同学,你不要这么直接好吧,我也是在那上课的,也是上网搜就行了,唉,,,木有办法。哈哈。。。这个老师应该会让咱们过吧
航空电子通信系统关键技术问题的浅析
摘要: 现代航空电子综合化技术的发展走走提高了飞机的性能,信息综合化技术中最重要的技术之一就是航空电子通信技术。基于MIL—s11卜l553B总线,本文分析了航空电子通信系统设计中若干关键性问题的解决逢轻。最后着重说明了某机械ACT飞控系统1553/3总线通信网络的实现技术。
关键词: 航空电子;通信;1553B总线
概述现代航空电子综合化技术的发展太大提高了飞机的性能,航空电子综合化的最关键基础是机载通信网络的组建。统计国内外机载电子通信系统,先进的大型民用飞机,如空中客车、渡音客机采用了ARINCA29或ARINC629建立了航空电子通信网络:而现役和正在研制的飞机绝大多数则基于MIL—STD一1553B建立了多路传输总线分布式航空电子通信系统。无论军民机,航空电子通信网络能够实现航空电子设备的信息综合,达到了航空电子信息综合化的目的。值得注意的是军机的高实时性、机动性和可靠性等特殊指标对航空电子通信系统提出了更高的要求。本文针对军机航空电子通信系统的关键性问题进行了分析说明,给出了先进可行的解决方案。最后以某机载ACT飞控系统的1553B总线通信网络为例,着重说明了其实现技术。
1 航电通信系统几个关键性问题的分析基于1553B多路传输总线网络。 航空电子信息综合化的三个特点是:第一。以1553B总线方式将多个物理分布的子系统连接成网;第二,由于各子系统工作模式、控制对象及数据产生、传输、处理的实时性要求等不同,因而在网络的布局、信息的传输控制方面各自会有特殊的要求;第三,虽然各个子系统是异步工作。但要完成飞行和作战任务,一些共享信息需要在统一的时基上处理才有效。所以需要建立航电时钟同步机制。因此,下面从航电通信系统的层次结构、网络的拓扑结构、通信控制方案和航电时钟同步设计等角度进行分析。
1.1 航电通信系统层次结构参考ISO的开放式互连系统七层模式,航空电子通信系统分为5层:应用层、驱动层、传输层、数据链路层和物理层,如图1所示。这5层之间功能划分应明确,接口应简单,从而为硬软件的设计实现奠定良好的基础。
应用层是通信系统的最高层次,它实现通信系统管理功能(如初始化、维护、重构等)和解释功能(如描述数据交换的含义、有效性、范围、格式等)。
驱动层是应用层与底层的软件接口。为实现应用层的管理功能,驱动层应能控制子系统内多路传输总线接口(简称MBI)的初始化、启动、停止、连接、断开、启动其自测试,监控其工作状态,控制其和子系统主机的数据交换。
传输层控制多路传输总线上的数据传输,传输层的任务包括信息处理、通道切换、同步管理等。
数据链路层按照MIL—STD一1553B规定。控制总线上各条消息的传输序列。
物理层按照MIL—STD一1553B规定,处理1553B总线物理介质上的位流传输。
应用层、驱动层在各个子系统主机上实现,传输层、数据链路层、物理层在MBI上实现。
1.2 通信网络的拓扑结构选择航电通信网络的拓扑结构是指航电各个子系统物理上的互连结构。理论分析仿真和实际应用验证(如F一16、F一18、A一10、B一52等军机应用)的典型拓扑结构有以下三种:
第一,单一级总线拓扑结构,在该拓扑结构中,航电所有的子系统均连接到同一1553B总线电缆上。该结构适用于子系统数量较少、网络通信负荷量较低的航电系统。
第二,多个单级总线拓扑结构,在该拓扑结构中,航电的各子系统按功能相近或相互 阃 通信交换信息频繁度分类。将不同类子系统分别连至2个或多个1553B总线上 该结构适用于子系统数量较多、网络通信负荷量较重(单一级总线无法满足)的航电系统。典型例子如将航电通信网络组建为控制导航和武器管理两个总线。
