所获证书奖励:2014年6月获得了全国职业院校【光伏发电系统设计与调试】高职组技能大赛三等奖2014年4月江西省第八届亚龙杯技能大赛机电一体化安装与调试组优秀奖2014年12月获得本校象棋大赛优秀奖2014年获得国家助学金求职信条:能力决定价值!细节决定成败! 求职意向:光伏发电系统、太阳能应用产品、太阳能热水系统工程和检测有关的各类岗位及与电子电器类和自动控制的有关岗位。第五篇:光伏材料加工及应用专业发展改革方案光伏材料加工及应用专业发展改革方案 一、专业设置和专业培养目标根据国家新能源政策的战略部署,符合光伏结构调整的市场要求,并根据缺问题,紧贴区域经济发展和社会需求,我院创新专业设置,致力于“师资队伍、实训基地、课程建设、就业基地”四大质量工程建设,全面深化教学改革,推进素质教育,努力提升教学质量,全力打造光伏专业品牌,以培养光伏发材料加工及应用专业方面的实用性人才。1、社会需求分析光伏材料又称太阳电池材料,只有半导体材料具有这种功能。可做太阳电池材料的材料有单晶硅、多晶硅、非晶硅、gaas、gaalas、inp、cds、cdte等。用于空间的有单晶硅、gaas、inp。用于地面已批量生产的有单晶硅、多晶硅、非晶硅。其他尚处于开发阶段。目前致力于降低材料成本和提高转换效率,使太阳电池的电力价格与火力发电的电力价格竞争,从而为更广泛更大规模应用创造条件。但随着技术的发展,有机材料也被应用于光伏发电。中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府已加强政策引导和政策激励。例如:太阳能屋顶计划、金太阳工程等诸多补贴扶持政策,还有在公共设施、政府办公楼等领域推广使用太阳能。在政策的支持下中国有望像美国一样,会启动一个巨大的市场。太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2014年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2014年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。中国的光伏生产产业虽然已经是世界第一,但光伏发电的研究还有很大的空间,毕竟发电率还不是很高。所以这就给我们留下了很大的发展空间。太阳能电池发电效率之所以低,是因为85%的光能都转化为热浪费掉了。只要能有效的抑制太阳电池内载子和声子的能量交换,就能有效的避免太阳电池内无用的热能的产生,大幅地提高太阳电池的效率,甚至达到超高效率的运作。如果成功了,一定会将人类带入一个崭新的时代!2、培养目标1.培养目标本专业培养德、智、体、美、劳全面发展,具有现代企业意识,适应经济建设发展需要,掌握光伏产业链中太阳能光电建设工程及各种应用产品基础理论知识、基本方法和基本技能,动手能力强、素质高,在太阳能光电工程、新能源光电应用技术转换、储存及相关领域从事生产运行、技术管理、产品检测与质量控制等工业的高级应用型专门人才。2.基本要求①熟悉本专业所需外语知识,通过大学生英语应用能力a级考试。②具有本专业所必需的计算机应用的初步能力,通过国家计算机一级等级考试。③具备一定的政治理论素养和法律知识,具有良好的职业道德素养、健康的体魄和一定的人文和艺术素养。④掌握半导体物理与器件、硅材料科学与技术、光伏技术与工艺等学科的基础理论和基本知识。⑤掌握光伏材料生产操作、设备的运行和维护、材料产品分析检测、材料产品质量控制的基本技术。⑥具备在光伏材料及相关领域从事设计、生产、管理的基本能力。⑦熟悉光伏产业特别是晶态硅工业有关的方针、政策和法规,了解光伏材料行业发展的现状、动态和前景,具有一定的光伏材料特别是晶体硅生产组织管理的能力。二、课程体系和结构专业课程体系和结构的合理、科学与否关系到专业培养目标能否实现。我们在制订专业教学计划、设计开设的课程时考虑了以下几个因素:第一、学院的办学层次、办学条件、办学环境。第二、外语专业课与法律专业课的恰当比例。第三、知识传授与能力培养的关系。第四、学生知识结构与市场需求的关系。我系在教学过程中,本着实事求是的态度,遵循“三个结合”(即素质教育与业务培养相结合、知识传授与能力培养相结合、教学与科研相结合)的指导思想,建立了由公共基础课、专业必修课、选修课、综合实训课和讲座课构成的科学、合理、完整的课程体系。主干学科:光伏材料及应用三、课程建设人才培养的质量是高职院校的能否存在的关键,而课程的质量是这条生命线的核心环节。课程教学既是决定一所学校人才培养中教学质量和水平的最基本标志,又是学校科研、师资和管理水平等诸多因素的综合体现。因而,开展课程建设工作是提高教学质量和实施教学改革的需要,也是我院建设高水平高职院校的需要。我系课程建设的目标之一:将本专业的光伏组件工艺确定为精品课程。为实现这一目标,我们力求做到:1、培养和引进职称结构、年龄结构及学历结构都符合精品课程基本要求的师资队伍。2、教学内容具有先进性、合理性、科学性;3、 使学生掌握与光伏生产设备相关的理论知识;4、使学生掌握不同光伏生产设备的工艺流程,让学生在掌握知识的同时也了解社会的真正需求。5、 使学生了解动不同光伏生产设备的安装、调试流程,了解设备保养以及简单故障处理的方法。(二)教材建设教材要符合“三个面向”的要求,所用教材必须与教育部对有关高职高专院校的要求一致,同时要考虑学生的实际情况,做到实事求是,体现理论联系实际的原则。由于教育部对高职高专院校的英语专业还没有统一的教材,所以新能源工程学院一直积极鼓励任课教师编写适合高职学生需要的专业教材,现本专业教师已经开始搜集相关资料,同时也提倡教师推荐选用其他院校的优秀教材。无论是编写教材,还是选用教材,首先要根据本专业学生的实际水平来 定,同时还要严把教材质量关。(三)考核办法(1)考核应以形成性考核为主,可以根据不同课程的特点和要求采取笔试、口试、实操、作品展示、成果汇报等多种方式进行考核。(2)考核要以能力考核为核心,综合考核专业知识、专业技能、方法能力、职业素质、团队合作等方面。(3)各门课程应根据课程的特点和要求,对采取不同方式、对各个不同方面进行考核的结果,通过一定的加权系数评定课程最终成绩。
