纳豆菌的特性:纳豆菌生长温度最高位45-55℃,最低为5-20℃。 纳豆菌是嗜氧菌,接触空气才能繁殖,纳豆菌在通过吞噬大豆蛋白来繁殖的时候,产生出的无数酵素纳豆激酶和维生素K,具有神奇的药效,可以治疗三高(高血糖,高血压,高血脂)和溶解血栓的作用,而且还能产生出氨基酸的美味。研究了不同温度、pH值、培养时间、通气量、接种量、盐浓度因素对纳豆菌生长的影响,试验结果表明,该菌种生长适宜条件为:温度30-45℃;通风,转速140r/min,500mL三角瓶装液量100mL;pH值7.0;培养时间24h;接种量2%-5%。纳豆菌耐盐性较强,在含盐量8%的条件下仍能较好生长。
纳豆菌产自纳豆,纳豆是日本人把煮熟的大豆用稻草包起来、在40℃的温度下发酵而成的一种食品。纳豆发酵过程中,会由纳豆菌产生的一种丝氨酸蛋白酶,名为纳豆激酶(nattokinase简称NK),它是一种枯草杆菌蛋白激酶,纳豆中的纳豆激酶是直接分解血栓的纤维蛋白酶。具有强大的溶栓作用,比尿激酶的能力还要强,每克湿纳豆溶栓效果相当于尿激酶1600FU ,在胃肠中不失活。纳豆激酶对血栓的作用时间长,与尿激酶3分钟~5 分钟作用时间相比,纳豆激酶作用长达8小时,而且安全、无副作用。常吃纳豆还会将毛细血管中的血栓溶解掉,有效改善微循环障碍。纳豆激酶的发现1980年的一天,从事溶解血栓药物研究工作的日本心脑血管专家须见洋行博士,他突然想起纳豆不是纤维蛋白发酵的吗?而血栓最顽固的部分就是纤维蛋白,于是,下午两点半时,须见洋行博士把纳豆中提取的物质加入到人工血栓中 。原本准备第二天看结果的,但5点半的时候,一次偶然的察看,奇迹发生了,血栓居然溶解了2厘米,而平常用尿激酶做溶血栓的实验溶解2厘米需要近两天的时间,也就是说纳豆发酵物溶解血栓的速度是尿激酶的19倍之多。于是,就将纳豆的这种强力溶栓物命名为纳豆激酶Nattokinase,简称NK,这就是震惊世界的溶血栓药物研究史上有名的“下午两点半”实验。纳豆激酶的单位纳豆激酶在国际上的标准单位为“FU”,是指每粒纳豆激酶产品的纳豆激酶含量;“FU/g”是指每克纳豆原料中的纳豆激酶含量,两者存在区别。纳豆酶进入人体后,通过三重渠道构建酒精防护屏障:进入人体肝脏系统,分解肝脏解酒压力,协助解酒;进入人体血管系统,在脑血管区域形成重点防护屏障,抵制酒精对大脑的抑制效应;进入人体消化道系统,迅速形成保护屏障,加速消化道酸性分泌,促进解酒。服用纳豆能迅速解决酒后不良反应如头痛、呕吐、反胃、口干舌苦、烦恶、胸闷气短、短暂失忆、视力下降、听力减弱等,并能预防隔日醉。
宋希强,男,1972年出生,江西峡江人,中共党员,教授,博士生导师,1994年6月毕业于华中农业大学林学系“观赏园艺”专业,获农学学士;1999年6月毕业于北京林业大学园林学院“园林植物与观赏园艺”专业,获农学硕士;2005年6月毕业于北京林业大学园林学院“园林植物与观赏园艺”专业,获农学博士;2009年12月,中科院植物所系统与进化植物学国家重点实验室博士后出站。2008获聘海南省“515人才工程”第二层次人选,同年获霍英东基金会第十一届高等院校青年教师基金。自1994年来,宋希强同志一直工作在“园林”专业的教学和科研第一线,先后成功培育出我省唯一的“园林”专业硕士学位点和博士点方向。因工作成绩出色,于2008年破格为海南大学博士研究生导师。指导本科毕业论文多篇获得海南大学及省优秀毕业论文,多次带领学生参加暑期社会实践,并荣获优秀指导教师称号。2008年获“宝钢优秀教师奖”。