司马懿砸缸
产生原因分析 根据中学物理理论:热水与冷水在同质同量同外部环境温度条件下不但它们的温度在变化,它们各自的密度、体积、质量和密封状态下受到的气压等等都在发生变化,使得初温高的水降温速度始终快于初温低的水,只要外部环境温度持续下降,最终必然是初温高的水温度更低。(注:在常压条件下,当二者初始温度均不低于4℃时可成立;当二者初温均不高于4℃时不成立;当二者中其一不高于4℃,另一不低于4℃时,则需针对它们的初始温度、密度、体积、质量和密封状态下的气压等展开讨论。)姆潘巴问题讨论初始温度分别为35℃的水和100℃的水,二者均高于4℃,因此会产生姆潘巴现象.1.冰箱温度并不均匀,如果姆潘巴将其冰盒正巧放在冷却管附近,甚至与冷却管相接触,完全有可能热牛奶比冷牛奶先结冰;2.如果姆潘巴不喜欢吃甜,在冰淇淋中少放了糖,或者因为匆忙没来得及搅拌、糖粒沉在盒底形成固体,实验证明可先结冰;3.姆潘巴自制的冰淇淋中不仅牛奶加糖,还加入了淀粉类物质,在其少放糖、少放牛奶时会先结冰。回答者: a348488974 | 二级 | 2010-11-19 22:26 姆潘巴现象(Mpemba effect),又名姆佩姆巴效应,指在同等体积、同等质量和同 等冷却环境下,温度略高的液体比温度略低的液体先结冰的现象。 亚里士多德、培根和笛卡尔均曾以不同的方式描述过该现象,但是均未能引起广泛的注意。1963年,坦桑尼亚的马干巴中学三年级的学生姆潘巴经常与同学们一起做冰淇淋吃。在做的过程中,他们总是先把生牛奶煮沸,加入糖,等冷却后倒入冰格中,再放进冰箱冷冻。有一天,当姆潘巴做冰淇淋时,冰箱冷冻室内放冰格的空位已经所剩无几。为了抢占剩下的冰箱空位,姆潘巴只得急急忙忙把牛奶煮沸,放入糖,等不及冷却,就把滚烫的牛奶倒入冰格中,并送入冰箱。一个半小时后,姆潘巴发现了一个让他十分困惑的现象:他放入的热牛奶已经结成冰,而其他同学放的冷牛奶还是很稠的液体。照理说,水温越低,结冰的速度越快,而牛奶中含有大量的水,应该是冷牛奶比热牛奶结冰速度快才对,但事实怎么会颠倒过来了?姆潘巴把这个疑惑从初中带到了高中。他先后请教了几个物理老师,都没有得到答案。一位老师感觉他提出的问题怪异得近乎荒唐,就用嘲讽的口吻说:你说的这些就叫做姆潘巴现象吧!但执着的姆潘巴并没有认为自己的问题很荒唐,他抓住达累斯萨拉姆大学物理系系主任奥斯波恩博士到他们学校访问的机会,又提出了自己的疑问。这位博士并没有对他的问题嗤之以鼻。回到实验室后,博士按照姆潘巴的陈述做了冷热牛奶实验和冷热水物理实验,结果都观察到了姆潘巴所描述的颠覆常识的怪现象。于是,他邀请姆潘巴和他一起对这个现象进行了深入研究。1969年,他和丹尼斯·奥斯伯恩博士(Denis G. Osborne)共同撰写了关于此现象的一篇论文,因此该现象便以其名字命名。 “姆潘巴现象”真的能颠覆我们以往关于水结冰的常识吗?四十多年来,许多论文与实验试图证实这个现象背后的原理,但由于缺乏科学实验数据以及定量分析,至今没有定论。回答者: a348488974 | 二级 | 2010-11-19 22:26 姆潘巴现象(Mpemba effect),又名姆佩姆巴效应,指在同等体积、同等质量和同 等冷却环境下,温度略高的液体比温度略低的液体先结冰的现象。 亚里士多德、培根和笛卡尔均曾以不同的方式描述过该现象,但是均未能引起广泛的注意。1963年,坦桑尼亚的马干巴中学三年级的学生姆潘巴经常与同学们一起做冰淇淋吃。在做的过程中,他们总是先把生牛奶煮沸,加入糖,等冷却后倒入冰格中,再放进冰箱冷冻。有一天,当姆潘巴做冰淇淋时,冰箱冷冻室内放冰格的空位已经所剩无几。