总体设计思路:拟屋顶建设低压配电用户侧并网光伏发电项目所发电量接入内供电网络光伏发电自发自用实现光伏新能源电力示范应用保障光伏装机容量及发电量光伏电池板采用固定倾角支架式安装朝向南太阳能电池组件阵列尽量避免建筑物阵列间遮挡并预留维护通道根据客户初步提供用电32度根据佳角度进行太阳能电池组件铺设计算初步铺设太阳能电池组件205W(1580x808x50mm)16块总装机容量3.28kwp初步设计需要安装面积59.189平米设计光伏组件安装倾角面设计32度安装式,32度倾角实现单位装机容量全发电量尽量利用屋顶效使用面积获较屋顶发电效率预计发电量:北京市光伏发电示范项目预计平均发电量按32度倾角设计11.066KWh电网接入案:屋面光伏组件经定数量串联升压通直流防雷汇流装置别接至1台并网逆变器并网逆变器光伏所发直流电逆变与区域内电网同频率同相位交流电经交流配电柜(含防 雷保护、发电量计量等)接入配电间光伏发电路(原配电柜增加光伏路)两相220V低压配电网通交流配电线路给负荷供电实现光伏发电并入商场内部电网北京市光伏发电示范项目工程设计概算包括光伏组件、光伏支架(含基础钢架)、逆变设备、直流配电、交流配电、电缆、工程施工等二、光伏发电原理简介及特点()太阳能利用概况太阳能各种再能源重要基本能源物质能、风能、海洋能、水能等都自太阳能广义说太阳能包含各种再能源太阳能作再能源种则指太阳能直接转化利用通转换装置太阳辐射能转换热能利用属于太阳能热利用技术再利用热能进行发电称太阳能热发电属于技术领域;通转换装置太阳辐射能转换电能利用属于太阳能光发电技术原理图:(二)光伏发电原理太阳能光发电技术通转换装置太阳辐射能转换电能利用技术光电转换装置通利用半导体器件光伏效应原理进行光电转换称太阳能光伏技术光伏特效应简称光伏效应指光照使均匀半导体或半导体与金属组合同部位间产电位差现象(三)光伏系统发电特点- 没转部件产噪音;- 没空气污染、排放废水;- 没燃烧程需要燃料;- 维修保养简单维护费用低;- 运行靠性、稳定性;- 根据需要容易扩发电规模
随着科学技术的快速发展,电气工程自动化在多个领域发挥着越来越重要的作用,为人们的工作、学习和生活提供了极大的便利。下文是我为大家搜集整理的关于本科电气工程及其自动化 毕业 论文的内容,欢迎大家阅读参考!本科电气工程及其自动化毕业论文篇1 浅析电气工程电气技术的发展 一、关于电气工程技术发展环节分析 随着计算机网络系统的健全,电气工程应用技术也在不断深化,其现代电气工程系统逐渐健全,满足了时代经济对于电气工程技术的发展需要,电气工程的发展,离不开对其内部理论应用体系的健全,实际上电气工程理论体系的健全与当时的经济时代背景是分不开的,特别是在学科相互融合交叉的今天。科学技术的每一次重大突破都会导致生产力的跨越式发展和人类社会的巨大进步,科技是第一生产力,创新是社会发展的推动力。 二、关于电气学科环节的分析 1随着电气工程系统的不断健全,电气学科理论知识也在不断深化应用,这两者实现了相互促进。我国对于电气信息学科的划分包括以下内容,其属于工学门类,其学科分支有电气工程、信息通信工程、计算机科学技术等。无论是哪一个学科分支,其都以计算机应用为基础,这是电气学科的理论实践基础,也是电气工程的应用基础。随着时代的发展,其技术工程及其电磁类的基础学科得到有效结合。实现了对其现代电气工程的发展,满足了市场经济的发展需要。我国电气工程一级学科下设五个二级学科:电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术,电气工程包含的专业基础理论有电路原理、模拟电子、数字电子、微机原理与接口技术、单片机原理、自动控制原理、电磁理论、MATLAB仿真等。专业理论有电力系统及其暂态分析、电力电子、电机学、高电压与绝缘、电力拖动、输配电、工厂企业供电、电力市场等。 2目前来说,国外发达国家的电气工程专业体系是比较健全的,随着经济时代的发展,其内部理论实践体系日益健全,伴随着科学技术的发展而发展。在以前的电气工程专业中,国外发达国家的教学是以电力工程为主要的模式,随着知识经济时代的发展,其电子技术及其计算机技术逐渐成为电气工程的应用核心,其电气学科体系日益健全。有些国外高校的电气工程教学过程中,实现了对电力工程学科的取缔,取而代之的是电气工程的计算机应用教学,这满足了国际经济发展的局势,实现了对电气工程的更新,保障了电气学科系统的健全,确保其内部各个环节的有效协调,无论是电气学科的健全还是电气工程技术的更新,这一定程度提升了国外发达国家的发展的软硬实力。我国的电气工程始于1908年上海南洋公学的电机电工学科,就是上海交大的前身,距今也有100多年的历史了。1917年该校的电机专科设立了电讯门,即我国最早的无线电专业,如今的电子信息及计算机专业群都是由此发展演化而来的。1932年,清华大学设置了电机系。建国后,我国建立了一大批以工科为主的多科性大学,其中大多设立了电机工程系。1977年以后,大部分高校的“电机工程系”陆续更名为“电气工程系”,近几年来,部分高校又把“电气工程系”发展成为“电气工程学院”。我国的电气工程虽然与国外名称相同,但内涵有很大区别,我国大学一般都是强弱电分开,即电气类与电信类分设在不同的学院。 随着我国经济的发展,我国高校的电气工程教学中,电力学科也逐渐实现了与现代信息技术的融合,符合了国家信息化经济的法发展需要,这有效推动了我国的电气工程的学科应用系统的健全,进行其电气工程领域的技术创新模式的应用,保障其内部技术应用环节的优化。在此过程中,我们为了本国的电气经济的发展需要,需要进行国外电气学科的先进管理 经验 的汲取。国外发达国家的着名大学大都把电气工程、通信工程、计算机工程放在同一学院,以利于在电气工程学科中融入大量的信息技术知识。与其他学科不断交叉融合,拓展了研究领域,大量的研究都是在跨学科领域开展的。与企业联系密切,科技成果转换能力强,引领产业技术更新。 三、关于电气技术发展前景的分析 电气技术的未来发展前景是非常广阔的,其影响着电力工业及其相关电力行业发展,可以说电气技术的应用发展,是国家经济建设的重要环节。电气技术的发展,也推动了可再生能源技术的深化应用,满足了国家经济的健康可持续发展,实现了对风电技术、光伏技术及其氢能的有效应用,这符合未来电气工程的发展需要,满足低碳经济的发展需要。特别是氢能技术的应用,氢能有其他能源无与伦比的优势,其反应后的生成物为水和氮化氢,对环境没有污染。地球上的海水所含的氢用来发电就够人类用数亿年。单位重量的发热量叫热值,氢的热值是汽油的3倍,煤炭的4倍。现在世界上很多国家正在斥巨资研究这一能源,但目前还处在实验室阶段,距工业应用还有一段距离。超导技术的深化,满足了电气工程的发展需要,促进其综合社会效益的提升,通过对其超导储能系统的深化应用,实现对其电能的有效转换,实现对其电磁能的应用。它是一种高效的储能系统,能够实现对电网的安全性的提升,满足了实际工作的需要。保障电网安全。超导大容量电缆,可大大降低输电过程中的电耗,提高能源效率。