Christybeauty
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
qieerdingdon
根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)
淡淡蓝郁
我原来是数学课代表 我写过的 并不难 比如说斐波那契数列的研究斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。定义斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368特别指出:第0项是0,第1项是第一个1。这个数列从第二项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)通项公式的推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2, X2=(1-√5)/2.则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1 解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s。使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。则r+s=1, -rs=1。n≥3时,有。F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。……F⑶-r*F⑵=s*[F⑵-r*F⑴]。联立以上n-2个式子,得:F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。∵s=1-r,F⑴=F⑵=1。上式可化简得:F(n)=s^(n-1)+r*F(n-1)。那么:F(n)=s^(n-1)+r*F(n-1)。= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。=(s^n - r^n)/(s-r)。r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}与黄金分割关系有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割、前一项与后一项的比值越来越逼近黄金分割)1÷1=1,1÷2=,2÷3=...,3÷5=,5÷8=,…………,55÷89=…,…………144÷233=…46368÷75025=…...越到后面,这些比值越接近黄金比.证明a[n+2]=a[n+1]+a[n]。两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]。若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。所以x=1+1/x。即x²=x+1。所以极限是黄金分割比..特性平方与前后项从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)与集合子集斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。奇数项求和偶数项求和平方求和隔项关系f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]两倍项关系f(2n)/f(n)=f(n-1)+f(n+1)其他公式应用生活中斐波那契斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。黄金分割随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值..…杨辉三角将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f⑴=C(0,0)=1。f⑵=C(1,0)=1。f⑶=C(2,0)+C(1,1)=1+1=2。f⑷=C(3,0)+C(2,1)=1+2=3。f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。……F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)质数数量斐波那契数列的整除性与素数生成性每3个连续的数中有且只有一个被2整除,每4个连续的数中有且只有一个被3整除,每5个连续的数中有且只有一个被5整除,每6个连续的数中有且只有一个被8整除,每7个连续的数中有且只有一个被13整除,每8个连续的数中有且只有一个被21整除,每9个连续的数中有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)斐波那契数列的素数无限多吗?尾数循环斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,…进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。自然界中巧合斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。数字谜题三角形的三边关系定理和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。推广斐波那契—卢卡斯数列卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。卢卡斯数列的通项公式为 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)n12345678910…斐波那契数列F(n)11235813213455…卢卡斯数列L(n)776123…F(n)*L(n)7798725846765…类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。斐波那契—卢卡斯数列之间的广泛联系①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),n12345678910…F[1,4]n097157…F[1,3]n776123…F[1,4]n-F[1,3]n0112358132134…F[1,4]n+F[1,3]n279162540…②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如n12345678910…F[1,1](n)11235813213455…F[1,1](n-1)0112358132134…F[1,1](n-1)0112358132134…F[1,3]n776123…黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5F[1,4]数列:|4*4-1*5|=11F[2,5]数列:|5*5-2*7|=11F[2,7]数列:|7*7-2*9|=31斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。当p=1,q=1时,我们得到斐波那契—卢卡斯数列。当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。当p=-1,q=2时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关数学排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。