吹吹再吹
物理学发展史(从1638年至1962年) 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。 公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。 公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。 公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。 公元1801年,英国科学家托马斯·杨用干涉法测光波波长。 公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。 公元1808年,法国科学家马吕斯发现光的偏振现象。 公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。 公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。 公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。 公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。 公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。 公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。 公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。 公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。 公元1830年,诺比利发明温差电堆。 公元1831年,法拉第发现电磁感应现象。 公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。 公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。 公元1840年,英国科学家焦耳从电流的热效应发现所产生的热量与电流的平方、电阻及时间成正比,称焦耳-楞茨定律(楞茨也独立地发现了这一定律)。其后,焦耳先后于1843,1845,1847,1849直至1878年测量热功当量,历经四十年,共进行四百多次实验。 公元1842年,法国科学家勒诺尔从实验测定实际气体的性质,发现与波义耳定律及盖·吕萨克定律有偏离。 公元1843年,法拉第从实验证明电荷守恒定律。 公元1845年,法拉第发现强磁场使光的偏振面旋转,称法拉第效应。 公元1849年,法国科学家斐索首次在地面上测光速。 公元1851年,法国科学家傅科做傅科摆实验,证明地球自转。 公元1852年,英国科学家焦耳与威廉·汤姆逊发现气体焦耳-汤姆逊效应(气体通过狭窄通道后突然膨胀引起温度变化)。 公元1858年,德国科学家普吕克尔在放电管中发现阴极射线。 公元1859年,德国科学家基尔霍夫开创光谱分析,其后通过光谱分析发现铯、铷等新元素,他还发现发射光谱和吸收光谱之间的联系,建立了辐射定律。 公元1866年,德国科学家昆特做昆特管实验,用以测量气体或固体中的声速。 公元1869年,德国科学家希托夫用磁场使阴极射线偏转。 公元1871年,英国科学家瓦尔莱发现阴极射线带负电。 公元1875年,英国科学家克尔发现在强电场的作用下,某些各向同性的透明介质会变为各向异性,从而使光产生双折射现象,称克尔电光效应。 公元1876年,德国科学家哥尔德茨坦开始大量研究阳极射线的实验,导致极坠射线的发现。 公元1879年,英国科学家克鲁克斯开始一系列实验,研究阴极射线。 公元1879年,奥地利科学家斯忒藩发现黑体辐射经验公式。 公元1879年,美国科学家霍尔发现电流通过金属时,在磁场作用下产生横向电动势的霍尔效应。 公元1880年,法国科学家居里兄弟发现晶体的压电效应。 公元1881年,美国科学家迈克耳逊首次做以太漂移实验,得到零结果。由此产生迈克耳逊干涉仪,灵敏度极高。 公元1885年,迈克耳逊与莫雷合作改进斐索流水中光速的测量。 公元1887年,迈克耳逊与莫雷再次做以太漂移实验,又得零结果。 公元1887年,德国科学家赫兹作电磁波实验,证实了英国科学家麦克斯韦的电磁场理论。同时,赫兹发现光电效应。 公元1890年,匈牙利科学家厄沃作实验证明惯性质量与引力质量相等。 公元1893年,德国科学家勒纳德研究阴极射线时,在射线管上装一薄铝窗,使阴极射线从管内穿出进入空气,射程约l厘米,人称勒纳德射线。 公元1895年,P.居里发现居里点和居里定律。 公元1895年,德国科学家伦琴发现x射线。 公元1896年,法国科学家贝克勒尔发现放射性。 公元1896年,荷兰科学家塞曼发现磁场使光谱线分裂,后称塞曼效应,并证实了荷兰科学家洛仑兹关于电子论的推测。
ritafanfan
对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。 当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。 那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子: 0、1、2、3、4 、5 、6 、7 、8 、9 、10 、11 、12 、13 、14 、…… 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。 比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。 纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗? 经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。 所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。
惊艳你的眼
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一) ��马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. ��自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二) ��早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. ��1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. ��当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. ��18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三) ��函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. ��后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” ��在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 �表示出,其中 ��富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. ��通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. ��1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. ��1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” ��根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1���(x为有理数), 0���(x为无理数). ��在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. ��狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四) ��生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即�ρ(x)= 0,x≠0, ∞,x=0. 且 ��δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 ��P(0)=压力/接触面=1/0=∞. ��其余点x≠0处,因无压力,故无压强,即�P(x)=0.另外,我们知道压强函数的积分等于压力,即 �函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. ��函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. ��函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. ��设集合X、Y,我们定义X与Y的积集X×Y为 ��X×Y={(x,y)|x∈X,y∈Y}. ��积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. ��现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. ��从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
一吉一吉
函数概念的发展历史1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。2.十八世纪函数概念──代数观念下的函数1718年约翰·柏努利(Johann Bernoulli ,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。3.十九世纪函数概念──对应关系下的函数1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。4.现代函数概念──集合论下的函数1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
数学论文范文参考 数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下
不详细怎么说的清楚呢,可是一个概念的来历啊!简单来说人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出
从算法教学管窥中国古代数学史俞 昕( 浙江湖州市第二中学 313000) 关于算法的涵义, 人们有着不同的界定. 普通高中数学课程标准( 实验) 在学生算法
论文参考题目 1、非10进制记数的利和弊。 2、数的概念的发展与人类认识能力提高的关系。 3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学
中国古代是一个在世界上数学领先的国家大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“