灵活交流输电技术,用大功率电子器实现对电力系统电压、参数、功率、相位角等的实时调节控制,以实现电力系统的安全稳定性和输电过程中的能耗。 四、结束语 为了满足国家经济的健康可持续发展,该文就电气工程技术与学科发展环节展开了研究深化,以方便现实难题的解决,促进电气工程系统的健全。 本科电气工程及其自动化毕业论文篇2 浅探电气工程自动化 摘要:科学技术的发展进程中,工业发展迅速,特别是近年来信息技术成果越来越多地用于电气工程,使得电气工程的发展前景良好。但是,电气工程中融入自动化技术,实现了电气工程各项工作顺利展开的同时,还存在着一些不足。因此,针对电气工程自动化的不足问题进行分析,并具有针对性地提出改进 措施 。本论文针对电气工程自动化的不足及改进措施进行探究。 关键词:电气工程;自动化;不足;改进措施 1前言 在各个行业中,电气工程的应用程度以及未来发展状况成为衡量自动化技术水平的关键衡量指标。目前的电气工程自动化发展中,受到诸多因素的相应而导致其不足,具有针对性地制动改进措施并落实到电气工程的实际运行中,以提高自动化技术水平。 2电气工程自动化的发展现状 电气工程自动化是伴随着信息技术而发展起来的综合性学科,在中国的工业领域中已经广泛应用。作为一门新兴的科学技术,电气工程自动化的发展直接关乎到人们的生产生活。随着信息技术的发展,电气工程自动化也呈现出迅猛发展的态势,已经成为推进高科技发展的重点内容。中国的工业领域、农业领域和国防领域中,电气工程自动化都成为了基础技术而发挥着重要的作用[1]。可见,电气工程自动化成为了中国国民经济快速发展的重要力量。即便是在科技研究领域中,电气工程自动化作为建立在信息技术基础上的学科,被不断地研发,并将研发成果在应用领域中得以验证,不仅使得人们的 思维方式 发生了改变,对中国的工业发展和科技进步具有重要的意义。 3电气工程自动化所存在的不足 3.1电气工程自动化没有树立明确的技能目标 中国的工业领域汇总,电气工程所发挥的作用是不容忽视的,对推动中国的工业生产发展发挥着基础性作用。随着中国的工业智能化方向发展,已经新的科技成果被研发出来,并应用于仪器设备中,使得这些仪器设备在工业领域中得以应用,大大地提高了工业生产效率。但是,工业生产领域中的电气工程由于能源消耗量大而没有发挥能源节约的作用,不利于节能减排。电气工程领域中,要提高工作人员的安全意识,才能够确保工业生产质量。工作人员安全操作不仅可以确保机械设备的使用规范,更重要的是能够保证自身的生命健康。市场竞争环境下,越来越多的工业企业注重经济效益而忽视了安全质量问题,对电气工程质量没有采取有效的监督管理办法,特别是最终点结构检验,没有将施工质量管理落到实处,导致电气工程质量不符合规定的标准。 3.2电气工程自动化的系统集成化程度较低 电气工程自动化技术的发展迅速,是其功能的完善性起到了重要的推动作用。着眼于未来,电气工程自动化的发展进程中,系统化集成化是重要的趋势。从中国目前的电气工程自动化发展状况来看,虽然该技术已经被广泛地应用与各个领域中,但是,集成化程度依然不足,因此而导致中国的工业发展距离经济发展国家还相对落后[2]。目前的电气工程自动化技术目前存在着独立性运行弊端,由于功能单一,且电气工程运行中子系统之间衔接性度不够,使得电气工程自动化的信息共享力度不够,导致电气自动化系统的功能难以充分发挥。 3.3电气工程自动化的网络构架各不相同 电气工程自动化技术的发展目标是将其系统化构造建立起来。但是,从目前的电气工程自动化网络构架来看,各有不一,对电气工程自动化技术产生了不利影响。特别是电气工程自动化系统的生产厂家在研发软件产品和硬件产品的时候,没有建立统一的接口而导致各种自动化设备难以兼容,不利于信息资源的共享,使得电气工程自动化难以系统化运行。 4电气工程自动化问题的应对措施 4.1重视电气工程自动化的节能设计 设计电气工程中,要重视节能设计,从实践的角度出发使得电气工程自动化运行中可以发挥节能效果。为了使得电气工程运行中的能源损耗降低,就要首先采取设计措施对变压器进行技术改造,或者选用绕组阻值较小的变压器,从而使得能源消耗量降低[3]。从工业企业的角度而言,电力变压器的选用,要优先考虑节能型变压器,以降低能源损耗。在辅助性设施的选用上,包括照明设备以及配套设施等等,都会相应地减少。只有在电气工程自动化设计中做到节能减排,才能够促使电气工程更好地发展。 3 4.2重视电气工程自动化的质量管理 要做好电气工程自动化的质量管理工作,就要在电气工程建设中提高质量管理意识,定期地对工作人员开展技术能力培训和岗位责任培训是非常必要的,以使所有工作人员的综合素质有所提高。电气工程施工中,认真把握材料设备的质量是非常重要的[4]。施工的材料设备要专人采购,经过检测合格后才能够进入到施工现场,以保证施工质量。电气工程建设中,要高度重视监督管理工作,要求所有的工作人员都要按照规范执行本职工作,并在确保工程质量的前提下对施工进度进行调整,以确保电气工程建设顺利展开。 4.3重视电气工程自动化系统运行的集成化 电气工程企业要确保该项技术能够系统化展开,集成化运行,就要将系统开发平台建立起来。这就需要电气工程自动化专业技术人员要具备较高的综合素质,在运用专业技术能力的同时,还要具备一定的创新能力,随着电气工程自动化技术人员的主观积极性充分地发挥出来,就会更多地在设计中考虑到电气工程运行中各种设备的兼容性,从而降低电气工程运行成本。 5结语 综上所述,自动化技术逐渐地渗入到工业领域中,逐步取缔了手工操作,不仅提高了工作效率,而且还塑造了安全的工作环境。但是,电气工程运行中,尚存在着诸多的不足,需要从工程实际出发不断地改善,以提高电气工程运行效率。 参考文献: [1]卢龙龙.刍议电气工程及其自动化存在的问题与对策[J].科技创新与应用,2013(31):114. [2]徐梅玉.我国电力企业对电气工程及其自动化技术的运用探讨分析[D].武汉:湖北工商学院硕士学位研究生,2012. [3]杨利利.刍议电气工程及其自动化问题及对策[J].中国新技术新产品,2013(04):120. [4]王关媛.电气工程及其自动化对我国经济发展的影响[D].吉林:吉林 财经 学院硕士学位研究生,2012. 猜你喜欢: 1. 电气工程及其自动化本科毕业论文 2. 有关电气工程及其自动化本科毕业论文 3. 电气工程及其自动化分析毕业论文 4. 有关电气工程及其自动化专业毕业论文 5. 电气工程及自动化专业毕业论文
要不你去维普网上自己找资料查询,或者你上万方数据库那边也有。
你也要写科技小论文把,,,,,,,,