兔子繁殖问题斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔对数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0123456789101112幼仔对数101123581321345589成兔对数011235844总体对数11235844233幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)数列与矩阵对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义F(n)=f(n-1)+f(n-2)F(1)=1F(2)=1对于以下矩阵乘法F(n+1) = 11 F(n)F(n) 10 F(n-1)它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:10 F(n-1)F(n+1)=F(n)+F(n-1)F(n)=F(n)可见该矩阵的乘法完全符合斐波那契数列的定义设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*11 0 F(n) F(0) 0这就是斐波那契数列的矩阵乘法定义。另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘。因此可以用递归的方法求得答案。数列值的另一种求法:F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]其中[ x ]表示取距离 x 最近的整数。斐波那契弧线斐波那契弧线,也称为斐波那契扇形线。第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:, 50%和的无形垂直线交叉。斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变,因为弧线是圆周的一部分,它的形成总是一样的。于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。斐波那契数列在股市中的应用时间周期理论是股价涨跌的根本原因之一,它能够解释大多数市场涨跌的奥秘。在时间周期循环理论中,除了利用固定的时间周期数字寻找变盘点之外,还可以利用波段与波段之间的关系进行研究。但无论如何寻找变盘点,斐波那契数列都是各种重要分析的基础之一,本文将简单阐述斐波那契数列及其与市场的关系。工具/原料步骤/方法斐波那契数列由十三世纪意大利数学家斐波那契发现。数列中的一系列数字常被人们称之为神奇数奇异数。具体数列为:1,1,2,3,5,8,13,21,34,55,89,144,233等,从该数列的第三项数字开始,每个数字等于前两个相邻数字之和。而斐波那契数列中相邻两项之商就接近黄金分割数,与这一数字相关的、、和等数字就构成了股市中关于市场时间和空间计算的重要数字。大到整个宇宙空间到小到分子原子,从时间到空间,从自然到人类社会,政治、经济、军事等,各种现象中的规律都能找到斐波那契数的踪迹。世界著名建筑如巴黎圣母院、埃菲尔铁塔、埃及金字塔等均能从它们身上找到的影子。名画、摄影、雕塑等作品的主题都在画的处。报幕员站在舞台的处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的位置,人的膝盖是从脚底到肚脐眼长度的。战争中的运用也是无所不在,小到兵器的制造、中到排兵布阵到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。在金融市场的分析方法中,斐波那契数字频频出现。例如,在波浪理论中,一轮牛市行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;在空间分析体系中,反弹行情的高度通常是前方下降趋势幅度的、、;回调行情通常是前方上升趋势的、和。斐波那契数列在实际操作过程中有两个重要意义:第一个实战意义在于数列本身。本数列前面的十几个数字对于市场日线的时间关系起到重要的影响,当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的阶段变盘点向未来市场推算,到达时间时市场发生方向变化的概率较大。图1综合指数(1A0001)2009年7月29日—12月31日日线图如图1所示,综合指数(1A0001)2009年8月4日的3478点到2009年9月1日阶段低点2639点的时间关系是21个交易日,2009年9月1日的阶段低点2639点到2009年9月18日的高点3068点是13个交易日的时间,到2009年9月29日的低点2712点是21个交易日,到2009年10月23日的高点3123点的时间是34个交易日,到2009年11月24日的年度次高点3361点的时间是55个交易日。图2综合指数(1A0001)2009年7月10日—12月31日周线图如图2所示,综合指数(1A0001)2009年8月4日的高点3478点到2009年9月4日2639点的运行时间是5周;2009年9月4日的低点2639点到2009年11月27日反弹高点3361点的时间是13周。斐波那契数列在股市中的应用斐波那契数列在股市中的应用第二个实战意义在于本数列的衍生数字是市场中纵向时间周期计算未来市场变盘时间的理论基础。这组衍生数列分别是:、、、、、2、、、等一系列与黄金分割相关的数字。在使用神奇数列时主要有六个重要的时间计算方法:第一、通过完整的下跌波段时间推算未来行情上涨波段的运行时间。第二、通过完整的上涨波段时间推算未来行情下跌波段的运行时间。这两种比例关系就像生活中我们经常见到的作用力与反作用的关系,乒乓球垂直掉到地面的高度决定乒乓球触击地面以后反弹的高度是同样的道理。第三、通过上升波段中第一个子波段低点到高点的时间推算本上升波段最终的运行时间。第四、通过下降波段中第一子波段高点到低点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的推动力与惯性的关系,当古代弓箭的弓与弦被拉开的距离直接决定了未来箭向前飞行的距离。第五、通过本上升波段中第一子波段的两个相邻低点的时间推算未来上升波段的最终运行时间。第六、通过下降波段中第一子波段的两个相邻高点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的建筑物地基宽度影响未来高度一样重要。在材质相同的情况下,地基宽度越大,未来高度越高。5在这六种重要的时间计算方法中最为重要的就是计算过程中实际使用的参数,利用不同的参数会得到不同的答案,而使用过程中几乎所有的重要参数都与斐波那契数列有关。由于篇幅原因,这里先埋个伏笔,我会在以后的文章中为股民朋友详细阐述计算方法。
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内
不知道你需要哪一篇,你自己能上这个期刊网吗? 序号 篇名 作者 刊名 年/期 1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08
1.中学生数学辅导报((报纸(数学)4小面,有一面是趣味性的,其他3面是做的)2.时代学习报(报纸(数学)4小面,只有一面是做的,其他3面是看的有趣味性的,有学
在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读!
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,