首页 > 期刊投稿知识库 > 毕业论文浅析解析几何

毕业论文浅析解析几何

发布时间:

毕业论文浅析解析几何

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

毕业论文是学生在掌握基本理论、专业知识和基本技能的基础上,接受科学研究工作的初步训练,培养独立工作能力的重要环节,也是取得毕业证书、申请学士学位的重要条件之一。为了保证全院本科生毕业论文制作统一,特制定本规定。一、毕业论文的内容:(1) 封面:论文题目、学生姓名、指导教师姓名、年月日等。(2) 论文题目:用宋体3号字。论文题目必须有相应的英文题目。(3) 摘要:论文的第一页应为摘要,约300字左右。摘要应该说明论文的内容、研究方法、成果和结论。要突出本论文的创造性或新见解,语言力求精炼。同时,应该在本页的下方另起一行注明本文的关键词(3—5个)。(4) 英文摘要:论文的第二页为英文摘要,其上方为英文题目。英文摘要的内容与中文摘要的内容相对应。最后一行为关键词(3—5个)。(5) 目录;是论文的提纲,也是论文的组成部分,放在第三页。(6) 正文:正文的第一部分为引言,主要包括选题的依据,对本课题研究现状的简述,该研究工作的实用价值与理论意义、本论文所要解决的问题等。(7) 结论:论文必须有结论。结论应该明确、精炼、完整、准确,要认真阐述自己的创造性工作在本领域中的地位和作用,以及个人新见解的意义。(8) 参考文献:另起一页,只列出主要的及公开发表的参考文献,并且按照文中引用的顺序附于文末。参考文献要写明作者、书名(或文章题目及报刊名)、版次(初版不注版次)、出版地、出版者、出版年、页码。中译本前要加国别。序号使用[1],[2],[3]……。其格式为:著作:序号,作者、书名、出版社、出版时间、页码。论文:序号,作者、论文篇名、刊号、年、卷(期)、页码。例:[1] Robert A. Szymanski B. Stability of Linear Systems. Merrill Publishing Company ,1990, 39(4): 131-134[2] [英]M 奥康诺尔著,王耀先译·科技书刊的编译工作,北京:人民教育出版社,1982, 56-57(9) 论文正文字数在8000字以上。二、毕业论文写作规范(1)、毕业论文的版面要求论文打印一律使用A4打印纸,统一版心,页边距要求:上边距2.54厘米,下边距2.54厘米,左边距4.17厘米,右边距3.17厘米。页号打在页下方中间。(2)、字体要求A. 封面部分:3号宋体字(加粗)。B. 摘要部分:标题:3号黑体字,正文:小4宋体字,关键词:小4黑体。各关键词之间用逗号分开,最后一个关键词后不加标点符号。C. 英文摘要: 标题:3号加粗,正文:小4,关键词:小4加粗,字体 :Times New Roman. D. 目录:标题:3号黑体字,正文:小4宋体字,每章题目要加粗,并注明各章节起止页码,题目和页码之间用“┄┄”相连。E. 正文: 大标题用汉字大写“一、二…”,3号黑体字;次标题用“(一)、(二)…”,小3黑体字;小标题用阿拉伯数字“1、2…”,小4号宋体字,加粗。行间距,固定值,20磅,段前后6磅。F.参考文献: 标题用小3黑体字,参考文献内容用5号宋体字。要求要点:300字左右的论文摘要 6篇中文参考文献 8千字 (附)渤海学院2005级学生毕业论文开题报告撰写格式 (一)题目的国内外研究现状及评价(主要根据学术文献对该题目涉及领域的国内外研究动态进行评述,对该研究的历史、现状和发展情况进行分析,指出其优点和不足,同时指出自己开展此研究的设想。)(二)所选题目的理论意义和现实意义(三)本课题拟采用的研究方法(如文献综述法、案例分析法、社会调查研究方法等)(四)论文的基本结构(论文的章节)(五)参考文献 (例) 本科毕业论文(设计)(2009届本科毕业生)题 目: 浅谈中值定理的应用 学生姓名: *** 学生学号: 05000001 学院名称: 数学与系统科学学院 专业名称: 数学与应用数学 指导教师: *** 摘 要 论文从对《几何画板》的认识及其在高中教学中的应用等方面展开讨论.首先论述了应用《几何画板》辅助数学教学的必要性和现实意义;其次从软件的发展史、功能、特点等方面对《几何画板》做了详细的介绍,该软件短小精悍,功能强大,能够动态表现相关对象的关系,适合教师根据教学需要自编微型课件.论文以《几何画板》在高中数学教学中的应用为例, 论述了其在实际教学中的应用.分别从《几何画板》在高中代数教学中的应用,在高中立体几何教学中的应用,在高中平面解析几何教学中的应用等诸方面,论述了《几何画板》实用性及使用《几何画板》较其它同类软件的优势;最后,总结了基于《几何画板》进行辅助教学对现代教育教学的影响及推动作用.关键字:几何画板,计算机辅助教学,课件,数形结合Based on "Geometer’s Sketchpad" Computer Aided InstructionAbstract:Paper from the understanding of “Geometer’s Sketchpad” and its application in the high school teaching launched the discussion. At first elaborate the necessity and the practical significance of applying “Geometer’s Sketchpad” to assist mathematics teaching; Next from aspect software history, function, characteristic and so on made the detailed introduction to “Geometer’s Sketchpad”, this software terse and forceful, the function is formidable, can the dynamic performance correlation object relations, suit the teacher to need from to arrange the miniature class according to the teaching. The paper took “Geometer’s Sketchpad” in the high school mathematics teaching application as an example, elaborated it in the field research application. separately from “Geometer’s Sketchpad” algebra teaching application in the high school , three-dimensional geometry teaching application in the high school, plane analytic geometry teaching application in the high school and so on the various aspects, elaborated “Geometer’s Sketchpad” the usability and used “ Geometer’s Sketchpad” to compare other similar software the superiority; Finally, summarized the assistance teaching based on “Geometry Drawing board” to the modern education teaching influence and the impetus function. Keywords: Geometer’s Sketchpad, the computer aided instruction, courseware, counts the shape union目 录一、引 言………………………………………………………………………1二、《几何画板》的发展史及其功能………………………………………1 (一)《几何画板》的发展史………………………………………………1 (二)《几何画板》的功能…………………………………………………2 1.用《几何画板》,创设“情景”,改善认知环境……………………2 2.用《几何画板》帮助学生辨析概念…………………………………3 3.用《几何画板》教数学,变抽象为形象……………………………4 4.用《几何画板》做“数学实脸”……………………………………4 三、《几何画板》的主要特点………………………………………………5 (一) 动态性………………………………………………………………5 (二) 形象性………………………………………………………………5 (三) 简单性………………………………………………………………6 (四) 快捷性………………………………………………………………6 四、基于《几何画板》的辅助教学的特点及基本方式…………………6 (一) 基于《几何画板》进行数学辅助教学的特点………………………6 (二) 基于《几何画板》的计算机辅助教学的几种方式…………………7 1.教师引导研究式………………………………………………………7 2.学生自主研究式………………………………………………………7 3.小组合作研究式………………………………………………………8五、《几何画板》作为辅助工具在数学教学中的实践 ……………………8 (一)《几何画板》在高中代数教学中的应用……………………………8 (二)《几何画板》在高中立体几何教学中的应用………………………9 (三)《几何画板》在高中平面解析几何教学中的应用………………10 六、基于《几何画板》的辅助教学的思考…………………………………12 (一)更新教育观念,迎接教育革命…………………………………12 (二) 坚持数学教师自己制作软件………………………………………12 (三) 力争让学生了解《几何画板》…………………………………12 (四)《几何画板》运用于教学中的前景展望……………………………13 七、结束语……………………………………………………………………13 参考文献………………………………………………………………………14一、引 言随着教学技术的现代化,多媒体软件技术日益广泛地运用,为高中数学教学手段的更新创造了条件,为数学………….在运用“数形结合”的数学思想,解决抽象数学问题时,使抽象的理论具体化、形象化,将便于学生理解和记忆.通过具体的感性的………….二、《几何画板》的发展史及其功能《几何画板》是针对数学开发研制的软件.利用它辅助数学教学,实际上就是借助它来开展数学实验,这是全面实施新教育的需要.以下从发展史及功能对《几何画板》作以介绍.(一)《几何画板》的发展史《几何画板》是一个优秀的专业学科平台软件,代表了当代专业工具平台类教学软件的发展方向.它是以数学为根本,以“动态几何”为特色………….(二)《几何画板》的功能《几何画板》具有强大的功能,可为每位学数学的人所用.教师可利用它来制作教案,学生可利用它来学习数学………….1.用《几何画板》,创设“情景”,改善认知环境由于《几何画板》能够准确、动态地表达几何现象,这就为认识概念创设了一个很好的“情景”,从而改善了认知环境,以达到提高教学效果的目的.例如,在教学《三角形的中位线》时,可用《几何画板》做如下………….2.用《几何画板》帮助学生辨析概念数学中容易混淆的概念很多,需要辨析.椭圆的中心与椭圆上两点的连线为终边的角(x轴的正向为始边)、“椭圆的离心角”是学生容易混淆的………….………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………七、结束语论文提出了解决传统数学教学弊端的途径之一是利用《几何画板》辅助教学.使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它.学生可以在计算机教室的环境或者在家用电脑的环境下,在教师的引导下使用《几何画板》自己去探索几何的规律,培养学生的探索、分析问题的能力,得出创新成果.这样教师就不仅仅是知识的灌输者,而成为一位引导者、帮助者;学生也不仅仅是知识的容器,而是一个研究者、探索者.这一方面符合国际上现代教育的教育思想,而且在很大程度上会促进“素质教育”的开展.由于时间有限,对《几何画板》在数学课堂教学中应用的分析还不够透彻,研究还不够全面,我将在今后的课堂教学中逐渐去发现和总结.参考文献[1] 陶维林.几何画板实用范例教程[M].北京:清华大学出版社,2001:50—51[2] 朱庆生.多媒体电脑实用技术[M].重庆:重庆出版社,1996:1—10………………………………………………………………………………[9] Maria L.Femandez. Making Music With Mathematics[J],Mathematics Teacher Vol.92 No.2,1999:90备注:按封面左侧装订线装订。论文装订顺序:按照“论文封面、论文任务书、论文评审书和毕业论文”的顺序装订在一起。一式三份(一份装学生档案、一份指导教师存档、一份院系存档)。二零零九年五月 沈阳师范大学渤海学院经贸系 2008年12月4日