为了抢占剩下的冰箱空位,姆潘巴只得急急忙忙把牛奶煮沸,放入糖,等不及冷却,就把滚烫的牛奶倒入冰格中,并送入冰箱。一个半小时后,姆潘巴发现了一个让他十分困惑的现象:他放入的热牛奶已经结成冰,而其他同学放的冷牛奶还是很稠的液体。照理说,水温越低,结冰的速度越快,而牛奶中含有大量的水,应该是冷牛奶比热牛奶结冰速度快才对,但事实怎么会颠倒过来了?姆潘巴把这个疑惑从初中带到了高中。他先后请教了几个物理老师,都没有得到答案。一位老师感觉他提出的问题怪异得近乎荒唐,就用嘲讽的口吻说:你说的这些就叫做姆潘巴现象吧!但执着的姆潘巴并没有认为自己的问题很荒唐,他抓住达累斯萨拉姆大学物理系系主任奥斯波恩博士到他们学校访问的机会,又提出了自己的疑问。这位博士并没有对他的问题嗤之以鼻。回到实验室后,博士按照姆潘巴的陈述做了冷热牛奶实验和冷热水物理实验,结果都观察到了姆潘巴所描述的颠覆常识的怪现象。于是,他邀请姆潘巴和他一起对这个现象进行了深入研究。1969年,他和丹尼斯·奥斯伯恩博士(Denis G. Osborne)共同撰写了关于此现象的一篇论文,因此该现象便以其名字命名。 “姆潘巴现象”真的能颠覆我们以往关于水结冰的常识吗?四十多年来,许多论文与实验试图证实这个现象背后的原理,但由于缺乏科学实验数据以及定量分析,至今没有定论。硬物作怪 最近 , 美国华盛顿大学的乔纳森·卡茨通过对姆潘巴现象的深入研究 , 捉到了隐藏其中的鬼怪 。他证实 , 这种现象不但 真实存在 , 而且造成这种现象发生的鬼怪 也是真实存在的。 不过 , 这其中的鬼怪只是隐藏在水里面的一些寻常“硬物”。 在破解姆潘巴现象的过程中 , 卡茨把目光盯在了水上。 我们知道 , 水在加热过程中 , 一些隐藏在水里的易溶硬物 ——碳酸钙和碳酸镜等碳酸盐会 被驱逐出去 , 形成沉淀物。我们日常生活中常见的附在水壶 内壁上的水垢 , 就是它们被驱出去的证据。而水在达到沸点以后 , 就会因硬物被绝大部分清除而软化。卡茨发现 , 同样是冷冻结冰 , 未经加热的硬水 在结冰过程中 , 由于其内部硬物作祟 , 使得硬水的冰点要比被加热后的软水冰点低一些 , 这就减缓了硬水结冰的速度。这一 原理就如同下雪后向路面撒盐会防止结冰一样 , 盐的混入 , 会使雪的冰点降低 , 这样 , 雪结冰的过程就拉长了。 但仅凭这个发现还不能直接破解姆潘巴现象, 因为姆潘巴的同学们在做冰淇淋的过程 中 , 都先把生牛奶煮熟了。那为 什么姆潘巴的热牛奶会先冻结 呢 ? 卡茨发现 , 原因还是出在水里的硬物上 : 为了吃到可口的冰漠淋 , 他们都在牛奶里加了糖 , 而糖实际上会使牛奶液体变硬。但同样是煮熟、加糖的牛奶 , 热牛奶液体的硬度实际要比冷牛奶的硬度要低一点 , 这个硬度的差异造成了它们冰点的差异 , 硬度较高的冷牛奶冰点相对要低些。这样 , 冰点略高的热牛奶自然要比冰点略低的冷牛奶要 先结冰了。 当然 , 还有另外一个原因能够降低低温水的结冰速度 , 因为实验证明 , 热量从水中流失的速度取决于温差 , 就是说在同样的低温环境里 , 温度相对较高的水比温度相对较低的水散热速度要快一些。换成牛奶 , 道理也是一 样。 那么为什么在众多实验中 , 姆潘巴现象不会每次都出现 ? 卡茨认为 , 原因就在于试验者一开始用的就是软水。用同样的软水来做冷热实验 , 由于水的冰点都一样 , 而且散热速度的快慢对结冰速度的影响很微弱 , 所以 姆潘巴现象就不那么显而易 见了。 “硬水论”存在的误区 其一,在自然界能够符合人类生活要求的水硬度不可能很高,否则会危害身体健康。所以,人类日常使用的硬水即使煮沸后其冰点温度不会明显上升,在一般的冰箱降温条件下很难出现热水先结冰现象。