随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文
他的论文特点就是完全没有那些晦涩难懂的专业术语,几乎全都是他真情实感的内心展现,能够让人们引起共情。
1959年。人机交互领域第一篇论文是由美国学者基于对机器减轻人类生产疲劳的研究,发布于1959年,是人机界面最重要的一篇论文。论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。
虚拟现实(VR)是一种由计算机和电子技术创造的新世界,是一个看似真实的模拟环境,下面是我为大家精心推荐的关于虚拟现实的科技论文2500字,希望能够对您有所帮助。
直觉交互界面与虚拟现实
摘要:为了研发更高水准的直觉交互界面,有必要引入虚拟现实技术,借助具备沉浸性、交互性和想象性的人机交互环境来获得真正意义上的直觉体验。通过特定的物理器件装置,以及先进的手势识别技术,使用者不必学习专门的操作命令,就可以与计算机进行交流并获得实时的反馈,而独特的沉浸式环境更能创造出人机一体的融合感。结果表明,虚拟现实技术有效地提升了用户的体验度,大大简化了操作的复杂性,而且可以应用于从娱乐到专业制造等各种场合,是直觉交互界面的有力驱动平台。
关键词:直觉交互;人机交互;虚拟现实
中图分类号:J0-05 文献标识码:A
本文是在“人―计算机” 交互(Human-Computer Interaction)的意义上来谈论“交互”。随着计算机技术几十年来突飞猛进的发展,计算机已经完全进入了日常生活的方方面面,其影响无处不在,人机之间的互动操作问题也越发显得重要。由于计算机尚未能摆脱冯・诺依曼体系的根本制约,与人类思维模式之间的鸿沟依然如同天堑,人机交互问题的一个重要着眼点就在于如何尽量地缩小人类使用者的操作模式与计算机的操作模式之间的差别。这意味着我们仍在不断地摸索和探讨,去提供更优秀的交互界面,使人可以顺畅地、高效率地与计算机进行对话。
一直以来,交互设计思维首要强调的就是以人为本,换而言之就是让设计物适应人,而非人适应设计物。这种观点在计算机还是国防机密的年代中显得有些奢侈,人们只能痛苦地训练自己去迎合机器(例如,使用完全机器式的编程语言与计算机交谈)。在当下,相对廉价的个人计算机都可以提供可观的计算能力,因此交互界面的设计原则也就顺应了这样的思路,去尽可能地将界面做得人性化,让人用得舒服,而繁重的计算则交给计算机在幕后默默地处理。
正是在这样的大背景下,“直觉”一词吸引了大家的目光。毕竟相对于日常物件,计算机的交互界面还是太不人性了,依旧保持着冰冷的面孔。如果能将我们习以为常的动作引入与计算机的交互之中,在不知不觉中将完成与计算机的沟通,那么这样的人机界面才能称得上是以人为本。而在呈现直觉界面方面,新兴的虚拟现实技术则提供了最有价值的工具。
本文正是拟探讨直觉交互界面及其与虚拟现实技术间的关系,为了完成这样的任务,首先我们要对人机交互意义上的直觉作出一个明确的定义,它实际上与大众文化中的“直觉”概念有着相当的差别。之后我们将谈论如何将上述意义上的直觉与虚拟现实结合起来,并提供具体的案例分析来支撑我们的探讨。
一、直觉交互界面
直觉(Intuition)这个概念属于大众词汇,但实际上不同的学科对直觉都有着不同的定义。本文研究的对象是人机交互,因此将在“凭着直觉去与计算机进行交互” (interaction with computer by intuition)这个上下文中去探讨它。首先要注意到,交互是双方面的,也即人与计算机在进行着双向的互动,但直觉却是人才能拥有的,也是仅仅用来修饰人的判断与感觉的,因此直觉人机交互关心的是以人为中心的交互场景中各参与元素对人是否直觉。从人的角度考虑交互界面,这实际也就奠定了“以人为本”在理论上的基础性质。
一般而言,人们对直觉的交互有着如下诉求:它不需要经过有意识的思考便能做出。例如在翻动一页书的时候,人不需要去有意识地考虑该用多大的力气,手指该走怎样的空间路线,或有意识地等待书页翻动之后出现的非常规情况并作出反应,等等。在这个意义上,一本实体书的交互界面是直觉的。依据以上诉求,Blackler等人的研究指出,直觉是“基于已往经验的无意识的反应”[1]。这个定义强调了两个要点:基于以往经验和无意识。关于直觉往往是无意识的(下意识的)举动,这一点几乎已成共识,这里就不再展开论述。需要厘清的是“基于已往经验”这一点。
在日常生活中,人们或许并不认为直觉与已往经验之间会有什么关联。相反,许多人会认为,如果不需要经验就能进行某种操作,那么这种操作显然更符合直觉。特别地,中国传统文化中的“直觉”概念充满了反智主义的特征,直接将“直觉”与“本能”联系起来,往往意味着“不需要通过知识或经验便可以下意识地完成”。但这实际上是一种错误的观点,它不但误解了人的本能,而且未能认识到已往经验的真实存在及其影响。事实上,现代理论表明,人类绝大多数行动――简单的或复杂的――都是后天习得的,并非先天刻印于脑中。如果仅凭本能,人几乎无法完成什么人机交互操作:拿按钮这种最简单的人机界面元素来说,如果没有事先通过各种例子认识到存在按钮这种东西并且按下它之后会启动某些关联反应,使用者甚至都无法做出按下按钮的行为。或者用K.R.Popper[2]的话来说,所有行动都承载着理论――后天习得的理论。
将直觉与已往经验联系起来,这不仅揭示了直觉在人机交互中的真正面貌,而且指出了设计人机交互界面时的一条基础准则:由于不同的人有着不同的生活经验与知识水平,那么他们的已有经验也是不同的,这也就意味着每种类型的人都有着他们对“直觉交互界面”的不同衡量标准。有一个简单的例子可以说明这一点。
考虑一款在电脑上运行的收音机软件,它的作用是播放网络上的各类实时音频流(包括传统电台的在线音频流)。图 1模拟半导体收音机的调频指针窗口,从传统眼光而论这样的界面便是直觉的。然而,对于没有用过半导体收音机的新一代年轻人而言,他们由于频繁地接触电脑,反而会觉得图2的界面是直觉的,因为这样的界面使用的是为电脑用户所熟知的UI(User Interface,用户界面)元素,包括菜单、按钮、列表框和滚动条等等。
习惯半导体收音机操作的用户多半用不惯新式界面,而习惯新式界面、没使用过半导体收音机的用户却很可能对传统界面不知所以。这个例子充分说明了,在考虑直觉交互界面的时候,必须考虑用户群体的已往经验,依据不同的已往经验去断定直觉因素。并不存在唯一的、普适的、通用的直觉界面,这给了设计师以极大的挑战,但同时也是极大的创新动力。 此外,虽然直觉的定义没有直接体现对审美的考虑,但审美和直觉显然是互有关联的[3]。由于直觉使用与交互过程中唤起的先前知识有关,那么审美判断作为人类感知过程的起点之一,恰是诱发直觉的重要因素。一个富于美感的界面,可以抵消用户使用过程中的不安感和隔膜感,并在潜意识上促使和鼓励用户做出交互行为并保证交互行为的持续性和统一性。上面的例子也表明,对于传统用户,设计精美、极富质感的模拟界面有效地抵消了传统用户对电脑软件的不适感,方便他们使用,并且大大降低了潜在的学习成本。而对于年轻用户,他们也可以在自己熟悉的控件界面中运作自如,拉近了老技术(传统流媒体)与新技术间的距离。简而言之,具备良好审美特性的直觉界面具有重要的价值与意义,体现了人机交互界面的发展趋势。
二、直觉界面与虚拟现实
自上世纪70年代起,虚拟现实(Virtual Reality)技术的发展异常迅猛,从专业研究到商业应用乃至家用娱乐都可见其身影。从根本上而言,虚拟现实恰是交互界面直觉化的总趋势的一个反映,因为人机交互演进的内在逻辑在于,呈现和交互手段总在致力于让用户以更直观、更自然、更简便的操控方式去获得更丰富、更多态、更实时的数据资源。
简而言之,虚拟现实提供了一个具有沉浸性(Immersion)、交互性(Interaction)和想象性(Imagination)的虚拟数字富媒体环境;用户不仅可以如同设身处地一般沉浸在它所提供的丰富多彩的虚拟环境中,更可以通过各种创新的途径来与环境中的元素进行互动。沉浸性、交互性和想象性,正是虚拟现实的三个基本特征[4]:一是沉浸性,通过各种技术手段让用户产生“身临其境”的感觉,包括视觉(利用人的立体视觉原理产生虚拟的三维纵深感)、听觉(利用立体声产生虚拟物体的方位感)、触觉(通过力觉设备使用户以为在与真实的物理实体打交道)等等;二是交互性,用户可以实时地与虚拟现实系统中的各种物体进行互动操作,用户的操作不再局限于传统的键盘、鼠标或游戏杆,还包括先进的数据手套、穿着式回馈服等等;三是想象性,给用户呈现的虚拟现实场景具有超越现实场景的特殊魅力,真正做到某种意义上的“心想事成”。
从虚拟现实的上述特征可以看出,它的基本出发点就是要超越传统人机交互界面的非人性化的一面,不仅要让用户尽量溶入整个交互场景中(沉浸性),而且要让用户以更直觉的方式去操作计算机(交互性):首先,虚拟现实技术能够有效地将计算机交互界面直觉化,提供与日常场景尽量类似的界面,完全基于人类日常的视觉直觉。其次,虚拟现实技术能够有效地消除人机交互之间的阻隔,让用户能够通过日常的动作和行为与计算机交互。
从上文的概念分析可知,判定直觉程度要看与使用者本身的已知经验,而且使用情境和审美等其他因素也要考虑在内。虚拟现实技术本身提供了多种多样的方法,但具体的构建和应用也要遵循这样的准则。下一节将提供几个应用案例来说明这些,并综合讨论如何真正地利用虚拟现实技术去设计直觉交互界面。