第三,多级总线拓扑结构,在该拓扑结构中。至少存在通信功能层次高低有别的两级1553B总线,一般下级总线需接收上级总线的控制命令,同时向上一级总线回送工作参数。该结构适用于航空电子中部分子系统的功能单元数量较多、各单元需要1553B总线(即下级总线)连网通信,最终各个子系统通过上级1553B总线互连的航电系统。该结构管理复杂。不仅要求设计好上下总线 阃 的硬件网关,而且要组织好上下级总线间的信息交换。
航电通信设计者应根据机载电子设备的数量、通信的吞吐量、实时响应时问及通信的可靠性,从上述典型的网络拓扑结构中优选或组合出最佳的通信网络。
1.3通信控制方案1553B标准一“指令/响应式多路传输数据总线标准” 不仅支持集中模式的静态总线控制方案,而且支持分布模式的动态总线控制方案。
静态总线控制方案是由一个固定的总线控制器管理1553B总线上所有子系统间的消息通信。该方案具有通信控制简单、故障易检测、硬软件实现容易等优点,但存在集中控制网络固有的单点故障造成通信瘫痪的致命缺点。
动态总线控制方案是指1553B总线上有若干个具备作为总线控制器的子系统,但一个时 阃 段上仅允许一个作为总线控制器。总线控制权的交接方式有两种:时分制方式,即每个潜在的总线控制器被预先分配给固定的时间段来控制总线;循环交接控制权方式,该方式是按照各子系统的通信地址排列顺序交接控制权,该方式较时分制方式管理复杂但效率高。动态总线控制方案具有分布控制网络的优势一通信网络具备较强的可重构性和可靠性,却带来了通信控制复杂、故障检测难、硬软件实现难度大等缺点。
为满足航电总体指标的要求,综合分析静态/动态总线控制方案的特点。宜采用双余度静态总线控制器互为备份方式,其结构如图2所示。在此模式中,1553B总线上有两个具备总线控制能力的控制器。两者互为备份。上电时其中一个作为活动总线控制器管理总线通信。另一个则作为备份总线控制器;备份总线控制器一直监视活动总线控制器的工作状况。一旦发现其出现不可恢复的故障时,即替代之成为括动总线控制器管理总线通信。该方案既具有通信控制简单、故障易检测、硬软件实现容易等优点,又避免了单点故障造成通信瘫痪的致命缺点,是一种性能价格比优的可行控制方案。
1.4 时间同步机制由于航电系统的各子系统均分别按自己的计时时钟进行工作,其间必然存在计时误差问题。但为了实现各子系统之间的实时性任务和传输信息同步,要求航电通信系统提供一个统一的系统时间。
该时间的统一不仅是上电后的短时间内,而且在飞行中要一直保持。为实现这一需求,必须建立航电时间同步机制。该机制工作原理如下。
航电的每一个子系统均应具有一个时钟分辨率和长度都相同的实时计时器(RTC),各子系统的实时计时器上电后。自动开始记数。由航电总线控制器周期性向各个子系统广播其实时计时器值,各个子系统按照此周期不断的计算自己的RTC与总线控制器RTC之间的误差,并以修正的统一的系统时间来处理实时任务。应根据航电系统及各个子系统对RTC精确度的要求。确定总线控制器广播RTC的周期值。当需要高精确度时,该周期值应小;反之,该周期值应选大一些。
采用该航电时间同步机制,实现了航电系统各个子系统的时基统一,保证了整个飞机飞行和作战高性能的发挥。
1.5 通信故障处理通信故障处理负责处理系统通信过程中发生的故障和错误。故障处理过程可分为临时故障和永久故障,临时故障指由于干扰出现的偶然性故障;而永久故障是由于子系统或通信电缆的硬件故障造成的`较长时间内或永久性存在的故障。
总线控制器对各个子系统报告的或电缆出现的通信故障,首先在双余度电缆上按系统要求进行若干次重试,若故障消失则认定为临时性故障;否则总线控制器将该故障记录在案,认定为永久性故障。
总线控制器对判定出的故障子系统下网,仅按一定查询周期去查询故障子系统;而对判定出的故障电缆需作记录。