不然的话热水比冷水先结冰现象会经常发生,物理老师也不可能称姆潘巴现象为谎言了。假若“硬水论”成立,前提是所有完成开水先结冰实验的研究者都选用了硬度极高的、对人类有害的水,这显然不符合常理。 其二,从理论上讲,在自然界里有很多情况都可以让水在煮沸后使其冰点温度上升。例如:当水或牛奶被微生物污染后,冰点温度会下降,但经过煮沸后冰点温度也将上升,等等。 其三,根据水的基本物理特性,采用软水也可以完成姆潘巴现象的实验,在现实中用软水完成这个实验的例子也很多。编辑本段摆脱常识束缚目前本现象已由3名向明中学中国女学生证明只是上述4种因素的巧合.在正常情况下仍是冷水先结冰。超过100次的实验最终换来的是上万个宝贵的数据。虽然有先进的自动化仪器相助,但万千数据的整理、分析和总结还是颇为麻烦。暂且不论课题组精心绘制11张分析示意图花费了多少时间,只需节选论文的“数据记录分析”部分,其繁琐程度就可见一斑:冷、热纯牛奶对比;冷、热含糖牛奶对比;冷、热无糖、无淀粉牛奶对比;冷、热含糖、含淀粉牛奶对比;冷、热纯水对比;冷、热糖水对比;冷、热盐水对比;冷的纯水与纯牛奶对比;有糖冷、热淀粉与无糖冷、热淀粉对比……严密的分析之后,结论水到渠成:同质同量同外部温度环境的情况下,姆潘巴现象不会出现,不可能热的液体先结冰。4个月来最后得出结论:在同质同量同外部温度环境的情况下,热液体比冷液体先结冰是不可能的,并提出了引起误解的三种可能。她们认为,只有当冰箱有温差、牛奶含糖量不同或糖没有溶解、含有较多淀粉等非液体成分时,姆潘巴现象才有可能发生。(CCTV2005年7月6日20:30播出 破解姆潘巴) 热水分子活动比较强·遇冷就容易凝结姆潘巴现象的证明非等质造成此现象 姆潘巴现象被称为世界物理难题,然而,根据中学物理理论我们可以发现姆潘巴问题只是一道中学生知识大综合题,每一名中学生都可以掌握其证明的方法。证明:假设热水可以比冷水先结冰,那么必要条件是或者热水的冰点比冷水高、或者热水的降温速度比冷水快。由于在常压下纯净的热水与冷水冰点相同,所以要证明姆潘巴现象就必须证明热水的降温速度快于冷水。 根据物理基础理论:热水的蒸发强度大于冷水而密度小于冷水。如果取两只相同的非密封容器,放入同质同量的水,一个为热水,另一个为冷水,把它们同时放进同一外部环境温度中。热水在降温过程中因蒸发而失去的水分比冷水多,所以初温高的水最终质量必然小于初温低的水,热水的降温速度也必然始终比冷水快。如果取两只相同的密封容器,放入同质同量的水,一个为热水,另一个为冷水,把它们同时放进同一外部环境温度中。热水在降温过程中因密度增大、体积缩小而形成的容器内气压必然低于冷水因降温而形成的容器内气压,热水的沸点温度比冷水低并且对流强度大于冷水,热水在单位时间内失去的热量始终比冷水多,所以热水的降温速度必然始终比冷水快。同时,根据水的三相图理论:当水受到的气压降低时,冰点温度升高。初温高的开水因最终受到的气压低于初温低的冷水,所以开水的冰点高于冷水的冰点。 由于在同质同量同外部环境温度条件下热水的降温速度始终比冷水快,当外部环境温度处于持续降温状态时,热水的温度会比冷水温度更低;当外部环境温度处于特定时间内或特定温度范围内降温状态时,热水的温度会与冷水相等或者高于冷水。所以,在同质同量同外部环境温度条件下热水的温度会比冷水温度更低是一种普遍现象,冷水比热水先结冰是在特定的外部环境温度条件下出现的特定现象。.如果我们选取同质同量的纯水,其一为4℃的冷水,另一为100℃的沸水,采用令二者降温速度十分缓慢的同一外部环境温度条件做实验,那么任何人都无法让4℃的冷水比100℃的热水先结冰。