三、应用案例及讨论
以虚拟现实技术为基础的直觉交互界面被广泛应用于各种层次、各种领域的实践应用之中,其目标用户群体不仅包括非专业人士(普通民众),也包括熟悉计算机但希望寻求更直观的交互操作方式的专业人士。对于前者,他们需要能够尽量降低学习和记忆成本、兼或附带娱乐趣味性的人机界面。而对于后者,操控感良好的直觉界面可以大大提升生产率和成品率,并推动整个生产流程的优化。
日本大阪大学人机工程实验室的伊藤雄一等人研发了ActiveCube(动态积木)[5],这个作品将直觉界面引入儿童和青少年认知学习及娱乐之中,并辅以虚拟现实或增强现实设备以提升其应用价值。每个积木都是一个边长五厘米的塑料立方体;积木里面有一块可编程集成电路,控制着一系列可选的感应器或小型设备,包括超声感应器(感知外界物体的接近)、坐标感应器(三维坐标的相对角度)、触觉感应器(最多可装两个,每个可以感应八个方向的触觉)、红外感应器、灯和电动机等。因此,每个积木实际上已经是一个独立的玩具,可以感知环境并产生相应的动态行为。更绝妙的是,这些积木还能彼此连接,连接起来的各个部分之间也可以互相通信,构成整体行为。儿童使用者不需要额外教学就可以通过直觉使用它们。这样的直觉操作界面,很好地避免了其内部的复杂结构对使用者的影响,小学低年级学生就可以独立操作。
ActiveCube的一大特色在于可以在虚拟现实场景里使用。在这种情形中,红外感应器捕捉搭建好的积木形态,并将符合此形态的虚拟物品显示出来。应用了虚拟现实技术之后,规整的积木可以任意变换成为植物、动物、日常器具等,不仅视觉效果有可观的提升,还借此允许用户进行进一步的玩耍和操控。
ActiveCube还可以在虚拟现实场景里使用。在这种情形中,红外感应器捕捉搭建好的积木形态,并将符合此形态的虚拟物品显示出来。由于ActiveCube本身只是一个简单的立方体,其六面自由连接功能限制了表面的装饰性,最后的拼装效果不一定能吸引儿童用户的兴趣。而应用了虚拟现实技术之后,古板规整的积木可以任意变换成为植物、动物、日常器具等,不仅视觉效果有可观的提升,还借此允许用户进行进一步的玩耍和操控。在上面的例子中,外表相对简陋的十字架形积木摇身一变,可成为精美的飞机,并随着积木在实际环境中的位移而在现实设备上呈现相应的飞行轨迹。
另一个实例来自于工业设计领域。当下的设计师一般都有较高的学历和较专业的计算机技能,但进行三维产品建模的时候,复杂的软件界面依然是最重要的阻碍因素,更遑论键盘加鼠标的操控方式根本就与人手的自然行为大相径庭,严重干扰了设计师的思维和创作习惯。荷兰Delft大学工业设计工程团队在这方面进行了大量研究,提出了新的解决方案,其关键就在于引入直观的手势来与计算机交互,于虚拟现实环境中完成建模工作[6-7]。
一般而言,手势比面部表情和眼动更易于捕捉和识别,又比全身姿势更易于实施(特别是在狭小空间中),因此比较受直觉界面研究者的青睐[8]409-420。但手势也分为几个细类,不一定都适合用于人机交互。Hummels指出了三类手势,第一类是从计算机角度去定义的手势,因而非常便于计算机识别,但需要使用者去刻意学习和掌握,称不上直觉。第二类与之相反,指的是人类日常生活中的手势,优点是非常直观,但计算机程序需要特别的设计才能对其进行识别。综合了以上两种类别之优点而又尽量规避其不足的第三类手势称为描述性手势,原本自身也有着应用范围过窄的缺憾,但辅以虚拟现实技术,便可以成为有效的途径以联通设计师和计算机。 为了提高描述性手势的效果,研究人员特地设计了一个虚拟现实实验环境,见图3。在此环境中,普通设计师作为被试,不受拘束地使用他们惯常的手势进行设计创作,而这些以直觉为基础挥舞出来的手势被动作感应器记录下来,最后进行统计分析。通过这样的过程,研究人员能够采集到和分析出最适合虚拟现实环境的直觉手势。最后,对设计师而言非常直觉、对计算机而言又是相当便于识别的手势方案即可得到确定。设计师在此系统中,可以像往常操作日常物体(胶泥或板材等)一样与计算机辅助设计软件进行人机对话,不仅直觉高效,而且得益于虚拟现实环境,整个设计流程形同真实体验,大大提高了设计效率。
四、结论与展望
一直以来,“以人为本”都是人机交互设计领域的核心口号之一。但本文的分析指出,这绝不能是一句抽象的口号,而必须落实到具体的应用情境之中。另一方面,近年来关于“用户体验”的声音不绝于耳[9],它本质上也是“以人为本”的精神的一种体现,但这个提法也存在着过于含糊的缺点,导致了许多不同的理论都以它为逻辑基础。实际上,只要明确了“人”(也即“用户”)的特定性,问题也就解决了。既然不同的人和不同的用户其自身情况多有差异,同样着眼于“以人为本”或“增进用户体验”的产品,也就必须随着人/用户的不同而给出不同的解决方案,提供不同的交互界面,才能在交互过程中让使用者满意。
直觉概念得到了厘清,但这显然并不意味着直觉交互设计的种种问题也就有了答案。如何让某种交互界面更少地占用使用者的逻辑意识(也即做到“无意识地或下意识地被使用”),以及如何明确地定性定量分析特定用户的已往经验,并以之支持交互界面的设计,这依然是非常复杂的问题。幸而在各领域学者的努力下,此领域已有许多成功的理论或实践得以依循。在这方面最重要的一项就是关于直觉交互中的手势问题,它旨在解决人机交互场景中用什么有效的手势去操作计算机。由于手势不受传统输入设备的限制,它天然地与虚拟现实技术结合在一起[8]409-420。此外,针对现在方兴未艾的商业以及家用娱乐虚拟现实应用,直觉交互界面也是其中的研发热点。限于研究的深度及文章篇幅,本文遗憾地未能在这些方面展开论述,希望能在后继研究中逐步展开。
最后要强调的是,随着普适计算(ubiquitous computing)这个概念在强大的计算机硬件的支持下渐渐变为现实,设计和实现各种直觉交互界面已成为人机交互的核心任务。普适计算要求计算机设备可以感知周围环境的变化并执行相应的任务,在这一过程中如果交互界面做不到直觉易用,那么其计算机人性化的核心价值也就无从体现了。由此,直觉交互界面的理论与实践必将日益凸显其无比的重要性和关键性。
[参考文献]
[1] Blackler A,Popovic V,Mahar D.Investigating users' intuitive interaction with complex artefacts[J].Applied Ergonomics,2010,41(1):72-92.
[2] 波普尔.猜想与反驳:科学知识的增长[M].傅季重,纪树立,周昌忠,等,译.杭州:中国美术学院出版社,2003.
[3] Naumann A,Hurtienne J,Israel J H,et al.Intuitive use of user interfaces: defining a vague concept[M]∥HARRIS D.Engineering Psychology and Cognitive Ergonomics.Berlin:Springer-Verlag,2007:128-136.
[4] Alonso M A G,Gutierrez M A,Vexo F,et al.Stepping Into Virtual Reality[M].New York: Springer-Verlag New York Inc,2008.
[5] Watanabe R,Itoh Y,Kawai M,et al.Implementation of ActiveCube as an intuitive 3D computer interface[M]∥Butz A,Olivier P.Smart Graphics. Berlin: Springer,2004:43-53.
[6] Hummels C,Overbeeke C J. Kinaesthesia in synaesthesia:the expressive power of gestures in design[C]∥Design and semantics of form and movement.Eindhoven:Eindhoven University of Technology,2006:34-41.
[7] Hummels C,Smets G,Overbeeke K.An Intuitive T-wo-handed Gestural Interface for Computer Supported Product Design: International Gesture Workshop[C].Bielefeld:Springer Verlag,1998.
[8] Nielsen M,Strring M,Moeslund T B,et al.A procedure for developing intuitive and ergonomic gesture interfaces for HCI[M]∥Gamurri A,Volpe G.Gesture-Based Communication in Human-Computer Interaction.Berlin:Springer,2004:409-420.
[9] Garrett J J.The elements of user experience[M].Berkeley,CA:New Riders,2002.
