一个人淋着雨
不能具体点吗?比如说云计算的定义,服务模式,优势劣势,关键技术还是案例啊? 1.云计算的概念1.1 NIST云计算定义草案美国标准局(NIST)专家于2009年4月24日给出了一个云计算定义草案,概括了云计算的五大特点、三大服务模式、四大部署模式。 云计算定义 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算模式提高了可用性。云计算模式由五个主要特点、三个服务模式、四个部署模式构成。 主要特点(1)按需自助服务。消费者可以单方面按需部署处理能力,如服务器时间和网络存储,而不需要与每个服务供应商进行人工交互。 (2)通过网络访问。可以通过互联网获取各种能力, 并可以通过标准方式访问,以通过众多瘦客户端或富客户端推广使用(例如移动电话,笔记本电脑,PDA等)。 (3)与地点无关的资源池。供应商的计算资源被集中,以便以多用户租用模式服务所有客户,同时不同的物理和虚拟资源可根据客户需求动态分配和重新分配。客户一般无法控制或知道资源的确切位置。这些资源包括存储、处理器、内存、网络带宽和虚拟机器。 (4)快速伸缩性。可以迅速、弹性地提供能力,能快速扩展,也可以快速释放实现快速缩小。对客户来说,可以租用的资源看起来似乎是无限的,并且可在任何时间购买任何数量的资源。 (5)按使用付费。能力的收费是基于计量的一次一付,或基于广告的收费模式,以促进资源的优化利用。比如计量存储,带宽和计算资源的消耗,按月根据用户实际使用收费。在一个组织内的云可以在部门之间计算费用,但不一定使用真实货币。注:云计算软件服务着重于无国界、低耦合、模块化和语义互操作性,充分利用云计算模式的优势。 服务模式(1)云计算软件即服务。提供给客户的能力是服务商运行在云计算基础设施上的应用程序,可以在各种客户端设备上通过瘦客户端界面访问,比如浏览器。消费者不需要管理或控制的底层云计算基础设施、网络、服务器、操作系统、存储,甚至单个应用程序的功能,可能的例外就是一些有限的客户可定制的应用软件配置设置。 (2)云计算平台即服务。提供给消费者的能力是把客户利用供应商提供的开发语言和工具(例如Java,python, .Net)创建的应用程序部署到云计算基础设施上去。客户不需要管理或控制底层的云基础设施、网络、服务器、操作系统、存储,但消费者能控制部署的应用程序,也可能控制应用的托管环境配置。 (3)云基础设施即服务。提供给消费者的能力是出租处理能力、存储、网络和其它基本的计算资源,用户能够依此部署和运行任意软件,包括操作系统和应用程序。消费者不管理或控制底层的云计算基础设施,但能控制操作系统、储存、部署的应用,也有可能选择网络组件(例如,防火墙,负载均衡器)。四、部署模式(1)私有云。云基础设施被某单一组织拥有或租用,该基础设施只为该组织运行。(2)社区云。基础设施被一些组织共享,并为一个有共同关注点的社区服务(例如,任务,安全要求,政策和准则等等)。 (3)公共云。基础设施是被一个销售云计算服务的组织所拥有,该组织将云计算服务销售给一般大众或广泛的工业群体。 (4)混合云。基础设施是由两种或两种以上的云(内部云,社区云或公共云)组成,每种云仍然保持独立,但用标准的或专有的技术将它们组合起来,具有数据和应用程序的可移植性(例如,可以用来处理突发负载)。云计算领域现状的特点是:(1)当前市场上主要的云计算厂商都是一些IT巨头,都处在攻城略地阶段。(2)标准尚未形成。在标准问题上基本各说各的。目前,市场上的云计算产品与服务千差万别,用户在选择时也不知道该如何下手。
dp73255815
在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文
晨阳爱美食