通过实验可以证明:姆潘巴现象符合物理基础理论,人们否定姆潘巴现象,主要是自身在观察客观事物方面或冷冻实验过程中存在不足。根据中学物理基础理论和目前已掌握的正确实验方法可以知道,只有当热水和冷水所处的同一外部环境温度条件使得初温低的冷水降温到完全冻结需要较长或无限长的时间状态下时,姆潘巴现象才能发生或一定发生。所以姆潘巴现象的发生需要冰箱缓慢降温,而冰箱降温越是缓慢其温度不均匀现象越弱,对实验的结果影响也越小。冰箱降温越快其温度不均匀现象也越强,这反而有利于冷水先结冰而不利于热水先结冰。 姆潘巴将牛奶煮沸后立即放进冰箱,而他的同学却是将没有加温的冷牛奶直接放进冰箱,如果二人在牛奶放进冰箱时都放了糖,那么糖在热牛奶中的溶解速度比在冷牛奶中的溶解速度快得多,仍然应该是同学的冷牛奶先结冰。姆潘巴现象作为一种客观事实,数十年来却受到世界物理界的怀疑和争议,这几年国内更是一片否定之声。其实,完成这个证明是十分简单的事:将同质同量而初始温度分别为100℃的开水与35℃的凉水同时放进冰箱冷冻室内,如果冷冻室内的温度条件对水形成快速降温状态,我们看到的往往是初温低的水先结冰了,但这仅仅是一个片面现象。只要切断冰箱的电源,使冷冻室内的温度上升,当被冻结的开水与凉水完全溶化后,再一次进行冷冻实验,结果只能是原先的开水先结冰;如果反复这个实验过程,后面的结果都将是同一个结果。所以,在快速降温状态下冷水可以出现、也仅仅出现一次先结冰现象。如果冰箱冷冻室的温度条件对水形成缓慢降温状态,我们看到的是初温高的开水先结冰。假若此时让冷冻室内的温度上升,当开水和凉水完全溶化后再一次降温冷冻,那么不论冷冻室内的温度条件处于何种状态,结果都是原先的开水先结冰。如此反复操作,同样只能是原先的开水先结冰。因此,在缓慢降温状态下冷水不可能先结冰。姆潘巴现象让我们对水的特性有了更多的了解,而《姆潘巴现象》所受到的遭遇说明科学而认真的态度在认识自然、掌握自然过程中的重要性。 开水先结冰实验操作 采用非密封容器完成开水先结冰实验的操作方法:(供参考) 1, 将冰箱冷冻室内的实验初始温度控制在4℃,取两只相同的盘子,放入同质同量的水,一个为4℃的冷水,另一个为接近100℃的热水,把它们同时放进冰箱冷冻室内。控制冷冻室内温度的下降速度,使其每小时下降1℃(或每二小时下降1℃),完成冷冻后记录热水与冷水的最终质量。 2, 在冬季,利用自然降温完成这个实验。当某一天中午户外气温不低于4℃而夜间的最低温度在零下2~3℃时,可选择在中午时间取两只相同的盘子,放入同质同量的水,一个为接近100℃的热水,另一个为温度与户外气温相同的冷水,把它们同时放到户外同一位置上,记录热水与冷水完全冻结的时间和二者最终的质量。 3, 参照上海三名高中生的实验方法操作,冷冻结束后记录热水与冷水的最终质量。根据热水最终质量小于冷水来证明:因为热水的降温速度始终快于冷水,热水可以比冷水先结冰。 4,取两只相同的容器,放入同质且同重量的纯水,其一为100℃的开水,另一个为35℃的冷水,把它们同时放置于常温(不低于水的冰点)环境中,当经过充分长时间(5小时、10小时或1天、2天)后,将它们同时放进冰箱,则初始温度高的开水先结冰。 理由:开水与冷水在同一外部温度环境中经过充分长时间后,它们的温差几乎为零,如果容器是密封状态,那么热水在降温过程中因密度增大、体积缩小而使容器内部的气压小于冷水此时在容器中形成的气压,。继续降温则初温高的开水因沸点更低、对流强度更大,单位时间内由容器外壁热传导而失去的热量更多,所以开水降温的速度更快能先到冰点。 