点击下页还有更多>>>关于虚拟现实的科技论文2500字
从1946年第一台计算机ENIAC问世以来,在计算机领域内,曾研制了各式各样的新技术和新产品,有些"长盛不衰",有些则是"昙花一现",总结它们盛、衰的缘由,可以得出这样一个规律,即:凡有助于缩小人机隔阂,有助于建立和谐人机环境的理论、方法、技术和产品都具有强大的生命力。例如,大规模并行处理(Massively Parallel Processing)、多媒体(Multinedia)、开放系统(Opensystem)、面向对象(Object-oriented)、网络计算(Netwouk computing)和嵌入式计算(Embedded comput-ing)等,均因为在建立和谐人机环境方面成效显著,而成为当今的主流技术。所谓建立和谐的人机环境,决不仅限于设计并实现一个友好的人机界面和具有灵活的交互功能,其最终目的是:从人在应用计算机的过程中增长了知识,发展到计算机在被人应用的过程中优化了功能;从计算机系统?quot;初解人意"逐步发展成计算机系统能够"善解人意"。用户在开始时都极力追求"更快、更高、更全"的计算机,但随着信息技术的发展和信息应用系统的普及,用户已经致力于寻求更为"好用、适用、易用"的计算机,希望在与计算机"合作共事"的过程中,计算机会逐步了解用户的需求、爱好和水平,并且用户和计算机的"学问"一起增长,这种。"人机智能共增"的技术水平和应用结果是计算机技术和人工智能技术发展到一个新的阶段的重要标志之一。 在以计算机或类计算机为核心的电子产品时代,人机交互技术正成为各国研究的重点之一。所谓人机交互技术,就是利用人类自身的语言、文字、图像等进行人机之间通讯的技术统称,人机自然语言(语音)通讯是其中较具潜能的一种。由于具有理解人类自然语言的计算机智能是新一代计算机的重要特征,围绕人机自然语言交互技术有关课题的研究是当今计算机、人工智能和信号处理研究的前沿热点课题,难度很大,既有很强的理论性又有很强的实验性。 从古老的"芝麻开门"传说开始,人类就一直幻想着用语言去征服和改造自然。伴随新技术的不断发展,人类的这一梦想正在逐步实现。谁能预知中文语音识别技术究竟能给我们带来什么样的应用前景? 随着信息时代的到来,计算机已成为人类不可缺少的日常工具。在计算机中,通常人机交互界面以键盘为主。为了使计算机的界面与人更加"友好",科学家开发出了若干种易学易懂、操作简单的界面。其中最方便最自然的界面首推口述语言。基于语音识别、镆艉铣杉白匀挥镅岳斫獾娜嘶�镆舳曰凹际跏鞘澜绻�系囊桓瞿讯群艽螅��惶粽叫缘母呒际趿煊颉K�那熬笆�止饷鳌A斓际澜缛砑�绷鞯奈⑷硎琢毂榷�谴淖罱�担?quot;5年以后95%的网络软件将是在语音驱动下完成的。"近几年来,语音识别、合成技术发展很快,和它有关的语言学、语音学、语音理解,听觉心理和语言感知也有较大进展,加之超大规模集成电路、电子计算机、数字信号处理、人工智能等取得了突飞猛进的发展,以及最近两年的国际互联网的迅速生长和全球信息基础设施建设热潮,这为人机语音对话的研究提供了更好的理论和物质基础以及需求牵引。科学家们指出,人机语音对话已处于突破的前夜,估计10年内将会有重大的突破,并得到广泛应用。人机语音技术主要包括二个方面的内容,即语音识别和合成。 一般来说,语音可分成声母和韵母,计算机在接受到口腔发出的声音振动信号以后,切分出声母和韵母,然后根据声母和韵母在信号中不同空间、不同参数进行处理,并按照事先在计算机内部建立起来的各种模型进行匹配,计算出实际输入的波形和各模型之间的中心距离,最后得到一串以符号表征的信号序列。这些工作仅完成了语音识别的第一步。大家知道,语音信号往往是模糊不清的,它可以归结为五重模糊:即语音模糊、音词转换模糊、多义模糊、语义切分模糊和指代性模糊。人类的大脑在语音交流过程中,有天然的解决上述模糊的本领,因此人类可以从模糊的语音中清理出语音中包含的信息,通俗地说,这就是理解。而要通过计算机进行理解,必须要教会计算机有这种理解模糊的能力,这就比较困难。科学家们对此进行了大量研究。最近中科院声学所黄曾阳研究员提出基于自然语言理解?quot;概念层次网络理论"。这一理论的出现,立刻在我国计算语言界引起了重视,一些著名学者称这是一项创新成果,认为随着这一理论在计算机上实现,在计算机自然语言理解上将有重大突破。根据这个理论,我国科学家在计算机上设计了一套计算机可读的符号系统,建立了富有汉语特色的知识库。知识库中包含了内容极其丰富、内在逻辑关系十分严密的网络结构语义信息,同时设计了包括单字词感知、语义块感知、句类判定、语境生成、隐藏知识揭示等处理模块。组成了一个具有一定人工智能水平的计算机自然语言理解系统。 计算机语音合成即文语转换系统,就是将计算机内文字形式的语言文本转换成声音形式,以语音方式播放出来的系统,它的目标是让计算机具备人一样的说话能力,即在合成语音的质量上,在文字信息的认读能力和抑扬顿挫的掌握上,都达到正常语言交际的要求,并为大多数听众接受。文语转换除了与语音识别和语言理解共同构成人机对话系统外,还可以广泛用于文稿校对、计算机辅助教学、自动电话查询、盲人阅读机等方面。 近年来在汉语文语转换技术上取得了很大进展。由于采用了新的语音合成技术对汉语的声学特征作了比较深入的研究,建立了韵律调节规律,使得新的汉语文语转换系统的语音合成的质量有了明显的提高。为使计算机合成的语言具有高清晰度和高自然度,还必须解决文语转换中的"文本处理"智能化问题,即将现系统中静态的韵律模型改变为与上下文有关的由语义控制的动态模型,将特殊条件下韵律的人工标注改为机器自动标注,其中包括文本中的多音字读音的自动确认、重读、语间停顿或连续,以及其它韵律特征的自动标注等。为了达到这个目标,计算机必须完全读懂文本中的每一句话。计算机自然语言理解系统同样可以解决这一难题。这一系统可为韵律处理和语音合成提供各种处理信息,解决多音字读音问题、歧义切分问题,给出正确的语义块结构,自动生成轻重、缓急、停延等韵律信息,从而提高合成语音的正确率和自然率。目前国外比较完善的文语转换系统的文本处理多数是通过语法分析或统计分析在一定程度上理解文本,对于不能提取韵律信息的只能通过人工加入韵律符号。基于语义理解的韵律处理是保证合成语音自然度的关键。韵律处理包括两方面的内容:一是根据文本内容对合成语音的韵律特片进行描述,如确定什么地方强调,什么地方应一带而过,什么地方放慢语速,什么地方加快语速,什么地方有短停顿,什么地方有个长停顿等;二是?quot;强调"、"忽略"、"加快"、"放慢"、"停顿"等韵律描述信息转化为相应的音高、音长和音强等声学参数,送给合成模块,使合成语音具有适当的韵律、节奏。解决韵律控制问题有两个途径:一是利用知识,二是利用统计模型。当前,科学家正努力将以自然语言理解为支持的汉语语音识别和语音合成的计算机人机语音对话系统做成可供上市的商品提供给用户,但是目前仍有大量工作要做,特别是基于概念层次网络的知识库的建立,需要投入大批人力、物力,需要按照计算机可以处理的袷剑�源罅恐�督�惺占�⒐槟伞⒄�怼⒙既搿T诖锏绞辜扑慊�耆�腿艘谎�杂啥曰熬辰缰�埃�嵊胁簧僦屑洳�房梢酝聘�没АH缰悄苄秃河锲匆羰淙胂低常�淖执�碇械男8逑低常�跫兜奈挠镒�幌低常�扑慊�虻タ谟镏噶钕低常�囟ㄈ说目谟锸侗鹣低车染�崖叫�谑导手械玫搅擞τ谩S芍锌圃荷����⒌?quot;佳音"文语转换系统已经装配到微机上,可将输入到计算机中的文章模拟男人、女人、老人、儿童等不同的声音,用"普通话"和"广东话"读出。虽然目前该系统还不具备"理解"能力,但其发出的声音清晰,有较高的自然度。另外,自然语言理解技术的突破不光可以应用在计算机人机语音对话中,它的更大应用将是人工智能中的一个具有更大意义的领域──机器翻译。人类梦寐以求的以机器代替翻译人员对自然语言进行全自动翻译的一天将会到来。
【论文名称】:人机交互的进展及面临的挑战【阅读地址】:
随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文
基于嵌入式技术楼宇智能化控制系统*摘要:为了解决智能楼宇控制点种类和数量多的问题,设计了基于嵌入式技术的智能楼宇控制系统,系统采用MODBUS通讯协议,485/232总线结构,最大通讯距离达1200m,通过区域控制器与控制模块数目自由组合组成控制网络的方法成功解决这个问题,效果良好。关键词:智能楼宇 MODBUS协议 485/232总线 区域控制器0 引 言智能楼宇最早出现在美国,我国的智能楼宇起源于20世纪90年代,楼宇智能化是现代工业高科技的结晶,是未来“信息高速公路”的主节点,是进入“数字时代”新兴的产物。所谓楼宇自动化系统是对中央空调系统、通风系统、给排水系统、照明系统、变配电系统、电梯系统进行监控。随着高新信息技术和计算机网络技术的高速发展,对建筑物的结构、系统、服务及管理的最优化组合的要求越来越高[4]。系统控制的方式由过去的中央集中监控,转而由高处理能力的现场控制器所取代的集散控制系统,本文设计的楼宇自动化智能控制系统是专门为楼宇智能化所设计,同霍尼韦尔、西门子等楼宇控制产品相比结构灵活,控制简便,并且易于针对个体需求进行软件的二次开发。1 网络结构控制系统结构如图1所示,分为三个控制层。上层为PC远程集中监控,下层为控制模块,中间层为现场区域控制器。层与层之间通过RS232/485总线联网。远程集中监控平台主要功能为提供即时的数据显示、历史数据的保存维护和查询显示、故障报警和故障历史查询、参数修改和查询。