离上篇文章认证加密(下)发表已经过去好久了,笔者一直在思考要不要继续写安全基础类的文章,直到本周日晚上陪孩子看朗读者节目的时候,特别是节目组邀请到了53岁的清华大学高等研究院杨振宁讲座教授王小云,介绍了她在密码学中的贡献。孩子和家人在观看节目的时候,对MD5是什么,为什么这么重要,特别是王教授谈到基于MD5设计的国家加密标准已经广泛应用到银行卡,社保卡等领域,让加密这个古老但年轻的领域走入更多人的视野。 咱们前边介绍的内容主要围绕对称加密,从这篇文章开始,我们的焦点shift到非对称加密算法上,非对称加密也称作是公钥加密算法,整个算法有个非常关键的环节:秘钥交换。秘钥交换“人”如其名,解决的本质问题是如何安全的交换秘钥。咱们还是请出老朋友爱丽斯女王和鲍勃领主来说明一下。假设爱丽丝女王和鲍勃领主要安全的通信,那么爱丽斯女王和鲍勃领主就把各自的秘钥发给对方。结果是通信的双方都持有这个共享的秘钥,这个共享的秘钥就可以被用来后续信息安全的交互。 为了让后续的讨论更加接地气,咱们假设爱丽斯女王和鲍勃领主从来都没有见过面,那么我们该如何让女王和领主安全的通信呢?这个问题也是秘钥交换算法适用的最原始应用场景。为了确保女王和领主之间通信的隐私性,双方需要一个共享的秘钥,但是安全的沟通共享秘钥并没有想象中那么简单。如果恶意攻击者窃听了女王和领主的电话通信,或者邮件通信(假设传输的明文信息),那么恶意攻击者会窃取到女王和领主共享的秘钥,后续双方所有的通信内容,都可以通过这个秘钥来破解,女王和领主的所有私密通信不安全了,通信内容已经成为整个王国茶余饭后的谈资。 如何解决这个问题呢?这是秘钥交换算法要解决的核心问题,简单来说,通过秘钥交换算法,爱丽丝女王和鲍勃领主就可以安全的实现共享秘钥交换,即便是有恶意攻击者在监听所有的通信线路,也无法获取双方通向的秘钥,女王和领主终于可以无忧无虑的八卦了。 秘钥交换从通信双方生成各自的秘钥开始,通常情况下非对称加密算法会生成两个秘钥:公钥和私钥(public key和private key)。接着通信的双方分别把自己的公钥发送给对方,公钥的”公“在这里是公开的意思,这就意味着恶意攻击者也可以获得通信双方生成的公钥信息。接着女王和领主分别用收到的公钥和自己持有的私钥结合,结果就是共享的通信秘钥。大家可以站在恶意攻击者的角度看这个公钥,由于恶意攻击者没有任何一方的私钥,因此恶意攻击者是无法获取女王和领主通信用的”共享“秘钥。关于共享秘钥在女王和领主侧产生的过程,如下图所示: 了解了秘钥交换算法的大致工作机制后,接着我们来看看秘钥交换算法是如何解决爱丽斯女王和鲍勃领主安全通信问题。如上图所展示的过程,女王和领主通过秘钥交换算法确定了可以用作安全通信的秘钥,这个秘钥可以被用作认证加密的秘钥,因此即便是MITM(中间人攻击者)截获了女王和领主通信的数据,但是由于没有秘钥,因此通信的内容不会被破解,这样女王和领主就可以安全的通信了,如下图所示: 不过这里描述的内容稍微不严谨,我们顶多只能把这种场景称作passive MITM,大白话是说恶意攻击者是被动的在进行监听,和active MITM的主要却别是,active中间人会截获秘钥交换算法交换的数据,然后同时模拟通信双方对端的角色。具体来说,中间人会actively来同时和女王以及领主进行秘钥交换,通信双方”以为“和对方对共享秘钥达成了共识,但是本质上女王和领主只是和中间人达成了共享秘钥的共识。大家可以思考一下造成这种错误认知的原因是啥? 其实背后的原因不难理解,因为通信的双方并没有其他手段判断收到的公钥和通信的对端的持有关系,我们也称作这种秘钥交换为”unauthentiated“秘钥交换,如下图所示: 那么如何解决active MITM攻击呢?相信大家能够猜到authenticated key exchange,咱们先通过一个具体的业务场景来看看,为啥我们需要这种authenticated的模式。假设我们开发了一套提供时间信息的服务,服务被部署在阿里云上,我了预防时间数据被恶意攻击者修改,因此我们使用MAC(message authentication code),如果大家对MAC没有什么概念,请参考笔者前边的文章。 MAC需要秘钥来对数据进行机密性和完整性保护,因此我们在应用部署的时候,生成了一个秘钥,然后这个秘钥被以某种方式非法给所有的客户端用户,应用运行的非常稳定,并且由于有秘钥的存在,守法遵纪的所有客户端都可以读取到准确的时间。但是有个客户学习了本篇文章后,发现这个秘钥可以用来篡改数据,因此我们的网站受到大量客户的投诉,说读到的时间不准确,造成系统的业务运行和数据处理出现问题。 你让架构师赶紧处理,架构师给出了每个用户都生成独享秘钥的方案,虽然能够止血,但是很快你会发现这种方案不可行,不可运维,随着用户数量激增,我们如何配置和管理这些秘钥就变成了一个大问题,还别说定期更换。