聚氨酯硬质泡沫塑料是一种性能优良的绝热材料和结构材料。在聚氨酯各类制品中 ,产量仅次于软质 泡沫塑料 。聚氨酯硬质泡沫塑料是一种高度交联的热固性材料。泡孔结构大部分是闭孔型 ,少量开孔结构硬泡用 于特殊场合。硬质聚氨酯泡沫塑料的主要特性是其硬 韧 ,另外 ,由于其起始剂、发泡剂、催化剂等助剂的用量 及品种的不同 ,也赋予了聚氨酯硬泡不同的性能。其可发泡性 、弹性 、耐磨性、耐低温性、耐溶剂性、耐生物 老化性等优良性能使其广泛应用于冷冻冷藏设备 、汽 车、火车、屋顶、硬泡空心砖、聚氨酯硬泡混凝土、贮罐 管道绝热 、包装 、办公用品等领域 。由于广泛的使用也 导致了大量废弃物的出现 ( 废料与边角料) ,污染了环境 ,因此对聚氨酯硬泡的回收和处理成为迫切需要解 决的问题 。一般说来 ,硬质聚氨酯泡沫塑料的回收处理有如 下几种方法 :粉碎法、物理回收、化学回收以及燃烧回收热能法[ 1 ] 。1 粉碎法处理聚氨酯边角料及旧废料在应用前首先切割或者粉 碎、筛分得到所需粒度的小块或者细粉 。一般说来硬质的聚氨酯泡沫粉碎比较容易 ,所以其粉碎技术也比较成熟 , 大多已经投入商品化 , 如 : 精密切割技术、 Flac h mat rit se n 挤压等技术。都能够将其粉碎为粒度 小于 1 mm 的颗粒。2 回收利用2 . 1 物理法回收利用 物理方法回收利用聚氨酯废旧料是指改变废旧料的物理形态后直接利用的方法 。物理回收利用方法有 热压成型 、粘合加压成型 、挤出成型和用作填料等 ,而以粘合加压成型为主[ 2 ] 。2 . 1 . 1 粘合加压成型 此法是废旧聚氨酯回收利用中最普遍的方法。其要点是 :先将废旧聚氨酯硬质泡沫粉碎成细片状 ,涂撒聚氨酯粘合剂等 ,再直接通入水蒸气等高温气体 ,使聚氨酯粘合剂熔融或溶解后对粉状的废旧聚氨酯粘接 ,然后加压固化成一定形状的泡沫[ 3 ] 。 硬质聚氨酯泡沫废料主要有两类 :一类是以冰箱、冷库为代表的聚氨酯废旧硬质泡沫 ,不含其他混杂物 ; 一类是绝热夹心板产生的废旧硬质聚氨酯泡沫 ,含有 较多的纤维或金属面材 ,是掺混物。他们的回收利用工艺有一定的差别。 冰箱等用的硬质聚氨酯泡沫废旧料是单一的聚氨酯 ,回收利用比较简单 ,常用多苯基多亚甲基多异氰酸 酯做胶粘剂。胶粘剂必须均匀分散于废旧泡沫碎片之 间 ,可在连续或者非连续的混合器中进行 ,最好用无空气喷雾法将胶粘剂喷雾到废旧泡沫碎片上 ,胶粘剂用 量约为废旧料质量的 5 %~10 % ,混合均匀后 ,预制成 疏松的坯垫 ,置入涂有脱模剂的模中 ,在高压和加热下 压制成泡沫碎料板或者制件 ,一般模温在 120~220 ℃ 之间 ,模内压力根据预制坯垫的密度及制成品要求的密度决定 ,一般在 01 5~5 M Pa 范围 ,模压时间与模温 和废旧料的导热因数有关。模温为 180 ℃时 , 每毫米 厚的硬质聚氨酯碎料板需模压约 0 . 5 mi n 。由于硬质 聚氨酯废料碎料板耐水性优良 ,常用来制作舰船用家 具。此外 ,聚氨酯碎料板有很好的回弹性 ,广泛用作体育馆地板 。废旧绝热夹芯板聚氨酯泡沫粉碎后约含 70 %聚 氨酯泡沫 ,25 %纤维 ( 如房顶绝热板面层) ,3 %铝箔和2 %玻璃纤维 ,难于筛分。若直接加到聚醚多元醇中用 作填充料 , 则多元醇的粘度急剧增大 , 添加量仅 4 %时 ,已变成膏状物 ,不能使用。采用胶粘工艺是可行的 方法。将硬质聚氨酯泡沫夹心板废旧物料粉碎为约121 7 mm 碎片后加入约 6 %的多苯基多次甲基多异氰 酸酯 ( PMD I) 胶粘剂 ,在转动式混合器中混合 ( 即将定 量的胶粘剂连续喷雾到碎泡沫片上) ,然后在约 176 ℃经约 6 mi n 模制成厚约 12 . 7 mm 板。板的内部粘接强 度、弯曲强度、硬度、拨螺纹强度优于木质碎料板 ,耐水 性及尺寸稳定性远超过所有木质板材。在密度相等的 情况下 ,硬质聚氨酯碎泡板的刚度比木质碎料板差 ,可 以添加价格低廉的木纤维、回收废纸碎片、木材碎片来 增加刚度 ,满足标准要求 。实例 : 白杨树碎片和 3 %的PMD I 胶粘剂混合制成芯 ,外层用硬质聚氨酯泡沫碎 片与 6 %的 PMD I 胶粘剂一步法制成板 ,完全可以符 合标准的要求。模塑板表面光滑 ,耐湿性很好 ,是室外 室内用家具所需的理想板材 ,有很好的潜在市场[ 4 ] 。这种方法最大的缺陷是再生后的泡沫制品性能下降 ,只适用于做家俱及汽车衬里等低档部件 , 应用面 窄 ,而且工艺繁琐、劳动量大、经济价值也不高[ 5 ] 。2 . 1 . 2 用作填充料废旧硬质聚氨酯泡沫塑料粉常用作聚氨酯建筑材 料的填料 ,如作屋顶的绝热层 ,将水泥、砂、水和废硬质 聚氨酯泡沫粉混合铺于房顶面的底层 ,材料的绝热性能优良 ,质量轻 (几乎是不加废硬质聚氨酯泡沫的水泥 层密度的 1/ 2) ,材料可以锭钉 。另外 ,据美中化学公司报导 ,废聚氨酯可作为填料 用于生产 R IM ( 反应注塑) 制品 , 吸能泡沫和隔音泡 沫。文献报导 ,如果将得到的废聚氨酯粉末投加到生产原部件的原料中 ,再次生产相同部件 ,则由于粉末具 有与原料相同的结构 ,用量可达 20 % ,而最终制品的 机械性能没有明显的削弱 。在日本 ,已将废硬质聚氨 酯泡沫塑料用作灰浆的轻质骨料 。2 . 1 . 3 挤出成型挤出成型是通过热力学作用把分子链变成中等长 度链 ,将 PU 材料转变成软塑性材料 ,这种材料适合作 强度高 、硬度高 ,但对断裂伸长率要求不高的塑料件。 对于软质微孔 PU 泡沫废料 ,可以将其粉碎成粉末 ,掺 混到热塑性聚氨酯中 ,在挤出成型机中造粒 ,采用注射成型方法制造鞋底等制品 ,德国 Bayer 公司曾做过这 方面的研究[ 7 ] 。2 . 2 化学方法的回收利用 由于聚氨酯的聚合反应是可逆的 ,控制一定的反应条件 ,聚合反应可以逆向进行 ,会被逐步解聚为原反应物或其它的物质 ,然后再通过蒸馏等设备 ,可以获得 纯净的原料单体多元醇、异氰酸酯、胺等。用化学方法 处理聚氨酯废旧料 ,回收多元醇等作为原料再制备聚 氨酯的工艺路线 ,已有多套装置投入试运行 ,是当前回 收利用废旧聚氨酯的主要努力方向之一。化学回收技术归纳起来有 6 种 : 醇解法、水解法、 碱解法 、氨解法 、热解法、加氢裂解法。各种方法所产 生的分解产物不同 。醇解法一般生成多元醇混合物 ; 水解法生成多元醇和多元胺 ;碱解法生成胺、醇和相应 碱的碳酸盐 ;氨解法生成多元醇、胺、脲 ;热解法生成气 态与液态馏分的混合物 ; 而加氢裂解法主要产物为油和气。在 20 世纪 70 年代 ,人们发现用热水蒸汽在一定 压力下可以将 PU 软泡降解成二胺和聚醚型多元 醇[ 8 ] 。