PC远程监控平台为主要人机界面,所以上位机软件设计体现了如下三个优点:一是将控制网络WEB化,可以将不同来源、不同格式的信息转变为统一的格式,供具有统一界面的客户机浏览器浏览,以更好地适应信息化社会的使用需要;二是建立了基于SQL SERV-ER数据库的管理信息系统,提高了信息管理的功能;三是采用开放式设计的网络结构,可以更方便地与其他系统(如安保系统、消防系统)进行集成。软件基于delphi平台开发,加载大量图形操作,简单方便。控制模块包括四种,即数字量输入模块(Digital In-put)、数字量输出模块(DigitalOutput)、模拟量输入模块(Analog Input)、模拟量输出模块(AnalogOutput)。控制模块是控制系统的主要执行机构,即采集数字量信号和模拟量信号,也输出数字量信号和模拟量信号。因此每种模块各自拥有单独的控制芯片,既接受现场区域控制器的控制命令,又需要根据控制命令完成模块的输入输出功能。中间层现场区域控制器既与PC远程监控平台进行通讯,接受控制命令并上传实时数据,又通过控制模块采集数据、执行控制命令。显然,现场区域控制器是整个控制系统的核心枢纽,其重要性不言而喻,因此整个区域控制器的软硬件设计无疑成为整个系统的重点和难点。2 区域控制器2.1硬件电路区域控制器硬件电路主要由CPU、上下位机通讯接口、EEPROM和时钟、键盘和触摸屏、液晶以及数字量/模拟量输入输出单元组成。硬件结构如图2所示。区域控制器CPU选用STC89C516RD2,这是一款新一代抗干扰/高速/低功耗的单片机,指令代码完全兼容传统8051单片机[1-3]。区域控制器自身带有一定数目的数字量/模拟量输入输出单元,可以在智能楼宇控制系统中作为控制模块的补充,同时也可以使区域控制器单独作为产品配套控制器使用,灵活多变。时钟和EEPROM通过I2C总线与区域控制器CPU连接。I2C总线用两条线(SDA和SCL)在芯片和模块间传递信息。SDA为串行数据线, SCL为串行时钟线,这两条线必须用一个上拉电阻与正电源相连,其数据只有在总线不忙时才可传送。CPU是主设备,时钟和EEPROM是从设备[9]。上位机通讯接口由控制器CPU通过SPI总线访问异步通讯芯片MAX3100来实现。SPI总线采用三线同步接口。主要特点是可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等;下位机通讯接口以串行口中断的方式实现半双工通讯。为了满足多种输入方式,控制器同时带有键盘和触摸屏,即可以以按键方式键入控制命令,也可以直接点击触摸屏实现。键盘采用独立式键盘;触摸屏选用电阻式触摸屏,电阻式触摸屏屏幕主要由两个导电层组成,当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后由触摸屏控制器侦测到这一接触点并计算出(X,Y)的位置。2.2软件流程智能楼宇控制系统所控制的点位种类多样,如温度、湿度、流量、开关等。硬件电路依据数字量、模拟量以及输入、输出提供了通用的接口,因此具体识别控制每个点位则完全由软件完成。现场区域控制器作为整个系统的控制核心,既要检测自身输入输出单元,完成显示,报警等功能,又要根据上位机(PC)、控制模块提供信息发出控制决策。因此软件流程包括初始化、故障检测与处理、控制算法实现、上下位机通讯等(图3),初始化包括数值初始化、中断初始化,通讯初始化,显示初始化;故障检测包括通讯故障,反馈故障,逻辑故障等;控制部分主要是程序算法的实现,对输入输出的智能控制,包括键盘/触摸屏输入及液晶输出,上位机通讯即远程PC与区域控制器通讯,而下位机通讯则是区域控制器与控制模块之间通讯[5-6]。楼宇自动化控制系统故障种类多样,故障处理方法又各有不同,因此故障的检测和处理就成为程序设计的一个难点,针对这种情况,程序采用了查表法(表1),成功的解决了这一难题。楼宇自动化控制系统故障种类多样,故障处理方法又各有不同,因此故障的检测和处理就成为程序设计的一个难点,针对这种情况,程序采用了查表法(表1),成功的解决了这一难题。表中分5列,第一列为故障号;第二列为故障处理方法,如1(停机),2(关机), 3(重启)···;第三列判断是否联动,如0(否), 1(是),主要判断一些相互有关联的部分出现故障是否需要同步处理;第四列所谓的报警延时主要指某一现象视为故障的重复出现时间,目的是为了消除抖动引起的误报;第五列延迟寄存器则存放报警延时,如1(0.1秒级延时寄存器), 2(秒级延时), 3(分级延时)。每条故障都要对应于表中的一条,实际应用中只需填写表格,快捷方便。上下位机通讯程序都采用MODBUS通讯协议[7-8],Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。此系统中当主设备为上位PC机时,现场区域控制器为从设备,当现场区域控制器为主设备时,控制模块为从设备。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。从设备回应消息也由Mod-bus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。例如:当主设备(现场区域控制器)发送如表2请求时,此控制器连接的所有控制模块都接受这请求,但是只有地址为1的控制模块对此请求应答,其他地址的控制模块自动丢弃这帧数据,经CRC检验数据正确后,根据功能码来处理此帧数据,此例中功能码为06,即向此寄存器地址写寄存器数据,完成后从设备需回应与主机请求相同的信息。置区域控制器和各种控制模块数量,结构灵活多变,可以适应多种输入输出信号,根据用户的实际需求开发控制软件,真正达到量身定做成为一大特色。本智能控制系统已经在多个楼宇智能化控制中使用,控制准确,运行稳定;另外,区域控制器也可单独使用,作为产品配套控制器,成功应用于除湿机、冷干机、Vocs气体清除装置等。参考文献1于洪洲·51系列单片机软件抗干扰设计[J]·集成电路通讯·2007,25卷,2期:16-182汪文,陈林·单片机原理及应用[M]·华中科技大学出版社3Yu ShouqianWang Jianhua Kou Jinqiao. Embedded Integrated Servo-controllers for IntelligentModularActuators[J]·HIGH TECHNOLOGYLETTERS.2006,12,1:37-41.4 B. Surrogate·Developmentofan IntelligentEnergyManagementNetworkforBuilding Automation, PROGRAMMABLE CONTROLLER FAC-TORY AUTOMATION(PLC FA)·2005,3:28-305黄鑫,宋洋·软件抗干扰技术及其在单片机上的应用·现代电子技术,2007年9期:90-926朱国飞·单片机在工业控制上的应用[J]·中国科技信息, 2005年18A期:77-797田拥军,赵光强,曾健平·基于RS485总线技术的PC机与单片机多机通讯设计[J]·湖南工程学院学报:自然科学版, 2007年17卷2期:19-238肖凯,张贤斌·Modbus协议在串口通讯中的研究及应用[J]·长江工程职业技术学院学报,2007年1期:30-329赵学军·RS485总线测控模块的MODBUS扩展协议设计[J]·自动化与仪表,2007年2期:37-40
姓名:韩宜真 学号: 【嵌牛导读】未来的人机交互将是多模式状态,与人工智能密不可分。 【嵌牛鼻子】智能人机交互 人工智能 【嵌牛提问】当人和机器之间的边界逐渐模糊,人机交互的边界在哪里?未来人机交互会发展成什么样子? 【嵌牛正文】在2013年的电影《她》中,男主结束了恋爱长跑之后,爱上了一个电脑操作的系统女声,这个叫“萨曼莎”的姑娘不仅有着略带沙哑的迷人嗓音,并且幽默风趣。 就这样,他们成了无话不谈的朋友,甚至发展出一段“畸形”的恋情。 虽然电影是虚构的,但这也恰恰证明了,未来以用户为中心的交互模式不会仅仅停留在操作方便等基础方面,对于更好地识别用户表达意图与情感等方面,都将取得重大突破。问题来了,当人和机器之间的边界逐渐模糊,人机交互的边界在哪里?未来人机交互会发展成什么样子?在AI Time第七期的辩论中,清华大学的史元春、中科院软件所的田丰、中科院计算所的陈益强、小小牛科技创意公司的CEO曹翔就一起论道了人机交互与智能的相关问题。 1945年,在电子计算机尚未“出世”时,范内瓦·布什就发表了题为“As We May Think”的文章,形象描述了未来个人电脑——一种被称为MEMEX的机器,阐释了直接交互、超链接、网络存储等概念。 1960年,约瑟夫·利克莱德提出“人机共生”的思想,并在布什的领导下通过美国国家科技计划大力支持了人机共生理念下的图形与可视化、虚拟对象操控、互联网络等研究项目,在他的主导下,个人电脑、互联网络的标志性关键技术在六七十年代逐次诞生了。 约瑟夫·立克立德领导的交互式计算不但研发了分式操作系统,而且直接引导了图形技术。 在范内瓦·布什、约瑟夫·利克莱德等先驱的推动下,在语言学、心理学、计算机科学的共同参与下,计算机从没有用户界面,到有了图形用户界面,开创了个人电脑以及互联网络等惠及整个社会的新产业。 现在手机无需利用鼠标,可以利用新的传感技术,包括AI技术,这些都在使得人们能够更多地感受周围世界,这也是人机交互的一部分。 