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

解析几何毕业论文题目

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

解析几何毕业论文如何选题

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

如何确定毕业论文的题目

一、毕业论文选题是毕业论文写作能否顺利完成的关键,应慎重从事,不要轻率马虎,最好一次选题成功。

二、根据参考性选题确定个人论文题目时,应充分考虑以下主客观条件:

1、个人的特长和兴趣。应当在自己特长的范围内选择自己兴趣较大的题目,否则成了命题作文,很难写出有特色的、满意的论文。

2、选题的理论价值和实用价值。应选择本学科中在理论上具有指导意义,对解决实际工作中存在的问题有实用价值的题目,如果你对某一选题有哪些理论应当总结、修正、发展;哪些实际工作中的问题应当解决,如何解决心中无数,免强写这样的题目也只能泛泛而论,质量不高。

(1)资料来源。主要考虑对拟选题目研究的历史和现状的资料是否初步掌握,需要的第一手资料有无可能取得,即没有现成资料又不能取得第一手资料的题目就很难研究下去。

(2)考虑时间、经费条件,选择难度和范围适中的题目。选题的难度过高、范围过大、很难在规定时间内完成,选题太易、范围太小又会影响论文本身价值和考生自身潜力的`发挥。

3、初步确定选题后,应准备一个书面材料,以便在与指导教师交流时将有关问题确定下来。书面材料的内容包括:

(1)明确所选题目研究所要达到的目的,即准备解决什么理论问题和实际应用问题。

(2)对研究的题目,自己掌握了哪些资料,还缺少哪些资料,准备怎样解决?

(3)对撰写所选题目论文的初步设想,列出论文的框架结构;论文分成哪几个部分,每一个部分写什么问题,从哪些方面来写,这也就是论文的粗纲。

(4)写作计划。根据自己的实际情况订出详细的提纲、论文初稿、论文定稿的时间安排和各阶段工作的大体步骤。

三、自行拟定论文题目时也应充分考虑主客观条件,即个人的特长和兴趣、选题的理论价值和实用价值。最好能结合自己的实际工作。

解析几何研究论文

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

解析几何论文题目

去论文拼凑一个吧 这类的论文比较少,主要是学的人比较少。

我有一本书电子版的 《数学的美》吴振奎 写的,次数比较系统介绍数学美。徐利治先生的书也不错 我的毕业论文题目是:数学奇异美现在正在写着呢。不要忘记给我加分

课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法

平面二次曲线里面有很多不错的结论,可以去研究研究,

  • 索引序列
  • 毕业论文浅析解析几何
  • 解析几何毕业论文题目
  • 解析几何毕业论文如何选题
  • 解析几何研究论文
  • 解析几何论文题目
  • 返回顶部