麻辣de火锅
数字图像压缩技术的研究及进展摘要:数字图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。本文介绍了当前几种最为重要的图像压缩算法:JPEG、JPEG2000、分形图像压缩和小波变换图像压缩,总结了它们的优缺点及发展前景。然后简介了任意形状可视对象编码算法的研究现状,并指出此算法是一种产生高压缩比的图像压缩算法。关键词:JPEG;JPEG2000;分形图像压缩;小波变换;任意形状可视对象编码一 引 言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。二 JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。1.JPEG压缩原理及特点 JPEG算法中首先对图像进行分块处理,一般分成互不重叠的 大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的。2. JPEG压缩的研究状况及其前景 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:(1)DCT零树编码 DCT零树编码把 DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比 EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。(2)层式DCT零树编码 此算法对图像作 的DCT变换,将低频 块集中起来,做 反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决 DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。三 JEPG2000压缩 JPEG2000是由ISO/IEC JTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示。编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作。2.JPEG2000压缩的前景 JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。四 小波变换图像压缩1.小波变换图像压缩原理小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准 。2.小波变换图像压缩的发展现状及前景 目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。(1)EZW编码器 1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。(2)SPIHT编码器 由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。(3)EBCOT编码器优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点。五 分形图像压缩 1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。1. 分形图像压缩的原理 分形压缩主要利用自相似的特点,通过迭代函数系统(Iterated Function System, IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。 分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像。2.几种主要分形图像编码技术 随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。(1)尺码编码方法 尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度 随着图像各个组成部分复杂性的不同而改变。(2)迭代函数系统方法 迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。(3)A-E-Jacquin的分形方案 A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。3.分形图像压缩的前景 虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。六 其它压缩算法 除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~ [13]。(1)形状自适应DCT(SA-DCT)算法 SA-DCT把一个任意形状可视对象分成 的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应Gilge DCT[10][11]变换的有效变换,但它比Gilge DCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。(2)Egger方法 Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。(3)形状自适应离散小波变换(SA-DWT) Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。 在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。七 总结 图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。参考文献:[1] 田青. 图像压缩技术[J]. 警察技术, 2002, (1):30-31.[2] 张海燕, 王东木等. 图像压缩技术[J]. 系统仿真学报, 2002, 14(7):831-835.[3] 张宗平, 刘贵忠. 基于小波的视频图像压缩研究进展[J]. 电子学报, 2002, 30(6):883-889.[4] 周宁, 汤晓军, 徐维朴. JPEG2000图像压缩标准及其关键算法[J]. 现代电子技术, 2002, (12):1-5.[5] 吴永辉, 俞建新. JPEG2000图像压缩算法概述及网络应用前景[J]. 计算机工程, 2003, 29(3):7-10.[6] J M Shaprio. Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3445-3462.[7] A Said, W A Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits and Systems for Video Tech. 1996, 6(3): 243-250.[8] D Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158–1170.[9] 徐林静, 孟利民, 朱建军. 小波与分行在图像压缩中的比较及应用. 中国有线电视, 2003, 03/04:26-29.[10] M Gilge, T Engelhardt, R Mehlan. Coding of arbitrarily shaped image segments based on a generalized orthogonal transform[J]. Signal Processing: Image Commun., 1989, 1(10): 153–180.[11] T Sikora, B Makai. Shape-adaptive DCT for generic coding of video[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(1): 59–62.[12] T Sikora, S Bauer, B Makai. Efficiency of shape-adaptive 2-D transforms for coding of arbitrarily shaped image segments[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(3): 254–258.[13]邓家先 康耀红 编著 《信息论与编码》