非总线控制器所在子系统中发现的故障,分为以下三种处理方式:
第一,如果子系统中的多路总线接口硬件故障。
状态字中的终端标志位就应置位;第二,如果子系统中出现非MBI的故障,且此故障非瘫痪性故障,则状态字中的予系统标志位就应置位;第三,如果子系统中主机CPU停止了工作。应禁止MBI响应总线控制器命令。
2 某ACT飞控系统1553B总线通信网络的实现技术上述的航电通信系统关键问题及其解决途径,是一通用性设计准则。 具体到某航空电子通信系统或某一些特殊的航电分系统内部1553B通信网络的组建,就要进行必要的优化设计。下面以某机载ACT飞控系统的1553B总线通信网络为例,说明上述航电通信设计准则的具体应用技术。
某机载ACT飞控系统由4个子系统组成,它们是:飞控计算机(眦)、机上维护BIT(MBIT)装置、码声器和飞行参数记录装置。其中FLCC采用4余度控制策略。因而具有4个通道,每一通道均需一个1553B通信接口(MBI)。这样一来ACT飞控系统内部的1553B通信网络共有7个节点。
首先。ACT飞控系统采用了基于1553B总线的分布式通信系统。因而上述的航电通信系统5层结构同样可以适用。采用该层次结构保证了ACT飞控系统网络设计的正确性、清晰性、易修改性和高可靠性。
在网络拓扑结构方面,ACT飞控系统的7个节点,正常情况下一个作为总线控制器(BC),其余作为远程终端(RT)。系统通信量不繁重且网络所连节点较少。因而选择单一级1553B总线拓扑结构既可满足通信要求,又能够方便实现。
在选择通信控制方案时,必须从ACT飞控系统是飞机电子设备中最关键且可靠性要求最高的特点出发。为保证FLCC的万无一失,作为总线控制器的FLCC采用互为备份的4余度通信控制设计方案,比通常的双余度备份方案吏为可靠。4余度通信控制方案决定了FLCC需要4个嵌入式MBI,其中一个作为BC管理1553B总线通信,其余作为RT(备份Bc)工作。仅当活动的Bc出现故障时。由地址较小的RT顶替之成为BC开始管理1553B总线通信。这里不再详述故障判定与处理等问题。
在时间同步方面,第一,ACT飞控系统的FLCCA余度通道间有严格的时间同步。这由FLO2内部时钟系统实现,属于多余度计算机设计范围内的问题,与1553B通信网络各个节点之间的时问同步层次不同;第二,FLCC、MBIT装置、码声器和飞行参数记录装置之间155313总线信息的传递是按照FLCC的时间周期12.5ms进行的,其消息的更迭呈周期性时间特性;各个节点间没有前面第二节所述对实时时钟(RTC)同步的要求,故未在各个节点中增加基于RTC的同步机制。
最后在故障处理方面,第一,FLCC采用了冗余设计思想。实现了4余度MBI互为备份的方案,这样MBI出现故障不至于影响系统整体性能;第二,一旦F1J:C的BC出现故障,FLCC内部其他的RT可监视到其故障出现并及时处理;第三,如果FLCC的BC发现MBIT装置、码声器和飞行参数记录装置中任意一个出现通信故障,首先进行消息重试,若故障消失则认定为临时性故障,否则对判定出的故障节点下网。
3 结束语
航空电子通信系统是一个复杂的机载分布式实时通信网络,涉及到航空电子多路传输总线上所有的电子设备,其顶层设计的好坏直接影响到整个飞机的性能。上述的航电通信系统层次结构、网络的拓扑结构、通信控制方案、航电时钟同步设计和通信故障处理等均是航空电子通信系统的关键技术问题,文中提出的各项解决途径及某机载ACT飞控系统的1553B总线通信网络设计方案可供航空电子设计者与具体实现者作以参考
[参考文献]
[1] 陈若玉。时分制指耷响应或多路待 榆 总巍标准。[s]GJE289A-97.
[2 ] DDC.M1L一 一1553 designer's gIlide.[S]、USA1998.
