• 回答数

    3

  • 浏览数

    327

19870629侠女
首页 > 期刊论文 > 抗菌肽的研究发展综述论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

catebutslim

已采纳

迄今为止,从不同的生物体内诱导分离获得的抗菌肽已不下200多种,仅从昆虫中分离获得的就多达170余种。人们根据抗菌肽的来源及结构性质进行了分类。根据抗菌肽的结构,可将其分为5类具有螺旋结构的线性多肽cecropins是第一个被发现的动物抗菌肽,1980年,由Boman等从美国天蚕蛹中分离得到。该类多肽抗生素一般含有37~39个氨基酸残基,不含半胱氨酸,其N端区域具有强碱性,可形成近乎完美的双亲螺旋结构,而在C端区域可形成疏水螺旋,两者之间有甘氨酸和脯氨酸形成的铰链区,多数多肽的C端被酰胺化,酰胺化对其抗菌活性具有重要作用。此后,人们相继从家蚕、柞蚕、果蝇、麻蝇中分离到了cecropins类抗菌肽。1989年,Lee等人从猪小肠中分高到了cecropin P1,说明了cecropins可能在动物中广泛存在。cecropins对革兰阳性菌、阴性菌部具有很强的杀伤力,而对真菌和真核细胞没有毒性。目前cecropins已被人工合成并已商品化。magainins也是较早发现的一类具有双亲螺旋结构的抗菌肽。最初是从蟾蜍的皮肤中分离得到的,后来在哺乳动物的神经组织和肠组织中发现了其类似物。magainins对革兰阳性菌、阴性菌、真菌、原生动物都有杀伤作用,但是对革兰阴性菌的活性比cecropins要低10倍左右。此外,从一些动物的再生性器官和两栖类的多种组织器官中分离得到了一些具有螺旋结构的多肽,如来源于南美蛙的dermaseptin和来源于树蛙的bombininh。富含某种氨基酸的线性多肽apidaecins是从蜜蜂中分离得到的富含脯氨酸的多肽抗生素,一般含有16~18个氨基酸残基,其中脯氨酸含量高达33%,精氨酸含量可达17%。apidaecins对某些革兰阴性菌具有很强的活性,而对革兰阳性菌不起作用。apidaecins对某些革兰阴性的植物病原菌和肠杆菌科的致病菌的高杀伤力,使其在植物抗细菌病基因工程和食品工业中有着很好的应用前景。drosocin是来源于果蝇的一种富含脯氨酸的抗菌肽,在结构上与apidaecins具有一定的相似性,但是在其11位的苏氨酸羟基上连接着一个O-二糖链(-N-乙酰半乳糖胺-半乳糖。)coleoptericin和hemiptericin分别来源于鞘翅目和半翅目昆虫,一级结构中富含甘氨酸,分子量一般较大。Oppenheim等人从人的腮腺和下颌腺分泌物中分离得到了一组富含组氨酸的抗菌肽,长度在7~38个氨基酸残基不等,被称为histatins。对于引起口腔感染的多种微生物具有活性。indolicidin是来源于牛中性粒细胞的多肽抗生素,因其13个氨基酸中含有5个色氨酸而得名。其C端是酰胺化的。对大肠杆菌和金黄色葡萄球菌都具有很强的杀菌活性。含有一个二硫键的多肽这是一类数量很少的抗菌肽,第1个被发现的这类多肽是bactenecin,来源于牛中性粒细胞。其12个氨基酸中含有4个精氨酸,在其第2位和第11位氨基酸残基间形成二硫键。bactenecin对大肠杆菌和金黄色葡萄球菌都有活性。这类多肽中还包括一些来源于蛙类皮肤的多肽抗生素,一般在C端有一个由7个氨基酸形成的“loop”和一个长的N端“尾巴”,如brevinin-1,brevinin-2。含有两个或两个以上二硫键的多肽这类多肽的典型代表是defensins,最初发现的α-defensins来源于哺乳动物的组织中,一般含有29~34个氨基酸残基,其中6个保守的半胱氨酸形成3个分子内二硫键,此外,其第6位和第15位的精氨酸,第24位的甘氨酸也是保守的。α-defensins可形成3层的β片层结构,通过3个二硫键和Arg-6与Glu-24之间的盐桥而被稳定。目前,defensins已被合成并已商品化。defensins对多种细菌和某些真菌具有杀伤作用,并且对真核细胞有一定的毒性。defensins对革兰阳性菌的活性比革兰阴性菌强。defenssins的活性比cecropins弱,并且通常在低离子强度下起作用。 β-defensins比α-defensins大一些,一般含有38~42个氨基酸残基。都含有3个二硫键和4~8个精氨酸。昆虫defensins在C末端与α-defensins相似,但是只有两个β片层结构,中间有一段α螺旋起稳定作用,主要对革兰阳性菌起作用,而对真菌没有作用。 植物defensins一般有45~54个氨基酸残基,可形成4个二硫键,3个β片层结构和一个α螺旋结构。植物defensins一般只对真菌起作用而对细菌没有作用。不同植物defensins对真菌的抗菌谱不同。 thionins也是一类来源于植物的多肽抗生素,含有45~47个氨基酸残基,有6个或8个半胱氨酸形成的3个或4个二硫键。其二级结构可形成2个反平行的α螺旋结构和2个反平行的β片层结构。thionins抑制多种植物致病细菌和真菌,但是对假单胞菌属和欧文氏菌属的细菌不起作用。羊毛硫抗生素羊毛硫抗生素(1antibiotics)是指一些由细菌产生的,由基因编码在核糖体中合成,经翻译后加工而含有一些特殊有机基团的多肽抗生素。其中研究最广泛的是nisin。它是来源于乳酸菌的一种抗菌肽,成熟多肽由34个氨基酸组成,含有羊毛硫氨酸、甲基羊毛硫氨酸等特殊基因。主要对革兰阳性菌起作用,而对革兰阴性菌不起作用,已被广泛应用作食品保鲜剂。nisin及其类似物在医药上的应用研究也正在进行。