多年来一直致力于海南野生园林植物种质资源研究,尤其是富有创造性地开展我国热带兰花基于菌根真菌的保育生物学研究,成绩斐然:发现了海南野生兰科植物2个新种,2个中国新记录属、6个中国新记录种,2个海南新记录属及12个海南新记录种);首次系统构建了基于GIS信息的海南野生兰科数据库,对海南野生兰科植物进行系统有效地管理。先后主持或参加完成国家级、部省级课题20余项,目前主持在研项目包括国家自然科学基金2项,科技部支撑计划子项目2项,2009年获中国第七届花卉博览会科技银奖。主编或参编教材5部,专著4部。发表学术论文50余篇,其中SCI收录4篇。获省部级奖励9项,专利32项。2010年5月,由于在科研和教学及团队建设方面的突出贡献,宋希强博士被共青团海南省委授予“海南青年五四奖章”。
宋希强是博士后吧
在自然界,一些真菌靠寄生在植物身上来获取营养,求得温饱。它们之间可能是互利共生的,也可能相爱相杀,如病原真菌的寄生。它们像是人体内的肠道菌群,只不过不是细菌,而是真菌。
长期以来,人们一直以为,糖,尤其是葡萄糖,是植物供给这些真菌的主要营养物质。这已经被写进了教科书。但教科书将被改写。最新发表在国际知名学术期刊《科学》(Science)的一项研究成果颠覆了人们的这一认知。研究人员证明植物提供给真菌的主要的含碳营养物质是脂肪酸,而非糖。
调查显示,超过80%的植物根部都共生有真菌,比如,水稻、玉米、小麦等作物。这些真菌被称为菌根真菌。植物每年把大约50亿吨光合作用后代谢的产物传递给菌根真菌,供其生长,并留存在土壤中。而菌根真菌回馈给植物氮、磷等物质,维持着整个生态系统的碳氮平衡。
的研究论文在线发表在《科学》上。研究人员提出证据,证明植物提供给真菌的主要的含碳营养物质是脂肪酸,而非糖。
拓展资料:
土壤也是一个生态系统,菌根真菌产生的有机酸等物质,使土壤不板结。当它们存在时,植物的茁壮程度更胜一筹。此外,有观点认为,在漫长的进化历史中,真菌在植物从水生到陆生这一演化过程中发挥了重要作用。但也有一些有害真菌可以侵袭植物,造成病害,比如小麦白粉病、水稻稻瘟病、玉米瘤黑粉病等真菌病害。
营养价值1.黄豆含蛋白质40%左右,在量和质上均可与动物蛋白比美,500克黄豆的蛋白质含量相当于1500克鸡蛋,或6000克牛奶,或1000克瘦猪肉,所以黄豆有“植物肉”及“绿色乳牛”之誉。2.黄豆蛋白质中所含必需氨基酸较全,尤其富含赖氨酸,正好补充谷类赖氨酸不足的缺陷,而黄豆中缺乏的蛋氨酸,又可得到谷类的补充。3.黄豆脂肪含量为18—20%,在豆类中占首位,出油率达20%。另外,比动物性脂肪优越之点是含胆固醇少,而富含亚麻油酸及亚麻油稀酸,这类不饱和脂肪酸使黄豆具有降低胆固醇的作用;卵磷脂也较多,这对神经系统的发育有重要意义。4.含钾、钠等无机盐、某些必需微量元素、属异黄酮类的大豆黄酮苷(包括金雀异黄素)、染科木苷以及大豆皂苷。干黄豆内虽不含维生素C,但发芽后能产生维生素C,在蔬菜淡季,可补充食用。另外,黄豆还含有维生素A、B、D、E及钙、磷、铁等矿物质。5.黄豆加工后的各种豆制品,不但蛋白质含量高,并含有多种人体不能合成而又必需的氨基酸,胆固醇含量中豆腐的蛋白质消化率高达95%,为理想的补益食疗之品。需要注意的是,生黄豆中,含有抗胰蛋白酶因子,影响人体对黄豆内营养成分的吸收。所以食用黄豆及豆制食品,烧煮时间应长于一般食品,以高温来破坏这些因子,提高黄豆蛋白的营养价值。功效与作用1.减轻女性更年期综合征症状大豆异黄酮是一种结构与雌激素相似,具有雌激素活性的植物性雌激素,延迟女性细胞衰老、使皮肤保持弹性、养颜、减少骨丢失,促进骨生成、降血脂等。2.