如果容器是非密封状态,那么热水因蒸发强度大于冷水而失去更多的水分,继续降温则初温高的开水因质量此时已经小于初温低的冷水,所以单位时间内降温速度更快而能先到冰点。 5,取相同容器,分别放入同质且同重量的开水和冷水(纯水)并同时放进冰箱,当二者都已结冰后切断冰箱电源让冷冻室内的温度上升到水的冰点之上,等到二者均完全溶化后再次接通冰箱电源继续冷冻,则开水先结冰。理由同上。 6,当冰箱处于35℃的外部环境温度中时,切断冰箱电源并让冷冻室内的温度也处于35℃,取相同容器分别放入同质且同重量的100℃的开水和35℃的冷水(纯水)并同时放进冰箱,接通冰箱电源且控制冰箱冷冻室内温度的下降速度,使得冷水降温到冰点需要经过充分长的时间,则开水先结冰。理由同上。 7,如果将冰箱冷冻室内的温度保持为℃,取两只相同的容器,分别放入同质且同重量的纯水,其一为℃的冷水,另一为100℃的开水,把它们同时放入冰箱,继续将冷冻室内温度保持在℃,在经过充分长的时间后再将冷冻室内的温度降低到水的冰点之下,则理论上开水先结冰。理由同上。 8,根据姆潘巴问题给出的已知条件:我们可以将冰箱冷冻室内的温度控制在35℃,取两只相同的容器,放入同质同体积的纯水,其一为100℃的开水,另一为35℃的冷水,把它们同时放入冰箱且控制冷冻室内温度的下降速度,使得冷水从35℃降温到冰点需要经过充分长的时间,则初温高的开水先结冰。 理由:常压下100℃的开水其密度小于35℃的冷水,因此开水的质量小于同体积的冷水,所以姆潘巴问题可以理解为:为什么在同一外部环境温度条件下,少量的热水会比多量的冷水先结冰了?答案很简单:在快速降温条件下冷水因初温低而能先结冰;在缓慢降温条件下热水因初始质量小于冷水,在密封容器中热水又因降温使得容器内的气压小于冷水所在容器内的气压;在非密封容器中热水因蒸发强度大于冷水而使热水的最终质量与冷水的差距更大,热水因单位时间内降温速度比冷水快而先结冰。 采用密封容器做实验时,可参照非密封容器实验1、2、4、5、6、7、8的操作方法。 另:有人认为,亚里士多德的原文中对这一现象的描述是这样的:“先前被加热过的水,有助于它更快地结冰”,多数人很可能误解了此句话的本意,即“先前加过热的水与先前未加过热的水在同温下的比较”而非“热水与冷水的比较”。因此依据第二种理解即上文所论述的,姆潘巴现象是不成立的;而在第一种理解下,姆潘巴现象是有可能成立的。用定量分析的方法证明姆潘巴现象 假设取两只相同的容器,分别放入1克热水和100克冷水,把它们同时放进冰箱,人们都会说是热水先结冰,因为热水的质量比冷水质量小,热水降温速度快。如果将热水的质量增加到2克,然后把它们同时放入冰箱,仍然会有人说热水先结冰,同样是因为热水的质量小于冷水的质量。但我们知道随着热水质量的增加,在冰箱冷冻室内的制冷强度条件不变时,需要比前面的实验花费更长的冷冻时间。 继续增加热水的质量,但恒小于冷水的质量,如果冰箱冷冻室内的制冷强度条件不变,当一定质量的热水降温到完全冻结所需要的时间与100克的冷水降温到完全冻结所需要的时间相等时,其结果是二者同时冻结,热水小于这个“定量”时可以先冻结,热水大于这个“定量”时则冷水先冻结。 如果改变冰箱冷冻室内的制冷强度条件,使得100克冷水降温到完全冻结需要更长的或无限长的时间,我们可以依次推理而得知:在这更长的或无限长的降温时间里,必然能让更多质量的热水或无限接近100克的热水与冷水同时冻结。当热水的最终质量小于“无限接近100克”,理论上热水能先冻结。 如果在两只相同的非密封容器中分别放入质量相同均为A克的热水和冷水,将二者同时放入冰箱以后,由于热水的蒸发强度大于冷水,在降温过程中因蒸发而失去的水分比冷水多,热水在降温过程中质量始终小于冷水,其降温速度必然始终比冷水快,在经过某一时间段降温后二者的温度将相等,继续降温热水先冻结。如果要满足二者同时冻结条件,需要增加热水的初始质量,设需要增加热水的初始质量为B,且0