直接水解是用水蒸气水解聚氨酯废旧料或水和二元醇混合物作混合水解剂回收二胺及多元醇 ,水解产物组成复杂 ,难于分离和醇化 ,所以在此不再赘叙。2 . 2 . 1 二元醇醇解法 在所有化学法回收利用聚氨酯废料的研究中醇解法研究得最多 ,技术比较成熟 ,且已形成了一定的工业 规模。以醇类化合物为分解剂 ,在加热的情况下 ,聚氨酯废料被分解为聚醚多元醇的方法 ,即为醇解法。 聚氨酯废旧料用乙二醇类二元醇为醇解剂 ,在中等温度或中等温度/ 催化剂和有惰性气体保护下反应 降解为低分子齐聚多元醇等 ,降解产物稳定 ,组成较简 单 ,易于分离和纯化。乙二醇醇解聚氨酯主要发生两种键断裂 ,即 C - N 键断裂和 C - O 键断裂 ,生成多元 醇或多元醇和端胺基2端羟基聚合物。对于硬质的聚氨酯泡沫塑料 ,比较适宜于用醇解 法工艺处理 ,其特点是醇解条件温和 ,反应速度比水解 法、热解法低 ,允许废旧料含其他杂质 ,如聚氨酯或聚酰胺纤维 、聚碳酸酯和聚甲醇等。 醇解反应与所用催化剂有关 。醇解反应用的催化剂有二月桂酸二丁基锡、四丁基钛、三乙烯二胺、氢氧 化钠、乙酸钾等碱性催化剂 ,其催化效力高 ,有利于氨 酯键解离生成胺和二氧化碳。醇解速度与废旧料的化学组成、催化剂 、反应温度、反应时间 、醇解剂的类型和 用量有关 。在相同条件下催化剂用量多醇解速度快。 醇解剂的用量多醇解速度快 ,但醇解剂用量与废料的 比达 1 ∶1 时再增加醇解剂反应速度增加不多 。醇解 剂用量增加 ,醇解产物的平均分子量下降。醇解反应也与醇解时间和反应温度有关 。 硬质聚氨酯泡沫塑料废旧料醇解时 ,氨酯键醚键断裂生成多元醇及少量的芳胺 TDA 或者 MDA 。其 中芳 胺 是 可 以 引 起 癌 症 的 有 害 物 质 , 特 别 是4 ,4′2MDA ,美国 O S H A ( 美国职业安全与健康管理局) 规定任何多元醇中 4 ,4′2MDA 的含量不允许超过01 1 % 。为了符合要求 ,回收多元醇需经过很多的分离 过程。Shi n 等将冰箱用硬质聚氨酯泡沫废旧料用 10 %~30 %丙二醇或乙二醇作醇解剂回收的多元醇同多元 醇混合时 ,泡沫的性能优良 ,热导率较不用回收多元醇制泡沫的小。2 . 2 . 2 碱降解法碱降解法是以 MO H ( M 为 L i 、K、Na 、Ca 之一或 多种混合物) 为降解剂 ,在 160 ~200 ℃左右下将聚氨酯硬泡降解成低聚物 。当在降解产物中加入非极性溶剂 (酯类或卤代烃) 和水时 ,降解产物分成两层 ,上层经 蒸馏得多元醇 ,可直接用于再次生产聚氨酯泡沫 ,下层 经浓缩 、结晶 、重结晶或真空蒸馏的二胺 ,加光气可生 成异氰酸酯。缺点是由于反应是在高温强碱条件下进行 ,对设 备要求高 ,生产成本高 ,工业化较为困难[ 9 、10 ] 。3 燃烧回收热能聚氨酯主要含碳、氢、氧、氮 ,与空气中氧燃烧时 , 产生大量的热能 ,每千克聚氨酯约产生 25~28 mJ 。聚 氨酯废旧料常与城市固体废料一起作燃料 ,可取代部 分煤 ,作锅炉的燃料 ,聚氨酯是洁净燃料 ,燃烧产生的 气体只含少量的 N O2 ,不含 SO2 ,远优于煤 、燃油等燃 料。但需要指出的是 ,如果在焚烧过程中燃烧不完全 将会产生有毒气体 ,对大气造成污染 ,所以人们对焚烧 法的反对呼声不断高涨[ 6 ] 。4 总结由于聚氨酯硬质泡沫塑料性能优良和用途广泛 , 其发展与日俱增 ,因此对其废旧制品的回收利用不仅 能有效地保护环境 ,减少污染 ,而且能节省资源 ,变废 为宝。对于聚氨酯硬质泡沫废料的利用 ,从产前投入 的经济角度看 ,以直接回收利用好 ,但是 ,制品的性能 较差 ,只能作低档用品使用。从最终产品的使用性能 看 ,还是化学回收法中的醇解、碱解和水解较好 ; 能量 回收法不适合 PU 废料的利用。与此同时 ,选择不同 的处理方法还要结合实际的情况 ,具体问题具体分析 , 以获得最好的投入产出比。
摘要:系统总结国内外废旧塑料的主要回收利用技术,针对目前我国回收处理废旧塑料的现状,指出提高分类筛选水平,吸收开发关键技术,是我国回收处理废旧塑料的必要途径。由于治理白色污染是个庞大的系统工程,政府部门须在制定法规和加强管理的同时,提高全社会的科技意识、环保意识和参与意识,这样才是减少和消除白色污染,提高资源综合利用水平的根本途径。 关键词:废塑料,白色污染,回收,再生,热解,技术进展 废旧塑料通常以填埋或焚烧的方式处理。焚烧会产生大量有毒气体造成二次污染。填埋会占用较大空间;塑料自然降解需要百年以上;析出添加剂污染土壤和地下水等。因此,废塑料处理技术的发展趋势是回收利用,但目前废塑料的回收和再生利用率低。究其原因,有管理、政策、回收环节方面的问题,但更重要的是回收利用技术还不够完善。 废旧塑料回收利用技术多种多样,有可回收多种塑料的技术,也有专门回收单一树脂的技术。近年来,塑料回收利用技术取得了许多可喜的进展,本文主要针对较通用的技术做一总结。 1 分离分选技术 废旧塑料回收利用的关键环节之一是废弃塑料的收集和预处理。尤其我国,造成回收率低的重要原因是垃圾分类收集程度很低。由于不同树脂的熔点、软化点相差较大,为使废塑料得到更好的再生利用,最好分类处理单一品种的树脂,因此分离筛选是废旧塑料回收的重要环节。对小批量的废旧塑料,可采用人工分选法,但人工分选效率低,将使回收成本增加。国外开发了多种分离分选方法。 1.1 仪器识别与分离技术 意大利Govoni公司首先采用X光探测器与自动分类系统将PVC从相混塑料中分离出来[1]。美国塑料回收技术研究中心研制了X射线荧光光谱仪,可高度自动化的从硬质容器中分离出PVC容器。德国Refrakt公司则利用热源识别技术,通过加热在较低温度下将熔融的PVC从混合塑料中分离出来[1]。 近红外线具有识别有机材料的功能,采用近红外线技术[1]的光过滤器识别塑料的速度可达2000次/秒以上,常见塑料(PE、PP、PS、PVC、PET)可以明确的被区别开来,当混合塑料通过近红外光谱分析仪时,装置能自动分选出5种常见的塑料,速度可达到20~30片/min。 1.2 水力旋分技术 日本塑料处理促进会利用旋风分离原理和塑料的密度差开发了水力旋风分离器。将混合塑料经粉碎、洗净等预处理后装入储槽,然后定量输送至搅拌器,形成的浆状物通过离心泵送入旋风分离器,在分离器中密度不同的塑料被分别排出。美国Dow化学公司也开发了类似的技术,它以液态碳氢化合物取代水来进行分离,取得了较好的效果[2]。 