防止血管硬化防止血管硬化,预防心血管疾病,保护心脏,大豆中的卵磷脂还具有防止肝脏内积存过多脂肪的作用,从而有效地防治因肥胖而引起的脂肪肝。3.让头脑聪明在平时适量多吃黄豆,还能有效达到预防老年痴呆的功效。而且在黄豆中还含有一种叫甾醇的物质,它能有效的增加神经机能,从而促进其活力的功效。4.降糖、降脂大豆中含有一种抑制胰酶的物质,对糖尿病有治疗作用。大豆所含的皂甙有明显的降血脂作用,同时,可抑制体重增加。6.美白护肤能有效地改善皮肤衰老,同时还具有缓解更年期综合症的功效。同时经过日本研究人员的实验发现,在黄豆中所含有的亚油酸可以有效阻止皮肤细胞中黑色素的合成。7.预防癌症具有预防癌症发生的功效,不同的癌症它都具有一定的抑制作用。其中尤其是对于乳腺癌,其抑制的效果最为明显。8.降低血脂黄豆中的植物固醇还具有降低血液胆固醇的作用,进入肠道后可与胆固醇竞争,从而减少胆固醇吸收。但在降低血液中的“坏胆固醇”的同时,还不影响血液中的“好胆固醇”。9.增强机体免疫功能大豆含有丰富的蛋白质,含有多种人体必需的氨基酸,可以提高人体免疫力。
大豆是一种常见食材,是人们对黑豆、黄豆以及青豆等豆类食材的一种总称,大豆不但可以食用还可以用来榨油,用它榨取的大豆油是人们平时最常食用的一种食用油。大豆的营养价值很高,一会我就带大家去全面了解,同时也会告诉大家大豆的功效有哪些。大豆的营养价值与功效1、大豆能健脑益智大豆能健脑益智,能让人们变得越来越聪明,它含有的磷脂是一种天然的活性成分,能直接作用于人类的大脑,可以促进脑细胞再生,也能提高脑细胞活性,平时人们食用大脑能提高记忆力,也能促进智力发育,还能预防老年痴呆的发生。2、大豆能延缓衰老大豆中含有大量的天然皂甙,这种物质是出色的抗氧化成分,能提高人体内SOD的含量,也能清理人体内的自由基,还能抑制人体氧化反应的发生,平时经常食用可以滋养皮肤,也能提高身体各器官的功能,能起到延缓衰老的重要功效。3、大豆微量元素含量高大豆中含有多种对人体有益的微量元素,特别是胡萝卜素和硫胺素以及核黄素还有氨基酸的含量都很高,这些物持可以促进身体代谢,也能满足人体对不同营养成分的需要,同时它们还能清理人体血液中的胆固醇,加快血液循环,还能软化血管,对中风和血栓都有很好的预防作用,另外平时经常吃大豆还能抑制身体对脂肪的吸收,可以预防高血脂和脂肪肝等常见疾病的发生。
大豆又名菽,在我国已有5000多年的大豆种植历史。大豆起源于中国,由分布于黄淮流域(北纬32-40度)的野生大豆驯化而来。随后广泛传播到世界各地,为人类提供了主要的植物油料和蛋白资源。
据统计, 全世界现有60 000份不同类型的大豆种质资源。毫无疑问,大豆的研究价值是所有豆科作物中最高的。这里对大豆的十年经典研究做一个回顾。
Genome sequence of the palaeopolyploid soybean
研究者利用全基因组鸟枪法对大豆进行全基因组测序,利用 大豆栽培品种Williams 82 品种大豆家系的444个重组自交系构建遗传图谱用来辅助组装,最终组装后的基因组大小为994Mb,ContigN50为189.4 Kb,ScaffoldN50达47.8 Mb,其中有397条Scaffold组装并锚定到 20条染色体 水平,组装基因组中确定了4991个SNP和874个SSR,并预测出 46430 个蛋白编码基因,重复序列占到整个基因组的59%。
此外,该研究后续除了对基因组成、重复DNA鉴定、全基因组复制事件等进化问题进行研究外,还对大豆固氮瘤和油脂的生物合成基因及基因转录因子多样性进行了鉴定,该大豆基因组准确序列的获得加快改良大豆品种的培育。
Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection
研究人员对 17株野生大豆和14株栽培大豆 进行了全基因组重测序,与参考基因组比对后,共发现了630多万个SNP,建立了高密度的分子标记图谱。此外通过对野生大豆和栽培大豆进行初步组装,从而在两种大豆中鉴定出18余万个PAV,得到了在栽培大豆中获得以及丢失的基因。此研究还发现大豆基因组存在较高程度的基因连锁不平衡和较高比例的单核苷酸非同义替换/同义替换比例,这表明大豆分子标记育种比基因图位克隆可能会拥有更多的优势。
与栽培大豆相比,野生大豆有着更高水平的遗传多样性,这表明人工选择导致了栽培大豆狭窄的生物多样性,这可能对可持续种植带来负面影响。而对野生大豆的分析表明,随着野生大豆生存环境的减少,野生大豆的有效群体大小在减少,野生种质资源的保存迫在眉睫。
该项研究第一次为大豆基因组学研究提供了全面的重测序数据,对未来的大豆群体遗传学研究,分子标记育种,新基因的发现奠定了坚实的基础。
De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits
中国农科院作科所邱丽娟团队牵头选择了 7份有代表性的野生大豆 进行De novo测序和独立组装,构建野生大豆泛基因组,Contig N50为7.7-26.6 Kb,Scaffold N50约16.3-62.7 Kb。通过基因集比较分析发现,48.6%的基因为7个野生大豆所共有,超过51.4%则仅存在于个别样本中(特有基因),并且特有基因主要富集在生物和非生物逆境相关途径中,这也反映了野生大豆具有广泛的适应性。此外,还鉴定到3.6-4.7Mb的SNP和0.50-0.77Mb的InDel。
进化分析表明,野生大豆与栽培大豆的祖先约在80万年前即发生了分化;正选择分析发现栽培大豆受选择的基因多与抗旱有关,而野生大豆中受选择基因非常多样化。同时,鉴定出大量与抗逆、抗病、花期、产油量和高度等重要农艺性状相关基因和变异,如野生大豆和栽培大豆开花时间的差异与开花时间调控基因SNP和InDel变异有关。
该成果是首例重要作物泛基因组研究成果,为研究大豆的遗传多样性及进化历程提供了新的启示,奠定了解析重要驯化性状建成、发掘优异基因/标记的基础。
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
中科院遗传发育研究所田志喜团队,对 302份 代表性大豆种质进行了重测序(>10x),分析表明大豆在驯化和改良过程中遗传多态性明显降低,在驯化阶段鉴定出121个强选择信号,在品种改良阶段鉴定出109个强选择信号。
除了SNP变异的分析,同时对能够解释更多生物学问题的 CNV变异信息 也进行了深入的选择分析和全基因关联分析。选择分析发现,CNV也在驯化过程中受到人工选择,共发现农家品种和驯化品种中162个受选择区域;通过关联分析发现,18号染色体与抗胞囊线虫相关的CNV与前人报道的区间Rhg1有交集,有趣的是,这个区间同样在驯化种中受到选择。另外,8号染色体上一个与豆脐颜色表现强关联的CNV位于一个查尔酮合成相关的区间内,同样为驯化种中受选择的位点。本文通过CNV的研究实现了鉴定到更多与大豆优良性状相关基因的研究目的。
对种子大小、种皮颜色、生长习性、油含量等性状进行全基因组关联(GWAS)分析,找出了一系列显著关联位点。研究表明大豆产油性状受人工选择较多,形成复杂的网络系统共同调控油的代谢。
Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean
继302个大豆重测序研究之后,中科院遗传发育研究所的田志喜团队又对 809份 大豆进行了重测序(8.3×)分析,深入解析了大豆84个农艺性状间的遗传调控网络,共鉴定出245个显著关联位点,发现其中95个关联位点和其它位点存在上位性效应。
例如,对于油含量相关性状,共鉴定到24个脂肪酸代谢相关和21个脂代谢相关的基因。深入分析发现,这些基因是通过加性效应共同调控多个大豆油脂性状的形成。
这些关联位点揭示了 不同性状间相互耦合 的遗传基础。根据连锁不平衡分析,发现115个关联位点可相互连锁,并与所观测的51个性状联系起来,形成复杂的 多性状多位点调控网络,该遗传调控网络很好地解释了不同性状间的耦合关系 。研究还发现其中23个关联位点,包括16个新鉴定的位点,对不同性状的形成起到关键调控作用。
De novo assembly of a Chinese soybean genome
中国科学院遗传与发育生物学研究所田志喜团队联合其他单位,综合运用单分子实时测序(SMRT)、单分子光学图谱(optical mapping)和高通量染色体构象捕获技术(Hi-C),对中国国审大豆品种“中黄13”的基因组 (Gmax_ZH13) 进行从头组装,最终得到1.025 Gb的基因组序列,包含20条染色体和1条叶绿体。该基因组Contig N50为3.46 Mb,Scaffold N50为51.87 Mb,是目前连续性最好的植物基因组之一。
进一步分析表明,Gmax_ZH13和Williams 82基因组之间存在着大量的遗传变异,包括1404个易位事件、161个倒位事件、1233个倒位易位事件,以及在Gmax_ZH13中出现的505506个小插入/缺失(1-99 bp)和17409个大插入/缺失(≥100 bp)。
该研究整合大量转录组数据为Gmax_ZH13基因注释基因构建了一个完整的基因共表达网络。通过已报道控制大豆开花时间的基因与新定位的QTL或GWAS区间内候选基因的共表达关系,对新定位区间内控制该性状的基因进行更精确地筛选,得到26个可能控制大豆开花时间的基因,并利用自然群体遗传变异和表型差异的关联对其中部分基因进行验证,为重要农艺性状基因的挖掘提供了新思路。Gmax_ZH13基因组的发表为大豆基础研究提供了重要资源,为国产优异大豆品种的培育奠定了基础。
A reference-grade wild soybean genome
野生大豆含有丰富的基因资源,可用于提升栽培大豆抗逆性、种子蛋白质和次级代谢产物含量等农艺性状,是大豆品种改良的天然宝库。2019年3月,香港中文大学与华大基因的联合科研团队针对 野生大豆W05 ,应用三代PacBio测序技术、Bionano Genomics双酶切光学图谱(OM)和高通量染色体构象捕获技术(Hi-C)产出的数据,组装得到染色体级别的参考基因组。最终组装获得的基因组大小为1013.2Mb,contig N50 3.3Mb,scaffold N50 50.7Mb。注释获得 55,539 个蛋白编码基因,对应89,477个蛋白质编码转录本。此外,在W05基因组中,还发现了288个miRNA,1,988个snRNA及147 个rRNA。
Pan-Genome of Wild and Cultivated Soybeans
中科院遗传发育所田志喜/梁承志课题组合作发表了大豆图形结构泛基因组图谱。这项研究 在植物中首次实现了基于图形结构的基因组构建,突破了传统线性基因组的存储形式 ,将引领下一代基因组学研究思路和方法,被审稿人称为“基因组学的里程碑工作”。