小树旁的小树
节能型电冰箱研究 论文编号:JD289 论文字数:21422,页数:53 摘要 本文主要介绍了风冷式电冰箱节能控制系统的设计。介绍了用MC6805作为控制器核心,对电冰箱的工作过程进行控制,通过对风冷式电冰箱制冷系统的改进,采用多面送风以及模糊控制技术,并在冷藏室中设置冷循环系统,以电冰箱内的食物的温度为被控对象,通过合理的冷量分配,实现电冰箱的双温双控,适时温度补偿,达到节能的目的。 关键词:风冷式电冰箱,节能,控制,设计,MC6805,模糊控制 ABSTRACT The article introduce about save energy control design of refrigerator. This article introduces the application of MC6805 as the core of controller to control the process of refrigerator,Improve exiting refrigerators refrigerate system . Employ delivers many-faceted wind and blurred cybernetics; install circulates cold air in the cold storage equally. The control capacity is temperature of food in the room. So the cold breeze has been rational distributed. Realize two temperatures and two controls with refrigerator. Compensate temperature with the time change. Thus we can achieve our purpose -save energy. KEY WORDS: refrigerator, save energy, control, design,MC6805, fuzzy control 目录 摘要I ABSTRACT II 1 概述 1 国内外电冰箱技术现状及发展趋势 1 电冰箱环保技术的发展 1 节能技术为您生活带来经济实惠 2 风冷式节能电冰箱 3 风冷式节能电冰箱的结构 3 风冷式电冰箱的整体布置以及各部件、各系统的节能原理 3 箱体部分 4 箱门 5 风冷式节能电冰箱的制冷系统及工作原理 5 制冷系统的组成 5 制冷系统的工作原理 5 模糊控制系统的发展和应用 7 模糊概念的起源 7 模糊控制技术的应用 9 本系统的功能及节能优点 9 2 硬件电路的设计 11 冷藏、冷冻室温度检测电路 11 基本原理 11 测温的基本电路 12 过欠压检测电路(电源电压) 13 门开、闭状态检测电路 14 环境温度检测电路 15 温度给定和显示电路 15 3 MC6805R6单片机与电冰箱 18 MC6805R6在家用电冰箱中的作用 18 MC6805R6型单片机引脚及功能 18 MC6805R6单片机简介 19 MC6805单片机的CPU结构 19 MC6805单片机存储器结构 20 MC6805单片机并行I/O 20 MC6805单片机定时器 21 MC6805单片机的其它功能 21 4 模糊控制系统 22 