未来,在新的传感和多媒体技术的共同支持下,机器将可以通过感知和数据处理技术来理解我们,来理解周围的环境,实现更自然、更智能的人机交互。 曹翔介绍道,他现在的工作可以说是“现实版神笔马良”,用一张普通的纸和一个普通的画笔作画之后,用手机采集,瞬间就能转化生成三维动画。通过技术把创作的门坎降低,让普通人能够表达自己的创意是研究的初衷。 到目前为止还是普适计算的时代,未来人机交互会是多模态的,可以用键盘、语音,也可以用手势、表情、唇动等。他首先介绍了基于多通道或多模态感知理论的手语识别,原因有二,其一是因为姿势语言太多太泛,没有清晰的目标边界,其二是因为希望技术能服务于残障人士的日常交流。 第二个工作也和多模态相关,人机交互的终极目标是希望人机交互和人人交互一样。目前通过多模态,包括知识性感知,让机器获知人目前的状态,继而再进行下一步行为。未来可以利用可穿戴设备,对人的生理和心理的境况进行推断,然后进行交互。 陈益强也认为,未来的人机交互模式会是多模态的。围绕“多模态”设想,他提到了目前工作。一个是基于多通道或多模态感知理论的手语识别,将面部识别、手势动作识别和手语识别相融合,用以提高手语识别精度。二是通过多模态手段,使机器人获知人类当前状态。田丰主要关注面向教育和医疗的人机交互的研究,他分享了再输入技术和相关理论方面的研究成果。由于输入不可避免地存在不精确性,希望用智能化的方法进行改善和帮助。运动目标的选择是人机交互里非常重要的任务,玩游戏的时候就知道,相对静止来说运动目标的选中更难,怎样来提高选中的效率,同时去理解用户选择目标的能力。他们首先做了大量的用户研究,产生了针对不同速度和尺寸的物体在运动过程的落点分布,建立出模型,计算出用户选中物体的概率。这个模型不仅可以分析正常人,对帕金森病人等也可以用做辅助诊断。 值得一提的是,田丰带领团队研发的笔式电子教学系统获得了国家科技进步二等奖,并与协和医院共同取得了国家卫健委颁发的医疗健康人工智能应用落地30最佳案例的荣誉。 史元春介绍道,在使用手机软键盘时,26个字母挤在狭窄的输入界面里,再配上胖乎乎的手指,点错的经历太多了。这是触屏这种自然交互界面上典型的难题:胖手指难题。 基于研究工作,他们提出了基于贝叶斯推理的自然用户意图理解框架,建模用户行为特征,在模糊的输入信号上推测用户的真实意图。你点的不准没关系,算法可以猜得准。利用这项技术,史元春团队已经研究实现了手机、平板、头盔、电视等一系列接口上的输入法,输入准确度大幅度提高,且几乎不需要视觉瞄准,进而还能支持盲人用户准确实现软键盘输入。 未来的接口也会延伸感知人的操控行为,史教授正在研制的手机前置摄像头上就能:“感知到人手在界面上的变化后,我们就能以此做出新的‘输入法’。” 比如手握手机的任意边框或位置,就可以输入信息、访问界面,甚至和桌子的交互,也能变成对手机的操作。” 针对交互界面的构建是否存在计算模型的问题,田丰指出,传统上存在计算模型,而针对自然人交互,现在还没有相应的理论计算模型,但是应该朝着这个方向努力。 史元春教授同意以上观点,并指出定量评估的方法虽有,但很不充分。不过借助相应的传感技术,定量评估的原理和技术都在不断拓展,这从红外反射监测血流、血压参数、情绪变化等一系列应用上就可以看出。 以后的计算终端是多种多样的,适配的场景和任务也是不一样的,所以完全统一的大而全的模型非常难以建立,但是在特定任务上,技术背后的科学原理一定是有计算模型的,研究者们都应该去努力探索。 此外,定量评估的方法理论上是存在的,但现在很难说是好方法,因为界面在扩展,相应的实现技术、原理和评价技术也都在做扩展和变化。曹翔也指出,因为人机交互的任务多样,很难去界定效率,更多是用主观感受衡量。从大方向上讲,一定是需要定量数据的,人工智能需要数据,而人机交互离不开人工智能。针对建模的机制和限制,曹翔指出,具有明确任务的工作建模相对容易,因为目标很清晰,但是体验性的、娱乐性的、沟通性的工作比较难用计算的方式建模,因为其中夹杂着大量非简单人机交互的内容,比如人与人之间的互动等。 用大数据的方式对情绪的预测更有效果,本身人类对情绪化的东西也没有细分到小单元。反过来说,大数据分析或人工智能分析,能在没有用明确的细分模型的情况下做出预测,恰恰能解决非标准性任务。但如果是利用大数据解决问题,建立的可能是一个通用的模型,涉及到个人也会一些差别。 陈益强认为,人机交互要做得好,就一定要做到个性化,也就一定会用到智能方法。从交互来说,最初键盘是确定性交互,鼠标是属于感知层次。往智能上走,语音识别、手势识别这部分在感知以外加入了知识性学习。到第三部分,即情感智能,在执行前还需要加上知识,或者说认知。这也与人脑的三个部分,即中枢神经、小脑和大脑相对应。 智能和人机交互一样,也是按人也分层次,人机交互我们从传统到智能也分层次,可以把它理解为消除不确定性。越往上走,不确定性越大,尤其对意图理解,但是我们怎么去消除它,是人机交互上应用的一个探讨。 人工智能和人机交互,都有“人”这个字,对于二者的关系,史元春首先指出,这是中文说法,英文没有这样的词,但二者的共性在于都是很早很明确地谈到人机关系。 史元春教授认为,人机交互应该让机器更好的适应人,适应人的本性,适应人的操控能力、感知能力和认知能力。从“人” 的研究内容上来说,人机交互与人工智能有差异,但出发点是一致的,即“人机共生”。 目前看,人工智能的研究更多的体现在人的识别、语言的表达等数据密集型任务上的处理方法,人机交互的研究更偏重于对人的主动交互行为和感知能力的建模、传感和建立适应的接口技术,人机关系必定向着共生的方向发展,这些研究内容和方法会相互影响和适应,交叠的研究内容会越来越多。 “做人工智能最后要接触人机交互,做人机交互最后也要接触人工智能。” 田丰提到中国科学上有一篇观点性的论文,他指出,人机交互和人工智能在未来的趋势会从交替沉浮走向协同共进。国家人工智能发展规划里一个核心研究点是人机协同,人机协同也是人机交互未来的方向。从人工智能角度讲,自动驾驶等也讲人机协同,其实是殊途同归的。 曹翔指出,人工智能和人机交互的研究价值观、出发点会略有不同。人工智能根本上讲,终极目标是让机器能做所有人能做的事情,人机交互则是指人和机器的合作,两者不矛盾,但是要看情境。针对人机交互研究对AI的贡献,他指出,首先必须承认AI对人机交互研究的贡献。从大趋势上讲,机器学习中大量的人工标注数据就是人机交互的过程。进一步讲,AI的一个挑战在于可解释AI,最终担心的是可不可被信任,解释的原因是希望能够放心地使用。 某种意义上讲也许解决AI可信任的问题,在于创造一种方式,让人和AI的系统在一个互动过程中慢慢通过衡量判断,可能这个恰恰是人机交互帮助解决所谓AI可解释问题的方法。 对于智能人机交互的畅想,史元春指出,未来计算机的形态会变化,甚至可能不存在了,但计算机技术会持续为我们服务,成为人机共生的一部分,交互接口、交互任务会有很大的变化,但会更自然,更智能。 她把智能人机交互集中分为三类,一是手势,然后是语音,还有可穿戴设备,包括手环、头盔。在这三类上看到了很多新技术和新产品,但都还没有成为主流,也就是说,都存在一定的问题。 比如语音交互,不光是识别率没有达到百分之百,同时语音表达的带宽和表达的数据类型还不完整,和空间有关的数据效率低、没有精度。此外,还有打扰、隐私等,都有很大的限定条件,穿戴更是这样。 陈益强举例穿戴设备可以附着于衣服和鞋子,人机交互最终将实现人机共生。并且,在材料、技术的进步下,能够完全理解人类自然行为的意图,甚至帮助解决人口老龄化、阿尔茨海默病等。曹翔根据自己目前的研究内容,指出,要通过技术把每个人的创造力充分发挥出来,创造力在未来会成为生存和工作所不可或缺的一部分。 未来在输出上或许能获得更多体验,比如把挖掘出更多感官体验,不只是视觉和听觉领域,甚至创造一个幻想的世界,这是十分有趣的。 田丰称,他对于如何通过人机交互的研究推动产业发展更为关心,相关人口老龄化问题已经与协和医院进行了深入合作,通过对老年人的动作进行解读,提供量化的辅助诊断。 针对人机交互人才的培养,史元春指出,工业界是有需求的,但是学术界还很迷茫。有博士生毕业后在工业界无法找到与专业十分匹配的职位,由于工业界的进步会促使学术界对人才培养建立一套科学的方法。 史元春教授提到:“我们培养的人才应该能够发现交互难题,并且能通过科学的方法来解决这个问题。” 曹翔指出,交互设计师、用户研究员等对口培养的专业,不难找工作;难找工作的是把人机交互作为一个研究领域去学习的学生,因为现有的一个萝卜一个坑的职业体系,并不太适合跨学科的人才,但创业特别需要这样的人。
