首页 > 期刊投稿知识库 > 文本挖掘研究论文

文本挖掘研究论文

发布时间:

文本挖掘研究论文

是的,我还记得我本科时候的论文。我的论文主要研究了传统金融投资行业中的问题,并提出了一些改进措施。我深入研究了传统金融行业中的监管问题,发现其中存在一些缺陷,主要是由于监管机构过于宽松,导致金融行业出现了一些不良做法。此外,我还比较了传统金融投资行业与新兴金融投资行业的差异,发现新兴金融投资行业更加敏捷,具有更强的灵活性,可以更好地应对市场的变化。此外,我还研究了新兴金融投资行业中的监管问题,发现它们的监管更加严格,但也存在一定的缺陷。最后,我提出了一些改进措施,旨在更有效地管理金融投资行业,保护投资者的利益。

文本数据挖掘 是一种利用计算机处理技术从文本数据中抽取有价值的信息和知识的应用驱动型学科。(文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程) 文本数据挖掘处理的数据类型是文本数据, 属于数据挖据的一个分支 ,与机器学习、自然语言处理、数理统计等学科具有紧密联系。 文本挖掘在很多应用中都扮演重要角色,例如智能商务(例如客户关系管理)、信息检索(例如互联网搜索)等。 文本数据挖掘需要从三个层面进行理解:

自然语言处理(NLP) 关注的是人类的自然语言与计算机设备之间的相互关系。NLP是计算机语言学的重要方面之一,它同样也属于计算机科学和人工智能领域。而 文本挖掘 和 NLP 的存在领域类似,它关注的是识别文本数据中有趣并且重要的模式。

但是,这二者仍有不同。首先,这两个概念并没有明确的界定(就像“数据挖掘”和“数据科学”一样),并且在不同程度上二者相互交叉。 如果原始文本是数据,那么 文本挖掘就是信息 , NLP就是知识 ,也就是语法和语义的关系。

文本挖掘利用智能算法,如神经网络、基于案例的推理、可能性推理等,并结合文字处理技术,分析大量的非结构化文本源(如文档、电子表格、客户电子邮件、问题查询、网页等),抽取或标记关键字概念、文字间的关系,并按照内容对文档进行分类,获取有用的知识和信息。

文本挖掘是一个多学科混杂的领域,涵盖了多种技术,

信息检索 是指文献等信息资源的整理和搜索,其主要目的可以概括为:按照用户的具体需要,采用一些检索方法,把所有相关的文献都检索出来,同时摒弃掉那些看似相关实则不符合要求的文档。

我们能否为文本数据的处理制作一个高效并且通用的框架呢?我们发现,处理文本和处理其他非文本的任务很相似 以下就是处理文本任务的几大主要步骤: 1. 数据收集

获取或创建语料库,来源可以是邮箱、英文维基百科文章或者公司财报,甚至是莎士比亚的作品等等任何资料。

2. 数据预处理

在原始文本语料上进行预处理,为文本挖掘或NLP任务做准备

数据预处理分为好几步,其中有些步骤可能适用于给定的任务,也可能不适用。但通常都是标记化、归一化和替代的其中一种。 文本挖掘预处理 :文本挖掘是从数据挖掘发展而来,但并不意味着简单地将数据挖掘技术运用到大量文本的集合上就可以实现文本挖掘,还需要做很多准备工作。 文本挖掘的准备工作 由 文本收集 、 文本分析 和 特征修剪 三个步骤组成

文本分析 是指对文本的表示及其特征项的选取;文本分析是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。文本(text)与 讯息(message)的意义大致相同,指的是由一定的符号或符码组成的信息 结构体 ,这种结构体可采用不同的表现形态,如语言的、文字的、影像的等等。文本是由特定的人制作的,文本的语义不可避免地会反映人的特定立场、观点、价值和利益。因此,由文本内容分析,可以推断文本提供者的 意图 和目的。 特征选择 将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。

目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为 文本的特征或特征项 。特征项必须具备一定的特性:

在中文文本中可以采用 字、词或短语 作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算 。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。 特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是 特征选择(Feature Selection) 。

特征选取方式 常见的有4种:

随着网络知识组织、人工智能等学科的发展,文本特征提取将向着数字化、智能化、语义化的方向深入发展,在社会知识管理方面发挥更大的作用。

努力消除歧义 是文本预处理很重要的一个方面,我们希望保留原本的含义,同时消除噪音。为此,我们需要了解:

3.数据挖掘和可视化

无论我们的数据类型是什么,挖掘和可视化是探寻规律的重要步骤 常见任务可能包括可视化字数和分布,生成wordclouds并进行距离测量

4.模型搭建

这是文本挖掘和NLP任务进行的主要部分,包括训练和测试。在适当的时候还会进行特征选择和工程设计

语言模型 :有限状态机、马尔可夫模型、词义的向量空间建模

机器学习分类器 :朴素贝叶斯、逻辑回归、决策树、支持向量机、神经网络

序列模型 :隐藏马尔可夫模型、循环神经网络(RNN)、长短期记忆神经网络(LSTMs)

5. 模型评估

评价模型是否达到预期?其度量标准将随文本挖掘或NLP任务的类型而变化。

与其他类型的论文一样,文本挖掘论文也需要严谨认真地完成,才能得到高分。在写作文本挖掘论文时,首先要搜集大量相关资料,并仔细分析和研究,把握文本挖掘的思想,建立正确的观点,形成逻辑论据,牢固掌握论证方法,使文本挖掘论文叙述流畅。

数据挖掘论文数据挖掘论文

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

1.1信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

1.2在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

2.1数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

2.2漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

2.3开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

2.4版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

3.1关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

3.2分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

3.3聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

4.1对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

4.2软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

4.3应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

4.4面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

数据挖掘是从大量数据中提取人们感兴趣知识的高级处理过程, 这些知识是隐含的、 事先未知的, 并且是可信的、 新颖的、 潜在有用的、 能被人们理解的模式。随着信息化的普及和数据库的广泛应用,很多大型企业事业单位积累了数百亿字节的数据, 分析利用如此海量的数据,是数据挖掘技术的用武之地。数据挖掘在争取与保留客户、 交叉销售、 趋势分析与市场预测、 欺诈检测与风险防范等方面的成功应用令人鼓舞。

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

挖掘机原理研究论文

我有几篇。。。。可以给你参考

挖掘机的工作原理

常见的挖掘机按驱动方式有内燃机驱动挖掘机和电力驱动挖掘机两种。其中电动挖掘机主要应用在高原缺氧与地下矿井和其它一些易燃易爆的场所。本文是对关于挖掘机的工作原理相关知识的概括介绍,以下内容由培训网我整理,提供给您参考。

一.反铲

铰接式反铲是单斗液压挖掘机最常用的结构型式,动臂、斗杆和铲斗等主要部件彼此铰接(见图1),在液压缸的作用下各部件绕铰接点摆动,完成挖掘、提升和卸土等动作。

反铲1—斗杆油缸;2—动臂;3—油管;4—动臂油缸;5—铲斗;6—斗齿;7—侧齿;8—连杆;9—摇杆;10—铲斗油缸;11—斗杆

1.动臂

动臂是反铲的主要部件,其结构有整体式和组合式两种。

1)整体式动臂。其优点是结构简单,质量轻而刚度大。缺点是更换的工作装置少,通用性较差。多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和变动臂两种。其中的直动臂结构简单、质量轻、制造方便,主要用于悬挂式液压挖掘机,但它不能使挖掘机获得较大的挖掘深度,不适用于通用挖掘机;弯动臂是目前应用最广泛的结构型式,与同长度的直动臂相比,可以使挖掘机有较大的挖掘深度。但降低了卸土高度,这正符合挖掘机反铲作业的要求。

2)组合式动臂。如图2所示,组合式动臂用辅助连杆或液压缸3或螺栓连接而成。上、下动臂之间的夹角可用辅助连杆或液压缸来调节,虽然使结构和操作复杂化,但在挖掘机作业中可随时大幅度调整上、下动臂之间的夹角,从而提高挖掘机的作业性能,尤其在用反铲或抓斗挖掘窄而深的基坑时,容易得到较大距离的垂直挖掘轨迹,提高挖掘质量和生产率。组合式动臂的优点是,可以根据作业条件随意调整挖掘机的作业尺寸和挖掘力,且调整时间短。此外,它的互换工作装置多,可满足各种作业的需要,装车运输方便。其缺点是质量大,制造成本高,一般用于中、小型挖掘机上。

2.反铲斗

反铲用的铲斗形式,尺寸与其作业对象有很大关系。为了满足各种挖掘作业的需要,在同一台挖掘机上可配以多种结构型式的`铲斗,图3为反铲常用铲斗形式。铲斗的斗齿采用装配式,其形式有橡胶卡销式和螺栓连接式,如图4所示。