你们才七百字啊?我们让写三千字
现代电力电子技术浅探电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域--电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。一、电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。1、整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。3、变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。二、电力电子技术的应用1、一般工业工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。2、交通运输电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。4、电子装置用电源各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。5、家用电器照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。6、其他不间断电源(UPS)在现代社会中的作用越来越重要,用量也越来越大,在电力电子产品中已占有相当大的份额。航天飞行器中的各种电子仪器需要电源,载人航天器中为了人的生存和工作,也离不开各种电源,这些都必需采用电力电子技术。传统的发电方式是火力发电、水力发电以及后来兴起的核能发电。能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。其中太阳能发电、风力发电的发展较快,燃料电池更是备受关注。太阳能发电和风力发电受环境的制约,发出的电力质量较差,常需要储能装置缓冲,需要改善电能质量,这就需要电力电子技术。当需要和电力系统联网时,也离不开电力电子技术。为了合理地利用水力发电资源,近年来抽水储能发电站受到重视。其中的大型电动机的起动和调速都需要电力电子技术。超导储能是未来的一种储能方式,它需要强大的直流电源供电,这也离不开电力电子技术。核聚变反应堆在产生强大磁场和注入能量时,需要大容量的脉冲电源,这种电源就是电力电子装置。科学实验或某些特殊场合,常常需要一些特种电源,这也是电力电子技术的用武之地。以前电力电子技术的应用偏重于中、大功率。现在,在1kW以下,甚至几十W以下的功率范围内,电力电子技术的应用也越来越广,其地位也越来越重要。这已成为一个重要的发展趋势,值得引起人们的注意。总之,电力电子技术的应用范围十分广泛。从人类对宇宙和大自然的探索,到国民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。这也激发了一代又一代的学者和工程技术人员学习、研究电力电子技术并使其飞速发展。电力电子装置提供给负载的是各种不同的直流电源、恒频交流电源和变频交流电源,因此也可以说,电力电子技术研究的也就是电源技术。电力电子技术对节省电能有重要意义。特别在大型风机、水泵采用变频调速方面,在使用量十分庞大的照明电源等方面,电力电子技术的节能效果十分显著,因此它也被称为是节能技术。
专业培养目标:培养掌握民航运输必要的专业基础知识和技能、能从事民航运输生产及服务的高级技术应用性专门人才 专业核心能力:民航运输企业运输生产一线管理与操作服务技能 专业核心课程与主要实践环节:管理学基础、经济法、空运市场营销、民航国内旅客运输、民航国际旅客运输、民航国内货物运输、民航国际货物运输、民航国际结算、危险品运输、飞机载重与平衡、物流概论 、民航计算机订座实训、民航值机离港实训、民航货运实训、民航运输企业毕业实习、毕业论文等,以及各校的主要特色课程和实践环节 就业方向:航空公司、机场和销售运输服务与管理部门 专业培养目标:培养掌握民航飞机电子设备维修的专业基础知识和技能,能从事飞机电子维修工作的高级技术应用性专门人才 专业核心能力:飞机电子系统及组件的基本维护技能 专业核心课程与主要实践环节:微机原理与接口技术、飞行管理与电子显示、自动飞行控制系统、飞机无线电导航、机载雷达、电工技术、高频电子线路、低频电子线路、脉冲数字电路、飞机维修理论、实用电工电子实训、机务基本维护训练、金钳工实习、无线电设备维护实训、航空仪表维护实训、毕业综合实训等,以及各校的主要特色课程和实践环节 就业方向:航空公司和机场的飞机电子设备维修、民用电子设备维修部门 专业培养目标:培养掌握民航飞机机电设备维修的专业基础知识和技能,能从事飞机机电维修领域内的机电设备维修及运行管理等工作的高级技术应用性专门人才 专业核心能力:具有飞机机体和发动机基本维护技能 专业核心课程与主要实践环节:飞机学、发动机学、飞机电气设备、飞机电子设备、航空材料学、飞机维修理论、专业英语 、实用电工电子技术、机务基本维护训练、金钳工实习、发动机维护实训、飞机外场维护实习、毕业综合实训等,以及各校的主要特色课程和实践环节 就业方向:航空公司和机场的飞机机务维修部门 1.该专业管理专业.2.3.技术专业2为电子维修;3为机械设备维修.只要能在机场就业都很好.要看你的爱好和发展方向.