秘钥交换算法在这里可以派上用场,我们要做的是在服务端生成秘钥,然后为每个新用户提供公钥信息。由于用户端知道服务端的公钥信息,因此MITM攻击就无法在中间双向模拟,我们也称这种模式为:authenticated key exchange。 我们继续分析这个场景,中间人虽然说也可以和服务进行秘钥交换,但是这个时候中间人和普通的客户端就没有差异了,因此也就无法执行active MITM攻击了。 随着科技的发展,互联网几乎在我们生活中无孔不入,如何安全的在通信双方之间确立秘钥就变得极其重要。但是咱们前边介绍的这种模式扩展性不强,因为客户端需要提前预置服务端的公钥,这在互联网场景下尤其明显。举个例子,作为用户,我们希望安全的和多个银行网站,社保网站进行数据通信,如果需要手机,平板,台式机都预置每个网站的公钥信息才能安全的进行访问,那么你可以考虑便利性会有多差,以及我们如何安全的访问新开发的网站? 因此读者需要理解一个非常重要的点,秘钥交换非常重要,但是有上边介绍的扩展性问题,而这个问题的解决是靠数字签名技术,数字签名和秘钥交换结合起来是我们后边要介绍的SSL技术的基础,要讲清楚需要的篇幅会很长,因此咱们后续用专门的章节来介绍SSL原理。不过为了后续介绍的顺畅性,咱们接下来聊几个具体的秘钥交换算法,以及背后的数学原理。 咱们先从笔者系列文章第一篇中提到的Diffie-Hellman秘钥交换算法说起,Whitfield Diffie和Martin E. Hellman在1976年发表了一篇开创新的论文来介绍DH(Diffie-Hellman)秘钥交换算法,论文中把这个算法称作”New Direction in Cryptography“。这篇论文被冠以开创性的主要原因是论文两个第一:第一个秘钥交换算法以及第一次公开发表的公钥加密算法(或者说非对称加密算法)。 DH算法的数据原理是群论(group theory),这也是我们今天所接触到的所有安全机制的基石。因为笔者并不是数学专业毕业,数学基础也不是太牢固,因此一直犹豫要如何继续在安全的角度继续深入下去。为了让这个算法更加容易被读者理解,因此后边的内容会稍微涉及到一些数据基础知识,相信有过高中数学知识的同学,应该都能看懂。 要介绍群论,首要问题是定义清楚什么是群(group)。笔者查阅了相关资料,群在数学领域中有如下两个特征: 1,由一组元素组成 2,元素之间定义了特殊的二元运算符(比如➕或者✖️) 基于上边的定义,如果这组元素以及之上定义的二元操作符满足某些属性,那么我们就称这些元素组成个group。对于DH算法来说,背后使用的group叫做multiplicative group:定义了乘法二元运算符的元素集合。读者可能会问,那么这个multiplicative group具体满足那些属性呢?由于这部分的内容较多,咱们来一一罗列介绍: - Closure(闭包)。集合中的两个元素通过定义的运算符计算后,结果也在集合中。举个例子,比如我们有集合M,M中有元素a,b和c(c=a*b),那么这三个元素就符合closure属性,集合上定义的运算符是乘法。 - Associativity(可结合性)。这个和中学数学中的结合性概念一致,你能理解数学公式a × (b × c) = (a × b) × c就行。 - Identity element(单位元素)。集合中包含单位元素,任何元素和单位元素经过运算符计算后,元素的值不发生变化。比如我们有集合M,包含的元素(1,a,b,c....),那么1就是单位元素,因为1*a = a,a和单位元素1通过运算符计算后,结果不变。 - Inverse element(逆元素)。集合中的任何元素都存在逆元素,比如我们有集合元素a,那么这个元素的逆元素是1/a,元素a和逆元素通过运算符计算后,结果为1。 笔者必须承认由于我粗浅的数学知识,可能导致对上边的这四个属性的解释让大家更加迷惑了,因此准备了下边这张图,希望能对群具备的4个属性有更加详细的补充说明。 有了前边关于群,群的属性等信息的介绍,咱们接着来具体看看DH算法使用的group具体长啥样。DH算法使用的群由正整数组成,并且大部分情况下组成群的元素为素数,比如这个群(1,2,3, ....,p-1),这里的p一般取一个很大的素数,为了保证算法的安全性。 