3.组合式动臂

1—下动臂;2—上动臂;3—连杆或液压缸

常用铲斗结构

1—齿座;2—斗齿;3—橡胶卡销;4—卡销;5、6、7—斗齿板

二.正铲

单斗液压挖掘机的正铲结构如图5所示,主要由动臂2、动臂油缸1、铲斗5、斗底油缸4等组成。

铲斗的斗底利用液压缸来开启,斗杆6是铰接在动臂的顶端,由双作用的斗杆油缸7使其转动。斗杆油缸的一端铰接在动臂上,另一端铰接在斗杆上。其铰接形式有两种:一种是铰接在斗杆的前端;另一种是铰接在斗杆的尾端。

动臂均为单杆式,顶端呈叉形,以便与斗杆铰接。动臂有单节的和双节的两种。单节的动臂有长短两种备品,可根据需要更换。双节的动臂则由上、下两节拼装而成,根据拼装点的不同,动臂的工作长度也不同。

斗齿安装形式

(a)螺栓连接;(b)橡胶卡销连接

1—卡销;2—橡胶卡销;3—齿座;4—斗齿

铲1—动臂油缸;2—动臂;3—加长臂;4—斗底油缸;5—铲斗;6—斗杆;7—斗杆油缸;8—液压软管。

选择格瑞德挖掘机厂家实习,如果您有能力,要针对要点,重点了解,去描写

移动轨迹数据挖掘研究论文

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

1.1信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

1.2在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

2.1数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

2.2漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

2.3开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

2.4版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

3.1关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

3.2分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

3.3聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

4.1对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

4.2软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

4.3应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

4.4面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

我是做甲醛脱除的。平时工作就是弄点材料,在一个罐子里测测能吸多少甲醛,完全没有技术含量。一开始,我的论文题目是《室内甲醛脱除》,通俗易懂。后来,我觉得这个不够专业,于是改成了《密闭空间内甲醛等气体污染物的脱除》。瞬间高大上了啊有木有?!不过,我导师还是不满意,他大笔一挥,把我的题目又改成了《空间站内甲醛等挥发性有机污染物的综合治理研究》。

关联规则挖掘吧,我刚做完相关的论文.用的是SQL Server2005中的智能挖掘平台.介绍一本书给你看下,就是图片里的那本书.里面有完整的使用sql server数据挖掘的过程.写论文十分辛苦,但一定会有收获!加油!

数据挖掘聚类算法研究论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

4.1市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

4.2金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

聚类分析在企业网络营销中的应用论文

论文摘要:本文针对企业网络营销中的大量数据为基础进行数据的分析,依据数据挖掘技术中典型的聚类分析方法进行数据的处理,并以一个网络营销公司为例,对其客户信息进行了聚类分析,得到了一些有价值的信息,对于企业的营销策略的决策给与一定的支持。

论文关键词:聚类分系,网络营销,策略,客户关系

0前言

现代科学技术的迅猛发展,特别是在互联网的应用和开发上更加的迅速,企业必须通过网络对自己的产品加强宣传以增强自己的竞争力。客户是一个非常重要的、有价值的重要资源,现在如何更好地从数据库中挖掘出客户中有价值的信息,更好的培植和经营与有价值客户的关系,抛弃那些无利可图没有发展前景而且营销费用高的客户,并且可以针对不同价值的客户给与不同的政策同时制定出个性化的营销策略,这些才能够保证企业的生存发展。对于这一切数据挖掘无疑是行之有效的好方法之一。本文以一个网络营销公司为例,提出了一套可操作性的对客户价值评价方法,然后使用数据挖掘技术中比较常见和常用的聚类分析算法对客户信息进行聚类从而达到非常重要的信息并为企业在网络营销中提供决策依据。

1聚类分析

聚类(clustering)是对于数据挖掘技术是非常重要的一部分,现在也是数据挖掘技术中关键的一种。聚类的意义就是针对物理或逻辑上的数据对象的进行自动分类,最后将数据对象分为多个类或簇的过程。对于聚类结果要使得数据对象在同一个分类中具有最大的相似度,而在不同的类中具有最小相似度。聚类的现实意义就是在于可以将数据按照一定得关系进行自动的分类,事先不知道所有的数据对象共有多少类,通过算法的处理最后得到一个分类结果进行应用。譬如在市场研究领域中,特别是针对网络营销的企业或网站,从大量的网络数据进行分析聚类,可以讲客户分成不同的类别,针对这些类别不同的购买力和兴趣爱好来进行个性化的营销手段,提高企业的经济效益。目前研究人员大多针对于聚类分析算法的改进和完善进行研究,进而提高聚类分析的工作效率。著名的算法有:CLARANS,BRICH,DBSCAN,CURE,STING,CLIGUE和WaveCluster等。