如果你不是英语专业的,其他专业一般考过英语六级,找任何工作都没问题的;如果你是英语专业的,那英语至少要过专业八级才能胜任跟英语相关的工作。
专业介绍:航空机电装置维修(飞机机电维修)专业(只招男生)培养目标:培养德智体全面发展,具有较高英语水平及较强计算机应用能力,有一定的专业基础理论知识,了解国际通用的航材管理知识和适航管理知识,掌握现代维修理论和现代民用飞机、发动机及飞机电气等装置维修的外向型应用性高等技术人才。 主要课程:大学英语、高等数学、计算机及应用、工程制图、工程力学、航空电气基础、飞机维修基础、航空材料、空气动力学、飞机构造、飞机系统、复合材料、飞机及发动机基础、活塞式发动机、喷气式发动机、旋转翼飞机飞行原理、旋转翼飞机结构、飞机电气系统、飞机电子系统、飞机结构腐蚀防护与探伤、飞机装置简介和飞机结构修理等。
不是很高`` `你自己人为你英语不错就可以了啊 专业培养目标:培养掌握民航运输必要的专业基础知识和技能、能从事民航运输生产及服务的高阶技术应用性专门人才 专业核心能力:民航运输企业运输生产一线管理与操作服务技能 专业核心课程与主要实践环节:管理学基础、经济法、空运市场营销、民航国内旅客运输、民航国际旅客运输、民航国内货物运输、民航国际货物运输、民航国际结算、危险品运输、飞机载重与平衡、物流概论 、民航计算机订座实训、民航值机离港实训、民航货运实训、民航运输企业毕业实习、毕业论文等,以及各校的主要特色课程和实践环节 就业方向:航空公司、机场和销售运输服务与管理部门 专业培养目标:培养掌握民航飞机电子装置维修的专业基础知识和技能,能从事飞机电子维修工作的高阶技术应用性专门人才 专业核心能力:飞机电子系统及元件的基本维护技能 专业核心课程与主要实践环节:微机原理与介面技术、飞行管理与电子显示、自动飞行控制系统、飞机无线电导航、机载雷达、电工技术、高频电子线路、低频电子线路、脉冲数字电路、飞机维修理论、实用电工电子实训、机务基本维护训练、金钳工实习、无线电装置维护实训、航空仪表维护实训、毕业综合实训等,以及各校的主要特色课程和实践环节 就业方向:航空公司和机场的飞机电子装置维修、民用电子装置维修部门 专业培养目标:培养掌握民航飞机机电装置维修的专业基础知识和技能,能从事飞机机电维修领域内的机电装置维修及执行管理等工作的高阶技术应用性专门人才 专业核心能力:具有飞机机体和发动机基本维护技能 专业核心课程与主要实践环节:飞机学、发动机学、飞机电气装置、飞机电子装置、航空材料学、飞机维修理论、专业英语 、实用电工电子技术、机务基本维护训练、金钳工实习、发动机维护实训、飞机外场维护实习、毕业综合实训等,以及各校的主要特色课程和实践环节 就业方向:航空公司和机场的飞机机务维修部门 1.该专业管理专业.2.3.技术专业2为电子维修;3为机械装置维修.只要能在机场就业都很好.要看你的爱好和发展方向.
航空公司的机务?对英语的要求很高。因为飞机都是进口的,技术资料基本上都是英文版,而且考FAA的执照都是要求全英文。
工科类专业对英语要求不是很高,但是一般也要过四级才比较好找工作。
考研英语是一种选拔性考试,而六级是一种能力考试。两者没有太大的可比性,再说考研英语不考听力。过了六级的考研英语不一定考得高,相反也是一样的。考研英语分数线一般在40分左右,其实两个都是应试考试,你只要把阅读和作文好好地反复练习就能考个不错的成绩。 加油!希望对你有帮助!
不懂英语也可以程式设计,e语言就不错,主要是程式设计的原理和写程式的思路
考研英语跟四六级有什么关系啊,四六级跟考研完全不是一个套路,至少考研英语没有听力。考研英语背好单词,仔细研读真题,就绝对没问题,就算你英语很烂,好好拿出半年时间准备,绝对是可以的。司机没过一样考个五六十分,考研英语也是一样的,是细慢活,要有耐心...
你想要的是做学术还是应用?但基本上来说,英语要求还是要比较高的。如果你是做比较保守的国家 *** 机关或者人民银行这一类的,可能会少一点。但是如果是一些商业银行的话,那么现在新进入的学生要求就比较高了。因为都需要你来做一些基础性的任务,这个时候接触英文就在所难免。就是从学习金融上来说,如果是学简单的我国货币银行学,那么不要求英语。如果是学习真正的微观金融,那么读英语必不可少,无论是读原版书或者文献。现在多学点英文都不是坏处,而且是必要的。不知道楼主到底是问那个方面呢?我可以继续解答。
最佳答案数控机床发展现状分析论文摘要:作为机械系的一名学生,将来工作学习都会以机械为主,所以必须掌握好各种机械的专业知识,从这学期开始,开始接触机械专业基础课。我会本着认真的态度对待专业课的学习,提高自己的专业素养.接下来我将介绍一下我对数控机床发展史的认识。关键字:数控 机床 发展20世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。论文提纲也可以用最简单的格式和分类,简单明了地说明论文的目的、依据和意义,甚至是两句话。这种提纲往往是用于科学论文,而且在对于各种概念有相互联系而不是孤立的出来讨论的情况下。如果总要分出1、2、3......点来写的话,往往会变成“八股文”的模式,这样的论文往往是应付式的论文,其真正的科学价值会大打折扣。
浅谈多旋翼无人机任务系统的优秀论文
前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。
1 多旋翼无人机定义概述
我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。
多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。