该研究首先对来自世界大豆主产国的2898个大豆自然种质资源进行了深度重测序和群体结构分析,进而精心挑选出26个最具代表性的大豆种质材料。该 26个种质包括3个野生大豆,9个农家种和14个现代栽培品种 ,其中一些材料作为骨干核心亲本已经培育了上百个优良新品种,一些材料是各个大豆主产区推广面积最大的主栽品种。进一步利用最新组装策略,对该26个大豆种质进行了基因组的从头组装和精确注释。在此基础上,结合已经发表的中黄13、Williams 82 和 W05 基因组,构建了高质量的基于图形结构的基因组,经过泛基因组分析,挖掘到大量的大片段结构变异。
深入分析发现,有些结构变异导致了不同基因间的融合,这为新基因的产生研究提供了重要线索;一些结构变异在重要农艺性状调控中发挥重要作用,如种皮亮度、种皮颜色的驯化、缺铁失绿等。
综上,经过10年的努力,起源于中国的大豆再次迎来了自己的高光时刻!这些遗传变异的发布为大豆研究提供了极为重要的资源和平台,无疑将大力推进大豆分子设计育种,助力实现大豆“绿色革命”。
巨菌草可做食草动物的优质青饲料,可以用作于食药用菌的培养基,可以用于新能源上的应用等等等,巨菌草可以说全身都是宝。
巨菌草几乎没有缺点。如果非要找一个,那就是不耐涝,所以根部不能有水。1、巨菌草产量很高很多农民会大面积种植巨草。这是因为经过反复改良,巨草的年产量极高,完全可以满足农民一年的饲养需求。2、巨菌草能耐旱巨菌草原本在南方种植,但经过植物学家反复研究,也可以在北方大面积种植,尤其是干旱地区,因为现在的品种耐旱性很强。3、巨菌草喜欢潮湿但不耐涝巨菌草在生长过程中非常喜欢潮湿的环境,所以要尽量保证土壤的湿度。但在保证大量浇水的情况下,不能有积水。巨菌草不耐涝,否则会影响生长效果。
微生态免疫时代的益生菌之路 在现代生活中,对于益生菌,相信每个人都不陌生。谈及益生菌的历史,要追溯到九千多年前的新石器时代。有资料记载,当时,中国河南贾湖地区的人们将稻米、蜂蜜和水果混合,通过酵母发酵,制成饮料,这也是现今能找到的最早关于益生菌食用的记录。 益生菌对使用者的身体健康能发生的有效作用有哪些? 科学界研究发现:益生菌可以帮助消化吸收,促进肠道菌群平衡,维护人体健康。也有很多的证据表明,每个人的肠道菌群组成各不相同,个人肠道菌群的组成受饮食、药物以及环境因素的影响,肠道菌群紊乱与许多慢性疾病有关,比如糖尿病、肥胖症、抑郁症等。 当然,益生菌对于人体的健康影响不仅局限于肠道。大量研究证实,益生菌在抑制病原微生物、调节胃肠道健康、增强营养物质消化吸收、增强免疫力、预防和治疗多种疾病等方面有着重要的作用,甚至在抗生素替代领域也有一席之地 在优化肠道及体外环境方面,益生菌在肠道内产生的氨基氧化酶、氨基转移酶或分解硫化物的酶等有害物质利用酶,能够减少肠道中游离的氨及吲哚等有害物质,增强肠道保护“屏障”,从而守护肠道的健康。 在免疫调节方面,益生菌能有效提高干扰素和巨噬细胞的活性,并通过产生特异性免疫调节因子来激发机体免疫功能,增强机体免疫力和抗病力。 此外,益生菌还可降低急性呼吸道感染,其作用机制主要为增强在正常情况下的吞噬细胞能力、抑制过敏时的吞噬功能,增加抗原特异性的IgG和IgA抗体,抑制炎症时单核细胞的增殖,减少肺部病原菌负担并阻止组织病原菌扩散至血液,增加肺泡液中的INF-γ、IL-6、IL-4、TNF-α和IL-10浓度、增强NK细胞的活性。因而使用益生菌减少呼吸道感染是切实可行的。 益生菌增强免疫力的作用始终离不开它对于维护肠道菌群平衡的作用。 我们都知道,人体95%以上的营养都从肠道吸收,99%的毒素也是从肠道吸收。