基于嵌入式技术楼宇智能化控制系统*摘要:为了解决智能楼宇控制点种类和数量多的问题,设计了基于嵌入式技术的智能楼宇控制系统,系统采用MODBUS通讯协议,485/232总线结构,最大通讯距离达1200m,通过区域控制器与控制模块数目自由组合组成控制网络的方法成功解决这个问题,效果良好。关键词:智能楼宇 MODBUS协议 485/232总线 区域控制器0 引 言智能楼宇最早出现在美国,我国的智能楼宇起源于20世纪90年代,楼宇智能化是现代工业高科技的结晶,是未来“信息高速公路”的主节点,是进入“数字时代”新兴的产物。所谓楼宇自动化系统是对中央空调系统、通风系统、给排水系统、照明系统、变配电系统、电梯系统进行监控。随着高新信息技术和计算机网络技术的高速发展,对建筑物的结构、系统、服务及管理的最优化组合的要求越来越高[4]。系统控制的方式由过去的中央集中监控,转而由高处理能力的现场控制器所取代的集散控制系统,本文设计的楼宇自动化智能控制系统是专门为楼宇智能化所设计,同霍尼韦尔、西门子等楼宇控制产品相比结构灵活,控制简便,并且易于针对个体需求进行软件的二次开发。1 网络结构控制系统结构如图1所示,分为三个控制层。上层为PC远程集中监控,下层为控制模块,中间层为现场区域控制器。层与层之间通过RS232/485总线联网。远程集中监控平台主要功能为提供即时的数据显示、历史数据的保存维护和查询显示、故障报警和故障历史查询、参数修改和查询。PC远程监控平台为主要人机界面,所以上位机软件设计体现了如下三个优点:一是将控制网络WEB化,可以将不同来源、不同格式的信息转变为统一的格式,供具有统一界面的客户机浏览器浏览,以更好地适应信息化社会的使用需要;二是建立了基于SQL SERV-ER数据库的管理信息系统,提高了信息管理的功能;三是采用开放式设计的网络结构,可以更方便地与其他系统(如安保系统、消防系统)进行集成。软件基于delphi平台开发,加载大量图形操作,简单方便。控制模块包括四种,即数字量输入模块(Digital In-put)、数字量输出模块(DigitalOutput)、模拟量输入模块(Analog Input)、模拟量输出模块(AnalogOutput)。控制模块是控制系统的主要执行机构,即采集数字量信号和模拟量信号,也输出数字量信号和模拟量信号。因此每种模块各自拥有单独的控制芯片,既接受现场区域控制器的控制命令,又需要根据控制命令完成模块的输入输出功能。中间层现场区域控制器既与PC远程监控平台进行通讯,接受控制命令并上传实时数据,又通过控制模块采集数据、执行控制命令。显然,现场区域控制器是整个控制系统的核心枢纽,其重要性不言而喻,因此整个区域控制器的软硬件设计无疑成为整个系统的重点和难点。2 区域控制器2.1硬件电路区域控制器硬件电路主要由CPU、上下位机通讯接口、EEPROM和时钟、键盘和触摸屏、液晶以及数字量/模拟量输入输出单元组成。硬件结构如图2所示。区域控制器CPU选用STC89C516RD2,这是一款新一代抗干扰/高速/低功耗的单片机,指令代码完全兼容传统8051单片机[1-3]。区域控制器自身带有一定数目的数字量/模拟量输入输出单元,可以在智能楼宇控制系统中作为控制模块的补充,同时也可以使区域控制器单独作为产品配套控制器使用,灵活多变。时钟和EEPROM通过I2C总线与区域控制器CPU连接。I2C总线用两条线(SDA和SCL)在芯片和模块间传递信息。SDA为串行数据线, SCL为串行时钟线,这两条线必须用一个上拉电阻与正电源相连,其数据只有在总线不忙时才可传送。CPU是主设备,时钟和EEPROM是从设备[9]。上位机通讯接口由控制器CPU通过SPI总线访问异步通讯芯片MAX3100来实现。SPI总线采用三线同步接口。主要特点是可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等;下位机通讯接口以串行口中断的方式实现半双工通讯。为了满足多种输入方式,控制器同时带有键盘和触摸屏,即可以以按键方式键入控制命令,也可以直接点击触摸屏实现。键盘采用独立式键盘;触摸屏选用电阻式触摸屏,电阻式触摸屏屏幕主要由两个导电层组成,当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后由触摸屏控制器侦测到这一接触点并计算出(X,Y)的位置。2.2软件流程智能楼宇控制系统所控制的点位种类多样,如温度、湿度、流量、开关等。硬件电路依据数字量、模拟量以及输入、输出提供了通用的接口,因此具体识别控制每个点位则完全由软件完成。现场区域控制器作为整个系统的控制核心,既要检测自身输入输出单元,完成显示,报警等功能,又要根据上位机(PC)、控制模块提供信息发出控制决策。因此软件流程包括初始化、故障检测与处理、控制算法实现、上下位机通讯等(图3),初始化包括数值初始化、中断初始化,通讯初始化,显示初始化;故障检测包括通讯故障,反馈故障,逻辑故障等;控制部分主要是程序算法的实现,对输入输出的智能控制,包括键盘/触摸屏输入及液晶输出,上位机通讯即远程PC与区域控制器通讯,而下位机通讯则是区域控制器与控制模块之间通讯[5-6]。楼宇自动化控制系统故障种类多样,故障处理方法又各有不同,因此故障的检测和处理就成为程序设计的一个难点,针对这种情况,程序采用了查表法(表1),成功的解决了这一难题。楼宇自动化控制系统故障种类多样,故障处理方法又各有不同,因此故障的检测和处理就成为程序设计的一个难点,针对这种情况,程序采用了查表法(表1),成功的解决了这一难题。表中分5列,第一列为故障号;第二列为故障处理方法,如1(停机),2(关机), 3(重启)···;第三列判断是否联动,如0(否), 1(是),主要判断一些相互有关联的部分出现故障是否需要同步处理;第四列所谓的报警延时主要指某一现象视为故障的重复出现时间,目的是为了消除抖动引起的误报;第五列延迟寄存器则存放报警延时,如1(0.1秒级延时寄存器), 2(秒级延时), 3(分级延时)。每条故障都要对应于表中的一条,实际应用中只需填写表格,快捷方便。上下位机通讯程序都采用MODBUS通讯协议[7-8],Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。此系统中当主设备为上位PC机时,现场区域控制器为从设备,当现场区域控制器为主设备时,控制模块为从设备。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。从设备回应消息也由Mod-bus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。例如:当主设备(现场区域控制器)发送如表2请求时,此控制器连接的所有控制模块都接受这请求,但是只有地址为1的控制模块对此请求应答,其他地址的控制模块自动丢弃这帧数据,经CRC检验数据正确后,根据功能码来处理此帧数据,此例中功能码为06,即向此寄存器地址写寄存器数据,完成后从设备需回应与主机请求相同的信息。置区域控制器和各种控制模块数量,结构灵活多变,可以适应多种输入输出信号,根据用户的实际需求开发控制软件,真正达到量身定做成为一大特色。本智能控制系统已经在多个楼宇智能化控制中使用,控制准确,运行稳定;另外,区域控制器也可单独使用,作为产品配套控制器,成功应用于除湿机、冷干机、Vocs气体清除装置等。参考文献1于洪洲·51系列单片机软件抗干扰设计[J]·集成电路通讯·2007,25卷,2期:16-182汪文,陈林·单片机原理及应用[M]·华中科技大学出版社3Yu ShouqianWang Jianhua Kou Jinqiao. Embedded Integrated Servo-controllers for IntelligentModularActuators[J]·HIGH TECHNOLOGYLETTERS.2006,12,1:37-41.4 B. Surrogate·Developmentofan IntelligentEnergyManagementNetworkforBuilding Automation, PROGRAMMABLE CONTROLLER FAC-TORY AUTOMATION(PLC FA)·2005,3:28-305黄鑫,宋洋·软件抗干扰技术及其在单片机上的应用·现代电子技术,2007年9期:90-926朱国飞·单片机在工业控制上的应用[J]·中国科技信息, 2005年18A期:77-797田拥军,赵光强,曾健平·基于RS485总线技术的PC机与单片机多机通讯设计[J]·湖南工程学院学报:自然科学版, 2007年17卷2期:19-238肖凯,张贤斌·Modbus协议在串口通讯中的研究及应用[J]·长江工程职业技术学院学报,2007年1期:30-329赵学军·RS485总线测控模块的MODBUS扩展协议设计[J]·自动化与仪表,2007年2期:37-40
人工智能的发展趋势问题从20世纪80年代在国内外就进行了非常激烈的辩论。既有认为人工智能只能作为人的工具的延长而不可能取代人的大脑的工具论,他们认为:人工智能诞生的初衷是作为人类工具的延长,其作用从其诞生的那一天就已经定性,人工智能只能作为人类智能的附庸和补充,而不可能对人类智能构成挑战,更不可能取代人类智能;也有认为人工智能一定会战胜人类智能的观点,他们从达尔文的进化论进行类比推断,对比人类智能和人工智能相对发展的速度和加速度,认为人类智能虽然在短时期内还占有绝对的优势,但是从人工智能近些年突飞猛进的发展速度和加速度来对比人类智能对等时间发展来看,人工智能战胜人类智能绝对只是时间的问题。 当时间进入21世纪,计算机硬件和软件更新的速度越来越快,计算机这个以往总给人以冷冰冰机器的形象也得到了彻底的改变。人机交互的情况越来越普遍,计算机由于需要的缘故被人类赋予了越来越多的智能因素。伴随着人类把最新的计算机技术应用于各个学科,对这些学科的认知也进入了日新月异的发展阶段,促使大量的新的研究成果不断涌现。例如:“人机大战”中计算机轻松的获胜、人类基因组排序工作的基本完成、克隆人理论实质性的突破、人类大脑结构性解密和单纯器官性克隆的成功实现等等。而且随着计算机这个人类有史以来最重要的工具的能力不断发展,伴随着不断有新理论的涌现,大量的已经似乎应当盖棺定论的理论受到了越来越严峻的挑战,人类必须从全新的角度对它们一一进行分析和审视。由于近几年生物学和神经生理学许多新的研究成果的出现,对于人工智能与人类智能之间的关系也有了进行再次讨论分析的必要。 本文通过综合最新与人工智能相关的理论和成果对以往的工具论和纯进化论进行分析和探讨,并且从马克思主义哲学的角度再次去分析人工智能与人类智能的关系,并尝试着给出新的结论:人类对人脑的功能会不断地进行认识,从而人工智能会不断的迫近人类智能。但从动态分析上,即人类智能也在不断的进化和发展,人工智能作为人类智能主体客体化的产物,其作用和功能受到人类智能的制约所以要低于人类智能。