2 控制系统改进发展阶段
多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。
3 技术原理
3.1系统组成
无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。
3.2系统技术原理
3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。
3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。
但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。
3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。
4 技术关键点及创新点
4.1技术关键点:
4.1.1地空信息的的数据通信。
先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。
4.1.2解决飞行姿态操控问题
嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。
4.1.3在工业控制领域应用的扩展
本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。
4.1.4增强地面工作站功能
通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。
4.2项目的技术创新性
4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。
4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。
4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。
4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。
5 总结
综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。
你们才七百字啊?我们让写三千字
我的航天技术论文在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。 既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?从长期看,地球的资源是有限的,人类总有一天必须走出自己的摇篮;从中短期看,航天活动可带来巨大回报,是一个国家综合国力的体现。进军宇宙是人类现在和未来的一项伟大事业。于是,载人航天成为现代航天科技发展的重中之重……中国载人航天技术的发展及其意义和前景俗话说,天高任鸟飞,海阔凭鱼跃。人类在漫长的社会进步中不断扩展自身的生存空间。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。中国载人航天技术的发展历程很久以前,人类就有飞出地球、探知太空奥秘和开发宇宙资源的愿望,我国古代的不少神话故事便是突出的反映。最典型的是流传很广的嫦娥奔月,它描写一个叫嫦娥的美女,偷吃了丈夫后羿从西王母那里求得的长生不老的仙药后,身体变轻飘到月亮上去了。历史上第一个试验乘火箭上天的人是15世纪中国官员万户。1945年,美国学者基姆在他的《火箭与喷气发动机》一书中是这样描写的:万户先做了两个大风筝,并排装在一把椅子的两边。然后,他在椅子下面捆绑了47支当时能买到的最大火箭。准备完毕后,万户坐在椅子当中,然后命其仆人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。载人航天的重大意义历史上,远洋航海技术的兴起,导致了世界贸易的发展、世界市场的开辟和近代科学的一系列成就,开始了一个"全球文明"的时代。当代载人航天技术的问世,则使人类走出地球这一摇篮而到达太空,开始了一个"空间文明"的新时代。载人航天是航天技术向更高阶段的发展。不过,由于载人航天技术与无人航天技术有很大差别,主要反映在安全性、复杂性和成本高三个方面,所以从1961年第一名航天员上天到现在,它还没有表现出特别明显的用途。但从可以预见的未来来看,人类现在面临的资源枯竭、人口急增等急待解决的几大问题,只有通过开放地球、扩大人类生存空间来解决。即使在当代,发展载人航天也可以起到以下作用:首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发展,并将为培养和造就航天科技人才作贡献。例如,就载人航天器本身的研制和运行而言,它对通信、遥感、推进、测量、材料、计算机、系统工程、自动控制、环境控制和生命保障等技术提出了很高的要求,因而大大推动了这些技术的进步。再有,载人航天的发展能促进太空资源的开发,为地球上的人类造福。载人航天器所处的高远位置和微重力等特殊环境,可为科研提供一个理想的实验场所,它在推动生命科学与生物技术、微重力科学与应用等许多方面正发挥着重要作用,并有望在一些前沿学科上取得突破性进展,为人类带来巨大的效益。一些国家已经在太空制药、太空育种和太空材料加工等领域取得显著成果,并准备建造太空工厂,其效率和效益不可限量。另外,地球能容纳的人口是有限的,大约80亿~110亿,因此有些人已经开始研究向外空移民的方案;地球上的能源也日益紧张,那么是否可以到别的星球开发矿藏呢?这是科学家所关心的一个问题,而且不是天方夜潭,因为类似载人登月等许多过去可望不可及的神话和幻想,如今有不少都变成了现实。