幂零矩阵的特征值只有0因为A≠0所以属于A的线性无关的特征向量的个数 = n-r(A) 对于具有实(或复)元素的n×n个方阵N,以下是等价的: (1)N是幂零矩阵。 (2)对于一些正整数k≤n,N的最小多项式为x的k次方。 (3)N的特征多项式为x的n次方。 (4)N的唯一特征值为0。 (5)对于所有k> 0,tr(N的k次方)=0。 幂零矩阵简介: 在线性代数中,对于n阶方阵N,存在正整数k,使得N^k=0,这样的方阵N就叫做幂零矩阵。满足条件的最小的正整数k被称为N的度数或指数。更一般来说,零权变换是向量空间的线性变换L,使得对于一些正整数k(并且因此,对于所有j≥k,Lj = 0),L^k= 0。 幂零矩阵是幂零元──一个更加一般的概念的特殊情况,不仅可以应用于矩阵和线性变换,也可以应用于环的元素。 以上内容参考 百度百科-幂零矩阵 我今天刚看完书…… 相似必合同,合同必等价 等价就是矩阵拥有相同的r, 矩阵合同,CtAC(Ct为转置)=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(CtAC)=r(AC)=r(A),等价.同理两矩阵相似一定等价 矩阵相似一定合同,因为两矩阵相似,有相同的特征多项式和特征根,就一定有相同的r,惯性系数一定相同,可以化成相同的标准形,矩阵合同的充要条件是有相同的r和规范形(A、B都有其对应的对角形矩阵,结合定义即可推出,太难打了自己理解谢谢),标准形相等规范形一定相等,所以相似一定合同 简单分析一下即可,答案如图所示 两个合同矩阵的共同点: 1、这两个矩阵的正负惯性指数相同; 2、这个两个矩阵的秩相同 3、这个两个矩阵均是实对称矩阵。 合同矩阵的性质: 1、反身性:任意矩阵都与其自身合同; 2、对称性:矩阵A合同于矩阵B,则可以推出矩阵B合同于矩阵A; 3、传递性:矩阵A合同于矩阵B,矩阵B合同于矩阵C,则可以推出矩阵A合同于矩阵C。 扩展资料: 矩阵合同的判别 1、设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。 2、设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。 参考资料来源:百度百科-合同矩阵 当矩阵A经过若干套初等变换而化为矩阵B时,则称为A合同于B,记为。矩阵之间的这个关系具有反身性、对称性和传递性,所以它是一种等价关系。 矩阵的合同是在讨论用(对称)矩阵表示二次型的问题中产生的。所谓一套初等变换,是指将某一种初等变换首先对一个矩阵的第i列(行)施行而得一矩阵,然后再对此所得矩阵的第i行(列)施行又得一矩阵。 第一、二、三套初等交换,分别由第一、二、三种初等变换组成。两个n阶矩阵A与B合同,必要而且只要有非奇异矩阵P使P┡AP=B。与对称矩阵合同之矩阵仍为对称矩阵。 每个秩数为r的实对称矩阵A恒合同于一个对角矩阵,其对角线上有p个1与q个-1;其他的对角线元素均为0,这里p≥0,q≥0,p+q=r,而且p与q都是由A所惟一确定的。 实对称矩阵的特征根恒为实数。实对称矩阵A能合同于而又相似于一个对角矩阵,其对角线元素恰为A的全部特征根。与单位矩阵合同的实对称矩阵,称为正定矩阵。 最小公倍数和公因数 矩阵的n幂运算公式:n=α^Tβ。幂运算是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。 1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广 矩阵到这个问题太复杂了,我回答不了。 我明白这个道理你选涡 伴随矩阵的性质与应用的Word文档,我给你!!!其实论文任何一个课题的研究或开发都是有学科基础或技术基础的。综述部分主要阐述选题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。可以帮你写个提纲或者开题要吗? 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[2] 。