1.3 选择性溶解法 美国凯洛格公司和Rensselaser工学院共同开发了一种利用溶剂选择性溶解分离回收废塑料的技术。将混合塑料加入二甲苯溶剂中,它可在不同的温度下选择性溶解、分离不同的塑料,其中的二甲苯可循环使用,且损耗小[1,3]。 比利时Solvay SA公司开发了Vinyloop技术,采用甲乙酮作溶剂,分离回收PVC,回收到的PVC与新原料密度相差无几,但颜色略呈灰色。德国也有溶剂回收的Delphi技术,所用的酯类和酮类溶剂比Vinyloop技术少得多。 1.4 浮选分离法 日本一家材料研究所采用普通浸润剂,如木质素磺酸钠、丹宁酸、Aerosol OT和皂草甙等,成功地将PVC、PC(聚碳酸酯)、POM(聚甲醛)和PPE(聚苯醚)等塑料混合物分离开来[4]。 1.5 电分离技术[5] 用摩擦生电的方法分离混合塑料(如PAN、、PE、PVC和PA等)。其原理是两种不同的非导电材料摩擦时,它们通过电子得失获得相反的电荷,其中介电常数高的材料带正电荷,介电常数低的材料带负电荷。塑料回收混杂料在旋转锅中频繁接触而产生电荷,然后被送如另一只表面带电的锅中而被分离。 2 焚烧回收能量 聚乙烯与聚苯乙烯的燃烧热高达46000kJ/kg,超过燃料油的平均值44000 kJ/kg,聚氯乙烯的热值也高达18800 kJ/kg。废弃塑料燃烧速度快,灰分低,国外用之代替煤或油用于高炉喷吹或水泥回转窑。由于PVC燃烧会产生氯化氢,腐蚀锅炉和管道,并且废气中含有呋喃,二恶英等。美国开发了RDF技术(垃圾固体燃料),将废弃塑料与废纸,木屑、果壳等混合,既稀释了含氯的组分,而且便于储存运输。对于那些技术上不可能回收(如各种复合材料或合金混炼制品)和难以再生的废塑料可采用焚烧处理,回收热能。优点是处理数量大,成本低,效率高。弊端是产生有害气体,需要专门的焚烧炉,设备投资、损耗、维护、运转费用较高。 3 熔融再生技术 熔融再生是将废旧塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。简单再生主要回收树脂厂和塑料制品厂的边角废料以及那些易于挑选清洗的一次性消费品,如聚酯饮料瓶、食品包装袋等。回收后其性能与新料差不多。 复合再生的原料则是从不同渠道收集到的废弃塑料,有杂质多、品种复杂、形态多样、脏污等特点,因此再生加工程序比较繁杂,分离技术和筛选工作量大。一般来说,复合回收的塑料性质不稳定,易变脆,常被用来制备较低档次的产品。如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。 4 裂解回收燃料和化工原料 4.1 热裂解和催化裂解技术 由于裂解反应理论研究的不断深入[6-11],国内外对裂解技术的开发取得了许多进展。裂解技术因最终产品的不同分为两种:一种是回收化工原料(如乙烯、丙烯、苯乙烯等)[12],另一种是得到燃料(汽油、柴油、焦油等)。虽然都是将废旧塑料转化为低分子物质,但工艺路线不同。制取化工原料是在反应塔中加热废塑料,在沸腾床中达到分解温度(600~900℃),一般不产生二次污染,但技术要求高,成本也较高。裂解油化技术则通常有热裂解和催化裂解两种。 日本富士循环公司的将废旧塑料转化为汽油、煤油和柴油技术,采用ZSM-5催化剂,通过两台反应器进行转化反应将塑料裂解为燃料。每千克塑料可生成0.5L汽油、 0.5L煤油和柴油。美国Amoco公司开发了一种新工艺,可将废旧塑料在炼油厂中转变为基本化学品。经预处理的废旧塑料溶解于热的精炼油中,在高温催化裂化催化剂作用下分解为轻产品。由PE回收得LPG、脂肪族燃料;由PP回收得脂肪族燃料,由PS可得芳香族燃料。Yoshio Uemichi等人[13]研制了一种复合催化体系用于降解聚乙烯,催化剂为二氧化硅/氧化铝和HZSM-5沸石。实验表明,这种催化剂对选择性制取高质量汽油较有效,所得汽油产率为58.8%,辛烷值94。 国内李梅等[14]报道废旧塑料在反应温度350~420℃,反应时间2~4s,可得到MON73的汽油和SP-10的柴油,可连续化生产的工艺。李稳宏等[3]进行了废塑料降解工艺过程催化剂的研究。以PE、PS及PP为原料的催化裂化过程中,理想的催化剂是一种分子筛型催化剂,表面具有酸性,操作温度为360℃,液体收率90%以上,汽油辛烷值大于80。刘公召[15]研究开发了废塑料催化裂解一次转化成汽油、柴油的中试装置,可日产汽油柴油2t,能够实现汽油、柴油分离和排渣的连续化操作,裂解反应器具有传热效果好,生产能力大的特点。催化剂加入量1~3%,反应温度350~380℃,汽油和柴油的总收率可达到70%,由废聚乙烯、聚丙烯和聚苯乙烯制得的汽油辛烷值分别为72、77和86,柴油的凝固点为3,-11,-22℃,该工艺操作安全,无三废排放。袁兴中[16]针对釜底清渣和管道胶结的问题,研究了流化移动床反应釜催化裂解废塑料的技术。为实现安全、稳定、长周期连续生产,降低能耗和成本,提高产率和产品质量打下了基础。 将废料通过裂解制得化工原料和燃料,是资源回收和避免二次污染的重要途径。德国、美国、日本等都有大规模的工厂,我国在北京、西安、广州也建有小规模的废塑料油化厂,但是目前尚存在许多待解决的问题。由于废塑料导热性差,塑料受热产生高黏度融化物,不利于输送;废塑料中含有PVC导致HCl产生,腐蚀设备的同时使催化剂活性降低;碳残渣粘附于反应器壁,不易清除,影响连续操作;催化剂的使用寿命和活性较低,使生产成本高;生产中产生的油渣目前无较好的处理办法等等。国内关于热解油化的报道还有很多[43-54],但如何吸收已有的成果,攻克技术难点,是我们急需要做的工作。 4.2 超临界油化法 水的临界温度为374.3℃,临界压力为22.05Mpa。临界水具有常态下有机溶液的性能,能溶解有机物而不能溶解无机物,而且可与空气、氧气、氮气、二氧化碳等气体完全互溶。日本专利有用超临界水对废旧塑料(PE、PP、PS等)进行回收的报告,反应温度为400~600℃,反应压力25Mpa,反应时间在10min以下,可获得90%以上的油化收率。用超临界水进行废旧塑料降解的优点是很明显的:水做介质成本低廉;可避免热解时发生炭化现象;反应在密闭系统中进行,不会给环境带来新的污染;反应快速,生产效率高等。邱挺等[17]总结了超临界技术在废塑料回收利用中的进展。 4.3 气化技术 气化法的优点在于能将城市垃圾混合处理,无需分离塑料,但操作需要高于热分解法的高温(一般在900℃左右)。德国Espag公司的Schwaize Pumpe炼油厂每年可将1700t废塑料加工成城市煤气。RWE公司计划每年将22万吨褐煤、10万吨塑料垃圾和城镇石油加工厂产生的石油矿泥进行气化。