正因为此,肠道粘膜成为了天然的生理和免疫屏障,能阻止有害物质进入循环系统,可以说,肠道是人体最大的免疫器官。肠道内有益菌数量足够时,肠道才能正常运转,保持肠道的免疫力,这样才能将饮食补充进体内的外来致病菌阻隔、杀灭,从而最终达到增强人体免疫力的效果。 在肠道这道免疫的坚固长城中,肠壁上井然有序的密布着免疫细胞,益生菌显著的免疫刺激作用就在这里得到发挥。 免疫的方式主要有两种,分别为细胞免疫和体液免疫。 在细胞免疫中,益生菌能激活巨噬细胞,它可以吞噬和杀灭多种病原微生物,同时诱导其释放两种武器——肿瘤坏死因子(TNF-α)和白细胞介素6号(IL-6)。肿瘤坏死因子对癌细胞有杀伤作用,是能够引起肿瘤出血坏死的活性因子。白细胞介素也是很重要的免疫活性因子,它参与炎症反应,调节机体免疫功能。益生菌也可以激活T细胞和NK细胞(自然杀伤细胞),两者都能起到细胞杀伤作用,阻断入侵细胞。 此外,还有一些研究显示,益生菌能使免疫功能增强还因为,一些益生菌能促进脾细胞增殖,让脾脏重量增加,从而达到增强免疫功能的效果。 在体液免疫中,人体的B淋巴细胞在不同的刺激下产生不同的免疫球蛋白。当被细菌刺激时,B淋巴细胞产生IgA、IgG、IgM三种免疫球蛋白,它们可增强人体抵抗力,消灭入侵细菌。益生菌是细菌的一种,自然也有相同的作用,它可以刺激B淋巴细胞,促使其分泌更多的IgA、IgG、IgM免疫球蛋白,诱导正确的免疫应答。同时,益生菌还能在肠道上皮形成一层保护粘膜,降低肠道通透性,减少异性物质(也就是我们常说的“过敏原”)被肠道吸收,直接减少过敏反应。 益生菌在日常生活中有着重要的作用,食用含有益生菌的食物或补充剂,可以促进我们人体免疫球蛋白细胞、T细胞、巨噬细胞的产生,从而增强机体自身的免疫力。 随着消费者对益生菌的认识,近几年来,益生菌产品深受市场的欢迎。而景岳生物科技早在2000年,就开始了益生菌的研究。 复合菌多于单一菌种,不是每个菌都适合每个人,正因此,复合菌的覆盖范围及概率性会比单一菌大。 ①动物双歧杆菌 动物双歧杆菌能够迅速肠定殖,抑制腐败菌的生长。 ②植物乳杆菌 植物乳杆菌可与各种微生物共生,具有一定的免疫调节作用。 ③副干酪乳杆菌 副干酪乳杆菌具优良的肠道驻留性,可与各种微生物共生。 ④干酪乳杆菌 干酪乳杆菌能够改变细菌丛生态,够耐受有机体的防御机制。 ⑤鼠李糖乳杆菌 鼠李糖乳杆菌是在消化系统中丰富的细菌株,能够调节肠道菌群、提升机体免疫力。 从以上可以看出,GM0857主要具有刺激肠道蠕动,改善肠道健康的作用,并且其取得了权威的专利认证。 GM0857五联菌益生菌主要作用是刺激肠道蠕动,新型微生物株发酵乳酸杆菌GM-090则可以提升免疫力。 2、提升免疫力高手-GM090 发酵乳酸杆菌GM090取自健康人体,经过十几年精心筛选和培育,亲和人体,更加适合人体环境,与人类共同进化,更适合于在人类体内定殖。 发酵乳酸杆菌GM-090能够刺激INF-γ分泌,激活免疫球蛋白,提高机体免疫力。 首先GM-090具有免疫调节功能,经台湾福利部免疫功能科学评估实验证明,服用GM090相关的产品,能促进T淋巴细胞激素增生、调节细胞激素IL-2及IL-10分泌、促进IgG抗体的生成。 同时GM-090还具有辅助调整过敏体质的作用,首先它有助于减少血清中IgE抗体的生成,有助于降低IL-5分泌量,从而调整过敏体质。
温度过高会导致益生菌受到破坏。因为温度过高会导致益生菌受到破坏,失去了本身应有的价值,所以人们在使用益生菌的时候要格外注意这方面的问题。益生菌是通过定殖在人体内,改变宿主某一部位菌群组成的一类对宿主有益的活性微生物。