虚拟现实(VR)是一种由计算机和电子技术创造的新世界,是一个看似真实的模拟环境,下面是我为大家精心推荐的关于虚拟现实的科技论文2500字,希望能够对您有所帮助。
直觉交互界面与虚拟现实
摘要:为了研发更高水准的直觉交互界面,有必要引入虚拟现实技术,借助具备沉浸性、交互性和想象性的人机交互环境来获得真正意义上的直觉体验。通过特定的物理器件装置,以及先进的手势识别技术,使用者不必学习专门的操作命令,就可以与计算机进行交流并获得实时的反馈,而独特的沉浸式环境更能创造出人机一体的融合感。结果表明,虚拟现实技术有效地提升了用户的体验度,大大简化了操作的复杂性,而且可以应用于从娱乐到专业制造等各种场合,是直觉交互界面的有力驱动平台。
关键词:直觉交互;人机交互;虚拟现实
中图分类号:J0-05 文献标识码:A
本文是在“人―计算机” 交互(Human-Computer Interaction)的意义上来谈论“交互”。随着计算机技术几十年来突飞猛进的发展,计算机已经完全进入了日常生活的方方面面,其影响无处不在,人机之间的互动操作问题也越发显得重要。由于计算机尚未能摆脱冯・诺依曼体系的根本制约,与人类思维模式之间的鸿沟依然如同天堑,人机交互问题的一个重要着眼点就在于如何尽量地缩小人类使用者的操作模式与计算机的操作模式之间的差别。这意味着我们仍在不断地摸索和探讨,去提供更优秀的交互界面,使人可以顺畅地、高效率地与计算机进行对话。
一直以来,交互设计思维首要强调的就是以人为本,换而言之就是让设计物适应人,而非人适应设计物。这种观点在计算机还是国防机密的年代中显得有些奢侈,人们只能痛苦地训练自己去迎合机器(例如,使用完全机器式的编程语言与计算机交谈)。在当下,相对廉价的个人计算机都可以提供可观的计算能力,因此交互界面的设计原则也就顺应了这样的思路,去尽可能地将界面做得人性化,让人用得舒服,而繁重的计算则交给计算机在幕后默默地处理。
正是在这样的大背景下,“直觉”一词吸引了大家的目光。毕竟相对于日常物件,计算机的交互界面还是太不人性了,依旧保持着冰冷的面孔。如果能将我们习以为常的动作引入与计算机的交互之中,在不知不觉中将完成与计算机的沟通,那么这样的人机界面才能称得上是以人为本。而在呈现直觉界面方面,新兴的虚拟现实技术则提供了最有价值的工具。
本文正是拟探讨直觉交互界面及其与虚拟现实技术间的关系,为了完成这样的任务,首先我们要对人机交互意义上的直觉作出一个明确的定义,它实际上与大众文化中的“直觉”概念有着相当的差别。之后我们将谈论如何将上述意义上的直觉与虚拟现实结合起来,并提供具体的案例分析来支撑我们的探讨。
一、直觉交互界面
直觉(Intuition)这个概念属于大众词汇,但实际上不同的学科对直觉都有着不同的定义。本文研究的对象是人机交互,因此将在“凭着直觉去与计算机进行交互” (interaction with computer by intuition)这个上下文中去探讨它。首先要注意到,交互是双方面的,也即人与计算机在进行着双向的互动,但直觉却是人才能拥有的,也是仅仅用来修饰人的判断与感觉的,因此直觉人机交互关心的是以人为中心的交互场景中各参与元素对人是否直觉。从人的角度考虑交互界面,这实际也就奠定了“以人为本”在理论上的基础性质。
一般而言,人们对直觉的交互有着如下诉求:它不需要经过有意识的思考便能做出。例如在翻动一页书的时候,人不需要去有意识地考虑该用多大的力气,手指该走怎样的空间路线,或有意识地等待书页翻动之后出现的非常规情况并作出反应,等等。在这个意义上,一本实体书的交互界面是直觉的。依据以上诉求,Blackler等人的研究指出,直觉是“基于已往经验的无意识的反应”[1]。这个定义强调了两个要点:基于以往经验和无意识。关于直觉往往是无意识的(下意识的)举动,这一点几乎已成共识,这里就不再展开论述。需要厘清的是“基于已往经验”这一点。
在日常生活中,人们或许并不认为直觉与已往经验之间会有什么关联。相反,许多人会认为,如果不需要经验就能进行某种操作,那么这种操作显然更符合直觉。特别地,中国传统文化中的“直觉”概念充满了反智主义的特征,直接将“直觉”与“本能”联系起来,往往意味着“不需要通过知识或经验便可以下意识地完成”。但这实际上是一种错误的观点,它不但误解了人的本能,而且未能认识到已往经验的真实存在及其影响。事实上,现代理论表明,人类绝大多数行动――简单的或复杂的――都是后天习得的,并非先天刻印于脑中。如果仅凭本能,人几乎无法完成什么人机交互操作:拿按钮这种最简单的人机界面元素来说,如果没有事先通过各种例子认识到存在按钮这种东西并且按下它之后会启动某些关联反应,使用者甚至都无法做出按下按钮的行为。或者用K.R.Popper[2]的话来说,所有行动都承载着理论――后天习得的理论。
将直觉与已往经验联系起来,这不仅揭示了直觉在人机交互中的真正面貌,而且指出了设计人机交互界面时的一条基础准则:由于不同的人有着不同的生活经验与知识水平,那么他们的已有经验也是不同的,这也就意味着每种类型的人都有着他们对“直觉交互界面”的不同衡量标准。有一个简单的例子可以说明这一点。
考虑一款在电脑上运行的收音机软件,它的作用是播放网络上的各类实时音频流(包括传统电台的在线音频流)。图 1模拟半导体收音机的调频指针窗口,从传统眼光而论这样的界面便是直觉的。然而,对于没有用过半导体收音机的新一代年轻人而言,他们由于频繁地接触电脑,反而会觉得图2的界面是直觉的,因为这样的界面使用的是为电脑用户所熟知的UI(User Interface,用户界面)元素,包括菜单、按钮、列表框和滚动条等等。
习惯半导体收音机操作的用户多半用不惯新式界面,而习惯新式界面、没使用过半导体收音机的用户却很可能对传统界面不知所以。这个例子充分说明了,在考虑直觉交互界面的时候,必须考虑用户群体的已往经验,依据不同的已往经验去断定直觉因素。并不存在唯一的、普适的、通用的直觉界面,这给了设计师以极大的挑战,但同时也是极大的创新动力。 此外,虽然直觉的定义没有直接体现对审美的考虑,但审美和直觉显然是互有关联的[3]。由于直觉使用与交互过程中唤起的先前知识有关,那么审美判断作为人类感知过程的起点之一,恰是诱发直觉的重要因素。一个富于美感的界面,可以抵消用户使用过程中的不安感和隔膜感,并在潜意识上促使和鼓励用户做出交互行为并保证交互行为的持续性和统一性。上面的例子也表明,对于传统用户,设计精美、极富质感的模拟界面有效地抵消了传统用户对电脑软件的不适感,方便他们使用,并且大大降低了潜在的学习成本。而对于年轻用户,他们也可以在自己熟悉的控件界面中运作自如,拉近了老技术(传统流媒体)与新技术间的距离。简而言之,具备良好审美特性的直觉界面具有重要的价值与意义,体现了人机交互界面的发展趋势。
二、直觉界面与虚拟现实
自上世纪70年代起,虚拟现实(Virtual Reality)技术的发展异常迅猛,从专业研究到商业应用乃至家用娱乐都可见其身影。从根本上而言,虚拟现实恰是交互界面直觉化的总趋势的一个反映,因为人机交互演进的内在逻辑在于,呈现和交互手段总在致力于让用户以更直观、更自然、更简便的操控方式去获得更丰富、更多态、更实时的数据资源。
简而言之,虚拟现实提供了一个具有沉浸性(Immersion)、交互性(Interaction)和想象性(Imagination)的虚拟数字富媒体环境;用户不仅可以如同设身处地一般沉浸在它所提供的丰富多彩的虚拟环境中,更可以通过各种创新的途径来与环境中的元素进行互动。沉浸性、交互性和想象性,正是虚拟现实的三个基本特征[4]:一是沉浸性,通过各种技术手段让用户产生“身临其境”的感觉,包括视觉(利用人的立体视觉原理产生虚拟的三维纵深感)、听觉(利用立体声产生虚拟物体的方位感)、触觉(通过力觉设备使用户以为在与真实的物理实体打交道)等等;二是交互性,用户可以实时地与虚拟现实系统中的各种物体进行互动操作,用户的操作不再局限于传统的键盘、鼠标或游戏杆,还包括先进的数据手套、穿着式回馈服等等;三是想象性,给用户呈现的虚拟现实场景具有超越现实场景的特殊魅力,真正做到某种意义上的“心想事成”。
从虚拟现实的上述特征可以看出,它的基本出发点就是要超越传统人机交互界面的非人性化的一面,不仅要让用户尽量溶入整个交互场景中(沉浸性),而且要让用户以更直觉的方式去操作计算机(交互性):首先,虚拟现实技术能够有效地将计算机交互界面直觉化,提供与日常场景尽量类似的界面,完全基于人类日常的视觉直觉。其次,虚拟现实技术能够有效地消除人机交互之间的阻隔,让用户能够通过日常的动作和行为与计算机交互。
从上文的概念分析可知,判定直觉程度要看与使用者本身的已知经验,而且使用情境和审美等其他因素也要考虑在内。虚拟现实技术本身提供了多种多样的方法,但具体的构建和应用也要遵循这样的准则。下一节将提供几个应用案例来说明这些,并综合讨论如何真正地利用虚拟现实技术去设计直觉交互界面。