德国Hoechst公司采用高温Winkler工艺将混合塑料气化,再转化成水煤气作为合成醇类的原料。 4.4 氢化裂解技术 德国Vebaeol公司组建了氢化裂解装置,使废塑料颗粒在15~30Mpa,470℃下氢解,生成一种合成油,其中链烷烃60%、环烷烃30%、芳香烃为1%。这种加工方法的能量有效利用率为88%,物质转化有效率为80%。 5 其他利用技术 废旧塑料还有着广泛的用途。美国得克萨斯州立大学采用黄砂、石子、液态PET和固化剂为原料制成混凝土,Bitlgosz [18] 将废塑料用作水泥原材料。解立平等[19]利用废旧塑料与木料、纸张等制备中孔活性炭,雷闫盈等[20报道应用废旧聚苯乙烯制涂料,李玲玲[21]报道塑料可变成木材。宋文祥[22]介绍了国外用HDPE作原料,通过一种特殊的方法,使长度不同的玻璃纤维在模具内沿着物料流向的轴向同向,从而生产高强度塑料枕木。蒲廷芳[23]等使用废旧聚乙烯制高附加值的聚乙烯蜡。李春生等[24]报道,聚苯乙烯与其他热塑性塑料相比,具有熔融粘度小,流动性大的特点,因此熔融后可以很好地浸润所接触的表面而起到良好的粘接作用。张争奇等[25]用废塑料改性沥青,将某一种或几种塑料按一定比例均匀溶于沥青中,使沥青的路用性能得到改善,从而提高沥青路面质量,延长路面寿命。 结束语 治理白色污染是个庞大的系统工程,需要各部门,各行业的共同努力,需要全社会在思想上和行动上的共同参与和支持,有赖于全民科技意识、环保意识的提高。政府部门在制定法规加强管理的同时,可把发展环保技术和环保产业作为刺激经济和扩大就业的重要渠道,使废塑料的收集、处理及回收利用产业化。目前我国回收和加工企业分散,规模小,很多国内外塑料回收与加工的新技术和新设备无法推广实施,回收加工产品质量低下,因此对塑料回收企业应进行规范化管理,以提高其科技含量和经济效益。在回收利用的同时,更需研究开发可环境消纳塑料,寻求切实可行的替代品。
正是由于废旧电池对人类造成的巨大危害,我们意识到废旧电池的回收的不足的严重性,并且开始分析废旧电池在我国回收利用的可行性。 第一:在《固体废物防治法》的基础上,出台废旧回收利用的行业政策和法律法规,并制定我国实际的管理办法及具体的可操作的管理实施细则,建立起完善的废电池运输管理制度。 第二:根据“谁污染,谁治理”的原则,电池生产企业负责回收利用废旧电池,在电池销售时,实行抵押金制度,国家向电池生产厂家收取一定的治理费用,并一定的比例返回给回收治理企业。在我国可以利用人工分拣来降低成本,这得益于我国丰富的人力资源。 第三:实现电池生产的低汞化和无汞化,加强对可充式电池的生产。实现电池回收的规模化产业化道路。对于不符合要求的企业勒令其改造或关停,对不改造和关停的处于罚款。 第四:国家给予废旧电池回收企业一定的政策扶持,对于技术上有突破,工艺先进的企业给予奖励并做大做强;鉴于我国有庞大的拾荒队伍,可以最大程度的利用经济手段提高电池的回收率,例如以一定的金额回收每千克的旧电池等。 第五:在报纸和电视等媒体向人民群众宣传和教育,培养公众的回收利用意识。 4. 我国废旧电池回收利用的经济可行性分析 废电池回收利用的成本可以归结如下: 废电池从众多消费者手中集中到废电池处置场所的费用。 废电池在处置场所进行处理时所需的生产性支出。 废电池回收所得产物的销售成本和财务管理成本。 回收利用废电池过程中的环保费用。 通过政策上的扶持,规模化和产业化的改造,电池生产的低汞化和无汞化,可充电电池的生产,有效地降低了回收利用中的成本,降低了处理的难度,容易实现规模化和产业化效益。 废电池回收利用的收益表现如下: 从回收利用过程中所得材料的销售收入。以我国每年可以生产100亿只电池计算,全年可回收15.6万吨锌,22.6万吨二氧化锰,2080吨铜,207万吨氯化锌,7.9万吨氯化铵,4.03万吨炭棒,还有各种有色贵金属的回收价值更高。有人计算,即使我们只是回收其中的一半,就可以达到两万/天的利润,全国电池回收的年利润可达7亿多元。由于行政上的罚款,提高了普通电池的生产成本,从而不得不提高普通电池的销售价格,再而人们会选择性价比高的新型电池,这有利于电池的更新换代,从而促进电池产业的升级。从另一侧面也是提高了新型电池的利润空间。 5.我国废旧电池的处理能力分析 我国经济实力的不断增强,不仅吸引了外资企业的进驻,而且带动了我国本地企业的蓬勃发展,我国经济活动活跃有生气,面对我国庞大的市场需求,废旧电池回收利用企业具有强大的生命力,如:广州某一电池回收企业可以回收处理旧电池20T/天,但是仅仅回收到了15T/年的量,而且大部分电池是从海关缴获得来的.如:北京一外资回收利用电池企业,可以达到150T/天的处理能力,而且开发的产品具有市场前景,却苦于没有足够的废旧电池而不得不向国外进口旧电池,但另一方面,数以百万吨的旧电池被填埋在垃圾填埋场。以我国年产销电池超过150多亿只的巨大数量,现在的企业还不能完全消化,可喜的是,现在越来越多的处理企业上马建设,相信随着技术的不断改进,处理能力的不断提高,我国的废旧电池处理企业完全有有足够的处理能力。 5. 与国外回收技术的对比分析 目前国外发达国家的回收技术普遍较我国先进,这是由具体的历史条件下决定的,我国在短短的时间里发展迅猛,许多技术和设备达到了或接近国外的先进水平。如陕西省西安市废电池的回收工艺为物理—化学常温无害处理,技术先进、可靠,基本达到了产业化要求,为我国废电池无害化处理及综合利用提供了技术支持。我国具有我国的特有的优势,一是我国的废电池总量巨大,这为市场提供了基础,二是我国的人力资源丰富,庞大的人力市场为我国提供了低的生产成本;三是我国具有深厚的科研力量,科研人才不断涌现,为我国的科研事业不断地提供后备军;四是我国是一个中央集权的社会主义国家,国家的方针政策得到了更好的实施和管理,极大地调动了生产积极性。 6.结论 经过了详细的分析和论证,我们可以得出结论:我国可以大力回收和利用废旧电池。回收和利用废旧除了具有巨大的经济效益,还有巨大的环境效益。具体表现在:废电池的回收直观地表现为减少了废电池等的固体废物对环境造成的影响和压力;同时美化了环境,减少了大气、水、土壤等的污染,很好地保护了人们的身心健康。 7. 对废旧电池回收利用过程中产生的废水废气的治理 废电池的综合利用可以采取清洁生产管理模式,调整产品结构,进行综合回收利用。在电池制造业大力开展有利于环境保护和资源循环的绿色工程,建立绿色标志,绿色产品等。但废旧电池在回收过程中不可避免地要产生废水废气,这是生产过程中必须面对的问题,我们在完善技术水平的同时,也要积极做好废水废气的治理,避免产生二次污染。