最后,载人航天具有巨大的军事潜力。使用载人航天器可以很好地完成侦察和监视任务;灵活部署、修理和组装大型军用卫星;安全而连续地指挥和控制地面军事力量;还能作为特殊武器的试验场。例如,早在1965年12月,美国双子星座7号飞船上的航天员就曾用红外遥感器监视和跟踪了1枚潜射导弹的发射,所获信息比潜艇上的观察人员报告的还要快。第1次、2次海湾战期间,和平号空间站与"国际空间站"上的航天员对战区进行了大量观测活动,取得了许多有用的信息。中国载人航天的未来前景中国载人航天将实施"三步走"的发展战略。中国在成功发射4艘无人试验飞船的基础上,已将首位航天员送入太空,实现了载人航天的历史性突破。然而这只是第一步。第二步除继续用载人飞船进行对地观测和空间试验外,重点包括出舱活动、空间交会对接试验和发射长期自主飞行、短期有人照料的空间实验室,以尽早建成完整配套的空间工程大系统,解决一定规模的空间应用问题。第三步是建造更大的长期有人照料的空间站。航空航天技术 为航空航天活动的顺利进行而创立的一系列高级复杂的施工作业程序。它涉及人力资源配置,设备仪器搭配与安装使用等艰深的学术作业。是国家,民族,乃至整个人类发展的高度追求。航空航天电子技术 航空航天电子技术(electronics for aeronautics and astronautics)[编辑本段]概述应用于航空工程和航天工程的电子与电磁波理论和技术。在现代航空和航天工程中电子系统是重要的系统之一。[编辑本段]组成它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。各种系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统。和这些电子系统有关的电子理论和技术有通信理论、电磁场理论、电波传播、天线、检测理论和技术、编码理论和技术、信号处理技术等,而微电子技术和电子计算机技术则是提高各种电子系统性能的基础。它们的发展使飞行器上的电子系统进一步小型化和具有实时处理更大量数据的能力,进而使飞机的性能(机动能力、火控能力、全天候飞行、自动着陆等)大为提高,航天器的功能(科学探测、资源勘测、通信广播、侦察预警等)日益扩大。[编辑本段]特点一、航空航天飞行器上电子设备的特点是:①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。二、航空航天电子技术的主要发展方向是:①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。航空航天基本知识我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降6.5℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到30500米左右,其大气温度基本不变,平均保持在-56.5℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到-65.5℃至-113℃。中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员.在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。航空与航天的区别:航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢?您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。第一,飞行环境不同。所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。第二,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使用50次,但与航空器使用的吸气发动机比较起来,使用次数仍然是很少的。吸气发动机所用的燃烧剂仅为航空汽油和航空煤油,而火箭发动机所用的推进剂却是多种多样的,既有液体的,也有固体的,还有固液型的。第三,飞行速度不同。现代飞机最快速度也就是音速的三倍多,且是军用飞机。至于目前正在使用的客机,都是以亚音速飞行的。而航天器为了不致坠地,都是以非常高的速度在太空运行的。如在距地面600千米高的圆形轨道上运行的航天器,其速度是音速的22倍。所有航天器正常运行时都处于失重状态,若长期载人会使人产生失重生理效应,并影响健康。正因如此,航天员与飞机驾驶员比较起来,其选拔和训练要严格得多。一般人买票即可坐飞机,而花重金到太空遨游的人还必须通过专门培训。第四,工作时限不同。无论是军用还是民用飞机,最大航程计约2万千米,最长飞行时间不超过一昼夜。其活动范围和工作时间都很有限,主要用于军事和交通运输。虽然通用轻型飞机应用广泛,但每次活动范围相对更小。而航天器在轨道上可持续工作非常长时间,如目前仍在使用的联盟TM号载人飞船,可与空间站对接后在太空运行数月之久。再如航天飞机,能在轨道上飞行7-30天,约1.5小时即可围绕地球飞行一周。载人航天器运行时间最长的当属和平号空间站,它在太空飞行了整整15个年头。至于无人航天器,如各种应用卫星,一般都在绕地轨道上工作多年。有的深空探测器,如先驱者10号,已在太空飞行了32年,正在飞出太阳系向银河系遨游。航空器的优点是能多次重复使用,而航天器除航天飞机外,只能一次性使用,载人宇宙飞船也不例外。第五,升降方式不同。飞机的升空是从起飞线开始滑跑到离开地面,加速爬升到安全高度为止的运动过程。它返回地面降落时只要经过下滑和着陆即可。