三、应用案例及讨论
以虚拟现实技术为基础的直觉交互界面被广泛应用于各种层次、各种领域的实践应用之中,其目标用户群体不仅包括非专业人士(普通民众),也包括熟悉计算机但希望寻求更直观的交互操作方式的专业人士。对于前者,他们需要能够尽量降低学习和记忆成本、兼或附带娱乐趣味性的人机界面。而对于后者,操控感良好的直觉界面可以大大提升生产率和成品率,并推动整个生产流程的优化。
日本大阪大学人机工程实验室的伊藤雄一等人研发了ActiveCube(动态积木)[5],这个作品将直觉界面引入儿童和青少年认知学习及娱乐之中,并辅以虚拟现实或增强现实设备以提升其应用价值。每个积木都是一个边长五厘米的塑料立方体;积木里面有一块可编程集成电路,控制着一系列可选的感应器或小型设备,包括超声感应器(感知外界物体的接近)、坐标感应器(三维坐标的相对角度)、触觉感应器(最多可装两个,每个可以感应八个方向的触觉)、红外感应器、灯和电动机等。因此,每个积木实际上已经是一个独立的玩具,可以感知环境并产生相应的动态行为。更绝妙的是,这些积木还能彼此连接,连接起来的各个部分之间也可以互相通信,构成整体行为。儿童使用者不需要额外教学就可以通过直觉使用它们。这样的直觉操作界面,很好地避免了其内部的复杂结构对使用者的影响,小学低年级学生就可以独立操作。
ActiveCube的一大特色在于可以在虚拟现实场景里使用。在这种情形中,红外感应器捕捉搭建好的积木形态,并将符合此形态的虚拟物品显示出来。应用了虚拟现实技术之后,规整的积木可以任意变换成为植物、动物、日常器具等,不仅视觉效果有可观的提升,还借此允许用户进行进一步的玩耍和操控。
ActiveCube还可以在虚拟现实场景里使用。在这种情形中,红外感应器捕捉搭建好的积木形态,并将符合此形态的虚拟物品显示出来。由于ActiveCube本身只是一个简单的立方体,其六面自由连接功能限制了表面的装饰性,最后的拼装效果不一定能吸引儿童用户的兴趣。而应用了虚拟现实技术之后,古板规整的积木可以任意变换成为植物、动物、日常器具等,不仅视觉效果有可观的提升,还借此允许用户进行进一步的玩耍和操控。在上面的例子中,外表相对简陋的十字架形积木摇身一变,可成为精美的飞机,并随着积木在实际环境中的位移而在现实设备上呈现相应的飞行轨迹。
另一个实例来自于工业设计领域。当下的设计师一般都有较高的学历和较专业的计算机技能,但进行三维产品建模的时候,复杂的软件界面依然是最重要的阻碍因素,更遑论键盘加鼠标的操控方式根本就与人手的自然行为大相径庭,严重干扰了设计师的思维和创作习惯。荷兰Delft大学工业设计工程团队在这方面进行了大量研究,提出了新的解决方案,其关键就在于引入直观的手势来与计算机交互,于虚拟现实环境中完成建模工作[6-7]。
一般而言,手势比面部表情和眼动更易于捕捉和识别,又比全身姿势更易于实施(特别是在狭小空间中),因此比较受直觉界面研究者的青睐[8]409-420。但手势也分为几个细类,不一定都适合用于人机交互。Hummels指出了三类手势,第一类是从计算机角度去定义的手势,因而非常便于计算机识别,但需要使用者去刻意学习和掌握,称不上直觉。第二类与之相反,指的是人类日常生活中的手势,优点是非常直观,但计算机程序需要特别的设计才能对其进行识别。综合了以上两种类别之优点而又尽量规避其不足的第三类手势称为描述性手势,原本自身也有着应用范围过窄的缺憾,但辅以虚拟现实技术,便可以成为有效的途径以联通设计师和计算机。 为了提高描述性手势的效果,研究人员特地设计了一个虚拟现实实验环境,见图3。在此环境中,普通设计师作为被试,不受拘束地使用他们惯常的手势进行设计创作,而这些以直觉为基础挥舞出来的手势被动作感应器记录下来,最后进行统计分析。通过这样的过程,研究人员能够采集到和分析出最适合虚拟现实环境的直觉手势。最后,对设计师而言非常直觉、对计算机而言又是相当便于识别的手势方案即可得到确定。设计师在此系统中,可以像往常操作日常物体(胶泥或板材等)一样与计算机辅助设计软件进行人机对话,不仅直觉高效,而且得益于虚拟现实环境,整个设计流程形同真实体验,大大提高了设计效率。
四、结论与展望
一直以来,“以人为本”都是人机交互设计领域的核心口号之一。但本文的分析指出,这绝不能是一句抽象的口号,而必须落实到具体的应用情境之中。另一方面,近年来关于“用户体验”的声音不绝于耳[9],它本质上也是“以人为本”的精神的一种体现,但这个提法也存在着过于含糊的缺点,导致了许多不同的理论都以它为逻辑基础。实际上,只要明确了“人”(也即“用户”)的特定性,问题也就解决了。既然不同的人和不同的用户其自身情况多有差异,同样着眼于“以人为本”或“增进用户体验”的产品,也就必须随着人/用户的不同而给出不同的解决方案,提供不同的交互界面,才能在交互过程中让使用者满意。
直觉概念得到了厘清,但这显然并不意味着直觉交互设计的种种问题也就有了答案。如何让某种交互界面更少地占用使用者的逻辑意识(也即做到“无意识地或下意识地被使用”),以及如何明确地定性定量分析特定用户的已往经验,并以之支持交互界面的设计,这依然是非常复杂的问题。幸而在各领域学者的努力下,此领域已有许多成功的理论或实践得以依循。在这方面最重要的一项就是关于直觉交互中的手势问题,它旨在解决人机交互场景中用什么有效的手势去操作计算机。由于手势不受传统输入设备的限制,它天然地与虚拟现实技术结合在一起[8]409-420。此外,针对现在方兴未艾的商业以及家用娱乐虚拟现实应用,直觉交互界面也是其中的研发热点。限于研究的深度及文章篇幅,本文遗憾地未能在这些方面展开论述,希望能在后继研究中逐步展开。
最后要强调的是,随着普适计算(ubiquitous computing)这个概念在强大的计算机硬件的支持下渐渐变为现实,设计和实现各种直觉交互界面已成为人机交互的核心任务。普适计算要求计算机设备可以感知周围环境的变化并执行相应的任务,在这一过程中如果交互界面做不到直觉易用,那么其计算机人性化的核心价值也就无从体现了。由此,直觉交互界面的理论与实践必将日益凸显其无比的重要性和关键性。
[参考文献]
[1] Blackler A,Popovic V,Mahar D.Investigating users' intuitive interaction with complex artefacts[J].Applied Ergonomics,2010,41(1):72-92.
[2] 波普尔.猜想与反驳:科学知识的增长[M].傅季重,纪树立,周昌忠,等,译.杭州:中国美术学院出版社,2003.
[3] Naumann A,Hurtienne J,Israel J H,et al.Intuitive use of user interfaces: defining a vague concept[M]∥HARRIS D.Engineering Psychology and Cognitive Ergonomics.Berlin:Springer-Verlag,2007:128-136.
[4] Alonso M A G,Gutierrez M A,Vexo F,et al.Stepping Into Virtual Reality[M].New York: Springer-Verlag New York Inc,2008.
[5] Watanabe R,Itoh Y,Kawai M,et al.Implementation of ActiveCube as an intuitive 3D computer interface[M]∥Butz A,Olivier P.Smart Graphics. Berlin: Springer,2004:43-53.
[6] Hummels C,Overbeeke C J. Kinaesthesia in synaesthesia:the expressive power of gestures in design[C]∥Design and semantics of form and movement.Eindhoven:Eindhoven University of Technology,2006:34-41.
[7] Hummels C,Smets G,Overbeeke K.An Intuitive T-wo-handed Gestural Interface for Computer Supported Product Design: International Gesture Workshop[C].Bielefeld:Springer Verlag,1998.
[8] Nielsen M,Strring M,Moeslund T B,et al.A procedure for developing intuitive and ergonomic gesture interfaces for HCI[M]∥Gamurri A,Volpe G.Gesture-Based Communication in Human-Computer Interaction.Berlin:Springer,2004:409-420.
[9] Garrett J J.The elements of user experience[M].Berkeley,CA:New Riders,2002.
点击下页还有更多>>>关于虚拟现实的科技论文2500字