摘要:随着我国社会生活科技水平的不断进步,电池作为一种必不可少的便携式能量储存器,消耗量每年递增,如随意丢弃,电池里的重金属物质渗入土壤和地下水资源中,将对环境和人们的身体产生巨大的危害。另一方面,度旧电池的有效回收还能产生不错的经济效益。但目前我国针对废旧电池的回收处理工作的开展还处于起步阶段。阐述废旧电池回收处理在我们国家发展缓慢的原因,并参考发达国家的经验,提出了有助于我国开展废旧电池回收处理工作的几点建议。关键词:废旧电池;回收利用;经济激励制度;第三方物流;循环经济1 我国目前废旧电池回收处理行业的现状废旧电池的回收对于环境保护和资源的再生利用都十分重要,但是我国目前废旧电池回收利用的现状却不容乐观,主要表现在:1.1 缺乏对废旧电池回收利用的关注度,回收意识淡薄由于宣传教育力度不够,居民对于废旧电池的危害缺乏认识,环保意识淡薄,不能积极主动的参与废旧电池回收处理。人们在购买电池时也并不考虑其是否符合环保标准。很多设置的废旧电池回收箱,被当作垃圾箱,形同虚设。目前,我国的电池生产企业有350多家,每年各类电池的年生产量约150-160亿只,国内消费量为70亿只左右,并且这个数据每年以10%左右的速度在增长,但回收力度却不足2%。低回收率直接限制了处理规模的扩大和处理技术的提高,进而严重阻碍了废旧干电池回收利用的产业化进程。1.2 相关法律制度不健全,尚未建立一套完善有效的回收体系虽然公众已经开始关注环保问题,但是截止到目前为止,我国仍然缺乏针对废旧电池回收的具体措施,尚未有切实有效的法律法规出台,生产者、使用者和管理者之间各自应承担的责任仍不明确。即使现有的回收系统也只是散兵散将,很多耗巨资建成的处理中心,因回收不到足够的废旧电池,面临停运的尴尬窘境。一些不正规的小企业由于缺乏必要的技术支持和处理设备,不但很难有效回收利用,反而还会造成更为严重的二次污染。1.3 处理技术要求高、利润低、难以形成规模经济各种经济因素制约着废旧电池处理产业的发展。废旧电池处理回报率低、处理技术要求高、利润回报周期长的特性导致了很难吸引投资者,所以也就很难形成产业化的规模。1997年北京刚开始回收旧电池时,曾有七八家企业进入废旧电池处理行业,但后来都退出了。全国第一个最大和专业的废旧回收处理企业,目前因为种种原因,而不得不面临停产危机。2 国外的先进经验2.1 丹麦丹麦是欧洲最早对废旧电池进行循环利用的国家。1996年丹麦就开始了镍镉电池的回收,电池售价中包含0.9美元/只电池的回收费用,并从回收费用中支付一部分给电池回收者。电池销售价格提高后,逐渐改变了消费者的消费行为,在购买时开始转向环保型电池。2.2 德国德国首先从法律上确定了回收废电池的义务主体,从根本上解决了处置费用的问题。由一个非盈利性机构GRS严格操作整个系统,废电池在收集、运输完成后,进行严格分类、处置和回收。德国对废旧电池回收管理有着自己的一套严格规定,政府要求消费者将用完的各种类型电池必须送交商店或废品回收站,商店和废品回收站必须无条件接受废旧电池,并转送生产厂家进行回收处理。对有毒性的镍镉电池和含汞电池实行押金制度,当消费者拿旧电池来换购新电池时,价格中可以自动扣除押金。2.3 日本日本一直在谋求走建设循环型社会的道路,在回收处理废弃电池领域也一直走在世界前列,其早在1993年就开始回收电池,汽车用铅酸蓄电池目前已经全部回收,并有成熟的处理方法。其他二次电池的回收率也已达84%,采用的方法是在各大商场和公共场所放置回收箱,依靠电池生产企业的赞助实施回收。目前回收的废电池93%由社团募集,7%由电池生产厂收集(含工厂废次电池)。如铅酸电池,日本可做到100%地回收,二次电池和手机电池也正在通过生产厂家的配合积极开展,而且特别是回收锂离子电池中的钴本身也利润可观。3 对我国发展该行业的建议(1)尽快完善相应的法律法规,加大对废旧电池回收产业的扶持力度。法律法规是市场经济条件下促使企业建立逆向物流系统的最重要、最有效的外部强制力量。在法律法规体系中应明确规定生产企业、销售企及消费者的责任、义务、权利以及违反法律法规将受到的处罚,确立制造商责任制,明确生产企业有义务对废旧电池进行回收处理,销售企业有收集废旧电池并运送到储存点或回收处理工厂的义务,消费者有将废旧电池送到收集点的义务等。制定相关的法律法规来支持经济激励手段,若没有相关法律的保障,经济激励手段将很难实施。(2)实施一些合理的经济刺激措施:①对电池的原材料及回收废品制定合理的价格。由于我国现行的电池产品价格中,只计入了生产成本,而并没有考虑电池本身的价值,以及电池原材料在开发过程中对外界环境造成破坏与污染所消耗的环境容量资源而产生的代价,这就使得长期以来我国电池产品的价格偏低,低价使用使人们产生资源丰富的错觉,从而误导消费者对于电池的不充分利用,随手丢弃。②开征污染税(费)。对未实施逆向物流的电池生产企业开征特殊行业污染税,其实质就是我们对生态环境容量制定价格,以税的形式将环境容量出售给企业。这也完全符合当前国际上认可的“谁污染,谁付费”的原则。③实行特许交易制度。由于废旧电池不可能完全被回收利用,因此政府就可以建立一种机制,再保证回收比率的前提下,根据每个电池生产企业的生产能力,给予其相应的废旧电池回收数量,承担相应的责任。一旦某一家企业不想或无力实施废旧电池的逆向物流,就可以准许他通过支付一定费用,将这个责任转嫁给第三方逆向物流。④发放财政补贴。财政补贴是最常规的激励机制,也就是政府部门费与实施废旧电池逆向物流的企业某种形式的财务支持。对实施废旧电池逆向物流的企业于必要的奖励,有利于加快构建我国废旧电池逆向物流系统。补贴的形式多样,通常是拨款、贷款贴息或是减免税收等。(3)开展第三方物流。从我国废旧电池逆向物流的客观环境出发,我们尚未健全完善的废旧电池逆向系统。主要的核心问题是电池的回收率过低,单一生产型企业通过回收自身的废旧电池,数量少,无法形成规模化效益,而通过第三方逆向物流进行网络收集,才能形成规模化效益。(4)开展宣传教育。目前,尽管废旧电池的逆向物流非常重要也非常必要,但绝大多数企业和消费者对其重要性并不太了解,这在很大程度上与宣传教育不够有关。通过宣传教育使消费者意识到废旧电池逆向物流的重要性,不实施废旧电池逆向物流所带来的危害,使广大群众真正意识到逆向物流关系到自己的切身利益,促使消费者主动收集回收废旧电池。发挥社会公众的监督作用,我们一方面可以通过各种媒体比加电视、报纸、广播、广告、小品等来宣传废旧电池的逆向回收,另一方面可以采取各种形式的教育如学校教育、继续教育、职业教育培训和社会教育等来普及废旧电池会处理的观念。