模糊控制系统构成 22 控制电路框图 22 冷量分配的控制 23 食品温度及热容量检测原理 23 制冷系统模糊控制框图 24 模糊控制器的设计 25 食品温度初判值的确定 25 食品温度的模糊修正 26 冷量分配的控制决策 27 各被控对象的开\关动作控制规则 28 反模糊化设计 30 5 系统软件设计 31 系统软件流程 31 系统主程序流程 31 电源及压缩机断电保护子程序流程 32 门开关检测报警子程序流程 33 检测子程序(数据采集子程序)流程图 33 温度显示流程图 35 温度模糊控制子程序流程图 36 定时器中断子程序流程图 37 程序设计 37 致谢46 参考文献 47 以上回答来自:
湛蓝世纪
你说的范围太大,简单一点的说一般就是制冷问题和电路问题,先说制冷,如果不制冷先要检查冰箱[空调]是否通电,如果通电那就是缺氟,先查出漏点然后加氟就可以了,如果不通电就要检查温度控制器/电源线/启动器这些电路元件。
1987分撒风
姆潘巴现象(Mpemba effect),又名姆佩姆巴效应,指在同等体积、同等质量和同 等冷却环境下,温度略高的液体比温度略低的液体先结冰的现象。 亚里士多德、培根和笛卡尔均曾以不同的方式描述过该现象,但是均未能引起广泛的注意。1963年,坦桑尼亚的马干巴中学三年级的学生姆潘巴经常与同学们一起做冰淇淋吃。在做的过程中,他们总是先把生牛奶煮沸,加入糖,等冷却后倒入冰格中,再放进冰箱冷冻。有一天,当姆潘巴做冰淇淋时,冰箱冷冻室内放冰格的空位已经所剩无几。为了抢占剩下的冰箱空位,姆潘巴只得急急忙忙把牛奶煮沸,放入糖,等不及冷却,就把滚烫的牛奶倒入冰格中,并送入冰箱。一个半小时后,姆潘巴发现了一个让他十分困惑的现象:他放入的热牛奶已经结成冰,而其他同学放的冷牛奶还是很稠的液体。照理说,水温越低,结冰的速度越快,而牛奶中含有大量的水,应该是冷牛奶比热牛奶结冰速度快才对,但事实怎么会颠倒过来了?姆潘巴把这个疑惑从初中带到了高中。他先后请教了几个物理老师,都没有得到答案。一位老师感觉他提出的问题怪异得近乎荒唐,就用嘲讽的口吻说:你说的这些就叫做姆潘巴现象吧!但执着的姆潘巴并没有认为自己的问题很荒唐,他抓住达累斯萨拉姆大学物理系系主任奥斯波恩博士到他们学校访问的机会,又提出了自己的疑问。这位博士并没有对他的问题嗤之以鼻。回到实验室后,博士按照姆潘巴的陈述做了冷热牛奶实验和冷热水物理实验,结果都观察到了姆潘巴所描述的颠覆常识的怪现象。于是,他邀请姆潘巴和他一起对这个现象进行了深入研究。1969年,他和丹尼斯·奥斯伯恩博士(Denis G. Osborne)共同撰写了关于此现象的一篇论文,因此该现象便以其名字命名。 “姆潘巴现象”真的能颠覆我们以往关于水结冰的常识吗?四十多年来,许多论文与实验试图证实这个现象背后的原理,但由于缺乏科学实验数据以及定量分析,至今没有定论。
传统的冰箱“除臭器”是利用活性炭的多孔吸附作用吸附冰箱中的异味。这种除臭器既无杀菌作用,且需经常更换活性炭或整个制成品,使用很不方便而且增加经济上的支出。这里介
地址:北京市603信箱,《物理学报》编辑部邮编:100190电话:,82649829,82649863 E-mail:
“海尔”的营销战略 “海尔”无疑是当今我国企业界的一颗耀眼的明星,它的成功是由许多因素造成的,但其正确而超前的营销战略则具有决定性作用。海尔从创建之初到
电子信息科学与技术考研方向:0809 一级学科:电子科学与技术080901 物理电子学 080902 电路与系统080903 微电子学与固体电子学 080904
教你一种电冰箱常见故障及检修方法,教你一招,一月省下好多电费