注:数学上对素数的定义就是只能被自己和1整除的数,比如2,3,5,7,11等等。素数在非对称加密算法中有非常广泛的应用。计算机专业的同学在大学期间应该写过寻找和打印素数的程序,算法的核心就是按顺序穷举所有的数字,来判断是否是素数,如果是就打印出来。不过从算法的角度来看,这样穷举的模式效率不高,因此业界也出现了很多高效的算法,很快就能找到比较大的素数。 DH算法使用的群除了元素是素数之外,另外一个属性是模运算符,具体来说叫modular multiplication运算。咱们先从模运算开始,模运算和小学生的一些拔高数学题很类似,关注的是商和余数。比如我们设modulus为5,那么当数字大于5的时候,就会wrap around从1重新开始,比如数字6对5求模计算后,结果是1,7的结果是2,以此类推。对于求模计算最经典的例子莫过于钟表了,一天24个小时,因此当我们采用12小时计数的时候,13点又被成为下午1点,因为13 = 1*12 + 1(其中12为modulo)。 接着我们来看modular multiplication的定义,我们以6作例子,6 = 3 ✖️ 2, 如果modulo是5的话,我们知道6全等于(congruent to)1 modulo 5,因此我们的公式就可以写成: 3 × 2 = 1 mod 5 从上边的等式我们得出了一个非常重要的结论,当我们把mod 5去掉后,就得出3 × 2 = 1,那么3和2就互为逆元素。 最后我们来总结一下DH算法base的群的两个特征: - Commutative(交换律),群中两个元素计算具备交换律,也就是ab=ba,通常我们把具备交换律的群成为Galois group - Finite field(有限域),关于有限域的特征我们下边详细介绍 DH算法定义的group也被称作为FFDH(Finite Field Diffie-Hellman),而subgroup指的是group的一个子集,我们对子集中的元素通过定义的运算符操作后,会到到另外一个subgroup。 关于群论中有个非常重要的概念是cyclic subgroup,大白话的意思是通过一个generator(或者base)不断的和自己进行乘法运算,如下变的例子,generator 4可以了subgroup 1和4: 4 mod 5 = 4 4 × 4 mod 5 = 1 4 × 4 × 4 mod 5 = 4 (重新开始,这也是cylic subgroup的体现) 4 × 4 × 4 × 4 mod 5 = 1 等等 当我们的modulus是素数,那么群中的每个元素都是一个generator,可以产生clylic subgroup,如下图所示: 最后我们完整的总结一下群和DH定义的Galois群: - group就是一组定义了二元操作的元素集合,并具备closure, associativity, identity element, inverse element属性 - DH定义的群叫Galois group,组成群的元素是素数,并在群上定义了modular multiplication运算 - 在DH定义的群中,每个元素都是一个generator,重复和自己相乘后,产出subgroup Groups是很多加密算法的基础,笔者这是只是稍微的介绍了一点皮毛知识,如果读者对这部分感兴趣,可以查阅相关的材料。有了群的初步认识了,咱们下篇文章来介绍DH算法背后的工作原理,敬请期待!
一个途径是去yahoo auction上找。第二个途径是去古本屋(二手书店)找,有很多旧书和旧杂志,分类也比较系统。比如说book off(ブックオフ),连锁的
《读书2020第04期杂志》百度网盘pdf最新全集下载:链接:
紧接着相信不少人会在拿到毕设的题目之后,开始思考着该如何下手去写,用哪些编程语言会比较好,在这里我详细介绍一下Java (一)Java的编程原理:Java语言编
下载知网论文步骤: 我是在家使用的知网,用的是文献党下载器(wxdown.org),在文献党下载器资源库,双击“知网”名称进入知网首页,首页有很多检索项,可以根
关于计算机网络及网络安全的毕业论文1)目前,研究网络安全态势的方法大多是对数据源上日志数据进行关联、处理和分析,得出当前网络态势情况,进而对网络安全态势进行预测