只有个别飞机如英国的“鹞”型战斗机采用发动机喷口转向的方式使飞机能够垂直起落,但机身并未竖起,仍处于水平位置。而至今为止的航天器发射,包括地面和海上的发射,顶部装着航天器的运载火箭都是垂直腾空的。在完成发射过程中,运载火箭要按程序掉头转向和逐级脱离,最终将航天器送入预定轨道运行。有的航天器发射,中间还要经过多次变轨,情况更为复杂。航天飞机虽然也能施放航天器,但它本身亦是垂直发射升空的。至于返回式航天器,其回归地面必须经历离轨、过渡、再入和着陆四个阶段,远比飞机降落困难。航空器的起飞、飞行和降落与航天器的发射、运行和返回,虽然都离不开地面中心的指挥,但两者的地面设施和保障系统及其工作性能与内容也是大有区别的。世界航空航天大事件:风筝起源古代中国,约14世纪传到欧洲公元前500-400年中国人就开始制作木鸟并试验原始飞行器1909年世界第一架轻型飞机在法国诞生1903年12月14日至17日,由莱特兄弟设计制造的“飞行者”1号飞机,在人类航空史上首次实现了自主操纵飞行.这次试飞成功成为一个划时代的事件,人类航空史从此进入新的纪元1947年10月14日美国著名试飞员查尔斯·耶格尔驾驶X—1飞机实现了突破音障飞行1969年7月20日22时56分20秒,阿姆斯特迈出一小步成为全体地球人类的一大步1957年10月4日前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天1959年9月12日前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器1961年4月12日前苏联宇航员加加林成为世界第一位飞入太空的人1969年7月20日美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人1970年12月15日前苏联“金星”7号探测器首次在金星上着陆1971年4月9日前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空1971年12月2日前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星1981年4月12日世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功1986年1月28日美国航天飞机“挑战者”号在升空73秒后爆炸1986年2月20日前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站1993年11月1日美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站我国航空航天大事件:1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返回式科学试验卫星,并于3天后成功回收。1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。2004年1月23日,我国绕月探测工程正式由国务院批准立项。2005年10月12日,神六成功发射.
兄弟(或姐妹):在你以下的提问,我已作出评语和建议了这问题已超乎你能力所及试想:一个电脑操作程序、一个庞大的程序,需要好几个光碟才能写完是《百度知道》收得了吗?即使某人能写出这程序,他会要求版权费...送给你?别再闹了,好吗?
卡瓦依的EX三角,一百多万。
39万美元,斯坦威大钢琴
有可能 网络时间的问题 查到就先订个位呗 先占着 用个名字就可以的
飞机的刹车系统可就多了,楼上说的扰流板,反推,包括主轮上的刹车组件都算,不过纠正一下,襟翼不是用来减速的,而是用来增大升力防止失速或者重着陆的。扰流板也是主轮接地之后才会打开的,而不是进近的时候。作用是增大下压力,进而增大飞机和地面之间的滑动摩擦力,还有增大前进方向的空气阻力的作用。反推装置在发动机的外涵道,发动机并不是一个实实在在的圆桶,两边的壳是可以打开的,前面以部分叫风扇包皮,中间比较厚重的叫反推包皮,大型发动机上最后面还有整流包皮。反推门就在反推包皮上,打开后,发动机的外涵道会被堵住,让本来向后的气流向斜前方吹,增大阻力,减小滑跑距离。最主要的还是主轮上的刹车毂了,其实原理和汽车的没什么区别,只是多了好多传感器而已,轮压传感器,ABS的传感器之类的都在主轮的轴承里面。卸掉轮胎后,用专门的工具就可以把刹车毂卸下来,一个圆柱形的桶,其原理也是利用摩擦力减速的。
[1] 刘建民 , 刘扬. ABS系统使用维修须知[J]. 汽车维修, 2005,(06) [2] 王尚义. ABS系统的正确使用与维护[J]. 汽车与配件, 1999,(27) [3] 朱华. ABS系统的使用与维护中应注意的问题[J]. 城市车辆, 2005,(01) [4] 李仕卿. 装有ABS系统车辆的使用维护[J]. 汽车维修, 2001,(02) [5] 李清玉 , 蔡林. 为何要加装ABS系统?[J]. 汽车与配件, 2002,(17) [6] 刘丙会. 时代超人ABS系统不工作[J]. 汽车维修与保养, 2002,(02) [7] 张聚乾 , 何帅. 凯迪拉克轿车ABS系统报警[J]. 汽车维修, 2003,(08) [8] 李春成 , 曹永林. ABS系统故障诊断四法[J]. 汽车运用, 2003,(01) [9] 陈积军, 张宏彬. 数字电子系统的抗干扰设计[J]. 移动电源与车辆, 2005,(03) [10] 李书江 , 张宝玉. 谈ABS系统故障特征与警告灯指示[J]. 汽车与配件, 2000,(05)
飞机着陆后的减速设备之一
液压刹车系统。