2聚类分析应用于企业客户资源管理

现针对某电子商务公司进行分析,该电子商务公司的客户分布在全国各地以及国外一些地区,现仅列出具有代表性的10个大客户:吉林,黑龙江,山东,江苏,浙江,安徽,湖南,缅甸,印度,南非等。在数据挖掘的目的就是从客户中找到一些共同点,在对这些客户数据进行处理前要使用聚类分析的方法进行研究看看这10个客户能否有一些共同之处以便企业针对不同类型的客户给与不同的对策,首先对该公司采用专家打分的方法,而且还有通过网上问卷调查和访谈的方式,收集各地销售专员的意见等方式,然后对数据加以综合,最后聚类分析法确定各项指标的权重。

那么在具体实施聚类分析法的时候可分为5个步骤进行:

第1步:首先对各项指数构建层次结构,其中被评定的10个大客户作为方案层,客户价值放在目标层中进行处理,各项指标是准则层,按照这样的分层结构来构造客户关系评价系统中个指数的结构图,见图2-1所示;

从数据可以看出有两种情形:一是缅甸和南非,从数据中可看出这类客户的当前价值很小,但是具有很大的隐含价值,势必会有一天他们的成长给企业会带来丰厚的物质利益,这样具有发展潜能的客户应该采取措施激发潜能;二是安徽和印度这类客户,虽然从数据中看出这类客户当前价值很小,但是就这两个省份的地理位置和经济状况来分析他们隐含着较大的价值。对于这一类的客户,企业就应该采取灵活的措施,激发他们的购买能力促使该类型的客户不断地向前发展;

第2类是“维持型”客户,他们会源源不断的为企业提供利润,如黑龙江和江苏,他们这类客户根据以往的交易记录分析到得结果就是目前价值大,不过没什么发展的潜能,或者说在某种情况下它的时常还会萎缩,当前这类客户会给企业带肋比较丰厚的利润但是就长期发展而言却不是利润的主要来源,他们在某种情况下会流失掉,会被其他的企业竞争对手的介入而流失,为此对于企业一方面要维持与这类客户的良好关系,保持稳定的`客户关系,另一方面还要采取一些营销手段来刺激该类客户的消费,提供一些个性化的服务和策略;

第3类“淘汰型”客户,这类用户就如同鸡肋了,对于企业的现在和将来都意义不大,目前的销售份额较小,企业对他们营销的成本还很高,年利润率很低,根据分析这类客户包括浙江、湖南和吉林,他们没有长期的发展的趋势,所以企业采取的策略就是应充分挖掘他们给企业带来的当前价值后逐渐地放弃他们;

第4类是“贵宾型”客户,这类用户是企业的主要经济利润的来源,在某种程度上可以说是企业生存的保证,他对企业是关系到生死存亡的重要客户,从数据中看山东就是该企业的这类贵宾型的客户,他的当前价值和潜在价值都很大,企业必须认真对待,细心呵护与这类客户的关系,以及该客户企业的关键性人物的关系,加强与这类客户的沟通和关系的培养,同时还要提高警惕,防止竞争对手抢走这些贵宾型客户。针对贵宾型客户企业就应该对其进行一对一的营销策略,进行良好的客户需求沟通,尽最大可能满足他们的需求,适当给与一些特殊政策来加强和他们的关系。从不同角度来加强客户对企业的忠诚度、满意度等。企业根据这些重要的信息就可以针对不同的客户采取合适的销售策略。

3小结

总之,企业首先对客户的价值进行全方位、多角度进行评价,再将分析结果量化后进行数据挖掘,通过聚类分析,对客户进行细分,针对不同类型的客户给与个性化的服务。

  • 索引序列
  • 文本挖掘研究论文
  • 数据挖掘论文数据挖掘论文
  • 挖掘机原理研究论文
  • 移动轨迹数据挖掘研究论文
  • 数据挖掘聚类算法研究论文
  • 返回顶部