1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。 矩阵秩的性质矩阵满秩有什么性质行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关,一个矩阵的行秩等于列秩,所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。用初等行变换将矩阵A化为阶梯形矩阵,则矩阵中非零行的个数就定义为这个矩阵的秩,记为r(A),根据这个定义,矩阵的秩可以通过初等行变换求得。需要注意的是,矩阵的阶梯形并不是唯一的,但是阶梯形中非零行的个数总是一致的。设A是n阶矩阵,若r(A)=n,则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。 矩阵秩的性质如下: 1. max[R(A),R(B)]⩽R(A,B)⩽R(A)+R(B) ,特别的,当 B=b 为非零列向量时,有 R(A)⩽R(A,b)⩽R(A)+1 推导过程: 的最高阶非零子式总是的非零子式同理可知,令,且令,则,和中分别含有个和个非零行从而可知,中最大非零行个数为综上所述,∵A的最高阶非零子式总是(A,B)的非零子式∴R(A)⩽R(A,B)同理可知,R(B)⩽R(A,B)∴max[R(A),R(B)]⩽R(A,B)令,(A,B)→(A′,B′)A→A′B→B′且令,R(A′)=rR(B′)=t则,A′和B′中分别含有r个和t个非零行从而可知,(A′,B′)中最大非零行个数为r+t∴R(A,B)=R(A′,B′)⩽R(A′)+R(B′)=R(A)+R(B)综上所述,max[R(A),R(B)]⩽R(A,B)⩽R(A)+R(B) 2. R(A+B)⩽R(A)+R(B)R(A+B)⩽R(A+B,B)=R(A,B)⩽R(A)+R(B) 推导过程: 设为矩阵则对矩阵作初等行变换由秩的性质一可知,设A,B为m×n矩阵则对矩阵(A+BB)作初等行变换ri−rm+i(i=1,2,⋯,m/2)∴(A+BB)→r(AB)由秩的性质一可知,R(A+B)⩽R(A+BB)=R(AB)=R(AT,BT)T=R(AT,BT)⩽R(AT)+R(BT)=R(A)+R(B) 3. R(AB)⩽min[R(A),R(B)] 推导过程: 设可知矩阵方程有解根据矩阵方程定理六(矩阵方程有解的充分必要条件是)可知而由秩的性质一可知故,又可知矩阵方程有解根据矩阵方程定理六(矩阵方程有解的充分必要条件是)可知而由秩的性质一可知故,又且综上所述,设AB=C可知矩阵方程AX=C有解X=B根据矩阵方程定理六(矩阵方程AX=B有解的充分必要条件是R(A)=R(A,B))可知R(A)=R(A,C)而由秩的性质一可知max[R(A),R(C)]⩽R(A,C)⩽R(A)+R(C)故,R(C)⩽R(A,C)∴R(C)⩽R(A)又∵(AB)T=BTAT=CT可知矩阵方程BTX=CT有解X=AT根据矩阵方程定理六(矩阵方程AX=B有解的充分必要条件是R(A)=R(A,B))可知R(BT)=R(BT,CT)而由秩的性质一可知max[R(BT),R(CT)]⩽R(BT,CT)⩽R(BT)+R(CT)故,R(CT)⩽R(BT,CT)∴R(CT)⩽R(BT)又∵R(B)=R(BT)且R(CT)=R(C)∴R(C)⩽R(B)综上所述,R(C)⩽min[R(A),R(B)] 4.若 Am×nBn×l=O ,则 R(A)+R(B)⩽n 推导过程: 记又因故即,该方程表明为齐次方程的解设为齐次方程的解集则,故,由秩的定理七可知(定理七:设矩阵的秩,则元齐次线性方程组的解集的秩),得证 r(AB)与r(A),r(B)的关系小!设A为m*n矩阵;B为n*k矩阵;r(A)=a,r(B)=b;0≤r(AB)≤min(a,b);这与他们是不是N阶矩阵无关!! 行满秩矩阵就是行向量线性无关列满秩矩阵就是列向量线性无关一个矩阵的行秩等于列秩,所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的.合同矩阵的性质毕业论文
n阶矩阵的幂运算毕业论文
矩阵的性质研究论文
矩阵秩的性质研究小论文