苏州大高中
huffman算法是基于词频统计的,所以适用于有大量重复单词的情况,也就是文本这种对于图片来说,每个像素的颜色都不一样,整个图片上完全相同的像素点很少,不适合统计用所以像图形图像这种一般来说不适合用词频统计的方式压缩
威武的灰姑娘
下面是我从网上搜索到的资料,希望对你有帮助。1.哈夫曼图像压缩算法引言随着网络与多媒体技术的兴起,人们需要存储和传输的数据越来越多,数据量越来越大,以前带宽有限的传输网络和容量有限的存储介质难以满足用户的需求。特别是声音、图像和视频等媒体在人们的日常生活和工作中的地位日益突出,这个问题越发显得严重和迫切。如今,数据压缩技术早已是多媒体领域中的关键技术之一。Huffman(哈夫曼)算法在上世纪五十年代初提出来了,它是一种无损压缩方法,在压缩过程中不会丢失信息熵,而且可以证明Huffman算法在无损压缩算法中是最优的。Huffman原理简单,实现起来也不困难,在现在的主流压缩软件得到了广泛的应用。对应用程序、重要资料等绝对不允许信息丢失的压缩场合,Huffman算法是非常好的选择。2.哈夫曼图像压缩算法原理Huffman编码是1952年由Huffman提出的对统计独立信源能达到最小平均码长的编码方法。这一年,他发表了著名论文“A Method for the Construction of Minimum Redundancy Codes”,即最短冗余码的构造方法.之后,Huffman编码及其一些改进方法一直是数据压缩领域的研究热点之一。Huffman码是一种变长码,其基本思想是:先统计图像(已经数字化)中各灰度出现的概率,出现概率较大的赋以较短的码字,而出现概率较小的则赋以较长的码字。我们可以用下面的框图来表示Huffman编码的过程:在整个编码过程中,统计图像各灰度级出现的概率和编码这两步都很简单,关键的是Huffman树的构造。不但编码的时候需要用到这颗树,解码的时候也必须有这颗树才能完成解码工作,因此,Huffman树还得完整的传输到解码端。Huffman树的构造可以按照下面图2的流程图来完成。首先对统计出来的概率从小到大进行排序,然后将最小的两个概率相加;到这儿的时候,先把已经加过的两个概率作为树的两个节点,并把他们从概率队列中删除;然后把相加所得的新概率加入到队列中,对这个新队列进行排序。如此反复,直到最后两个概率相加为1的时候停止。这样,Huffman树就建立起来了。3. 哈夫曼图像压缩算法软件实现这儿,我们以Turbo C为例来说明软件实现Huffman图像压缩算法的一些关键技术。为了叙述方便,我们不妨假设处理的图像的灰度级变化范围从0到255,即具有256个灰度级。我们先来统计输入图像的概率,实际上是要统计各个灰度级在整幅图像中出现的次数。为此,我们先定义一个具有256个元素的数组。然后对输入图像信号进行扫描,每出现一个灰度,就把它存入实现定义好的一个数组中的相应元素中(让这个元素的值自增1)。最后,通过读取数组中各元素的值就可以求出各个灰度出现的频数。接下来就该构造Huffman树了。为了构造Huffman树,我们要用到C语言中链表的概念。我们必须用一个结构体来表示Huffman树的节点。对于每个节点而言我们需要这样几个信息:本节点的权重(就是灰度的频数)、指向父节点的指针和分别指向左右子叶节点的指针。于是,我们可以定义这样一个结构体:Struct Node{Floatweight;Node * father;Node * left;Node * right;}Huffman_Node我们需要先确定权最低的两个自由结点,这将是最初的left和right节点。然后建立这两个结点的父结点,并让它的权等于这两个结点的权之和。接着将这个父结点增加到自由结点的序列中,而两个子结点则从序列中去掉。重复前面的步骤直到只剩下一个自由结点,这个自由结点就是Huffman树的根。Huffman编码树作为一个二叉树从叶结点逐步向上建立。Huffman树建立好以后,为了把权、概率等数值转化码字,我们还得对整个Huffman树进行扫描。请注意,在建立Huffman树的时候,我们是从树叶开始的,而在对Huffman树分配码字的时候却刚好相反,是从树根开始,沿着各个树枝的走向“顺藤摸瓜”似的对各个系数进行编码。对于一个节点的两个子节点(left和right),其中一个节点对应的位为0,而另一个结点则人为地设置成为l。解码的时候也是完全相同的一颗Huffman树完成的。下面的循环是实现压缩的关键语句之一[ 1 ]。for (i = length-1; i >= 0; ――i) {if ((current_code >> i) & 1)thebyte |= (char) (1 << curbit);if (--curbit < 0) {putc (thebyte, ofile);thebyte = 0;curbyte++;curbit = 7;}}注意:这几行代码执行了数据压缩的功能,但是还没有生成编码和解码所需要的代码表。4.哈夫曼图像压缩算法性能评价我们主要从三方面[ 2 ]来评价Huffman的性能:(1)压缩比的大小;(2)恢复效果的好坏,也就是能否尽可能的恢复原始数据;(3)算法的简单易用性以及编、解码的速度。首先分析一下对压缩比的影响因素(不同的著作中对压缩比的定义不尽相同,这儿我们采用如下定义:压缩比等于压缩之前的以比特计算的数据量比上压缩之后的数据量)。对于Huffman编码来说,我们因为要用额外的位保存和传输Huffman树而“浪费”掉一些存储位,也就是说,为了编、解码的方便,我们把本已减少的数据量又增加了一些。如果文件比较大的话,这一点多余的数据根本算不了什么,所占比例很小。但是,如果压缩的文件本来就很小的话,那么这笔数据就很可观了。一般来说,经典的Huffman算法的压缩比不是很高,这是无损压缩的“通病”。第二点就不用说了,由于它是无损压缩,能够完全恢复压缩之前图像的本来面貌。最后,让我们来分析一下Huffman压缩方法的速度问题。大家在第三节中已经看到了,在压缩的过程中,我们进行了两次扫描,第一次是为了统计各个灰度出现的频数而扫描整幅图像,第二次则是为了分配码字而扫描整个Huffman树。这样一来,对较大的文件进行编码时,频繁的磁盘读写访问必然会降低数据编码的速度,如果用于网络的话,还会因此带来一些延时,不利于实时压缩和传输。另外,Huffman算法的编码和解码的速度是不对称的,解码快于编码,因为解码不需要生成Huffman树的环节。5.图像压缩算法结束语Huffman算法目前已经得到了广泛的应用,软件和硬件都已经实现。基于Huffman经典算法的缺陷,不少人提出了一些自适应算法。前面的算法中,Huffman树是整个图像全部输入扫描完成后构造出来的,而自适应算法(或称动态算法)则不必等到全部图像输入完成才开始树的构造,并且可以根据后面输入的数据动态的对Huffman树进行调整。实际上,实用的Huffman树都是经过某种优化后的动态算法。网络资源
任何一项研究都离不开方法的支撑。没有研究方法的科学研究是不存在的,没有研究方法,其研究就成了无源之水、无本之木,就不是真正的研究。下面是我整理的论文研究方法,希
数字图像处理方面了解的了。
本文作者王军先生,电子科技大学通信与信息工程学院通信抗干扰技术重点实验室助教、硕士;吴军蹄女士,通信与信息工程学院教授。3 视频压缩标准视频编码标准主要由ITU
数字图像压缩技术的研究及进展摘要:数字图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。本文介绍了当前几种最为重要的图像压缩算法:JPE
详情如下。1、没有安装解压软件。目前论文查重软件下载的报告都是通过压缩,需要解压软件解压查看,如果你的查重报告word或pdf阅读器或其他软件打开肯定乱码。2、