252 评论

Phyllis。

抗菌肽前景广阔的新型抗生素 自发现青霉素以来,抗生素一直是人类治疗病原微生物感染疾病的有力武器,但随着抗生素的长期广泛应用,病原菌耐药性的形成也日趋严重,迫切要求开发新型抗生素,而且前从微生物中寻找新生物的难度已愈来愈大。来源于动物的抗菌肽(也称为杀菌肽,动物多肽抗生素)的发现,为开发新型抗生素提供了新的广阔的来源。近年来,对抗菌肽的理论和应用研究获得了迅速发展。 抗菌肽的发现起源于对昆虫免疫机制的研究,当昆虫受到外界刺激时,发生免疫应答反应,在体内诱导产生出具有强烈抗菌活性的物质,抗菌肽是其中重要组成成份。后来,又在两栖动物、哺乳动物中分离得到类似的具有抗菌活性的多肽,使人们对抗菌肽的起源及其在进化中的作用有了新的认识。随着对抗菌肽结构与功能、抗菌肽-生物膜相互作用机理、抗菌肽基因的分子生物学、抗菌肽基因工程等研究的深入进行,抗菌肽在医疗、农业等领域显现出广阔的应用前景。 抗菌肽的概念和分类 抗菌肽原指昆虫体内经诱导而产生的一类分子量在4KD左右,具有抗菌活性的碱性多肽物质。最初,人们在研究北美天蚕的免疫机制时,发现其滞育蛹经外界刺激诱导后,其血淋巴中产生了具有抑菌作用的多肽物质,这类抗菌多肽被命名为天蚕素(Cecropins)。后来,从其他昆虫以及两栖类动物、哺乳动物中,也分离到结构相似的抗菌多肽。迄今为止,在不同动物组织中已发现了很多具有抗菌作用的蛋白质和多肽,已有70多种抗菌多肽的结构被测定,抗菌肽的概念得到了极大的扩展。 根据抗菌肽的结构,可将其分为5类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成的肽;(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽;(3)含1个二硫键的抗菌多肽;(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽;(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。其中最早分离到的Cecropins和从非洲爪蟾中分离到的Magainins等属于第一类抗菌肽,通常也将其称为Cecropin类抗菌肽,目前对此类抗菌肽的研究也较深入。 抗菌肽的生物学效应 抗菌肽具有广谱抗菌活性,对细菌有很强的杀伤作用,尤其是其对某些耐药性病原菌的杀灭作用更引起了人们的重视。 除此之外,人们还发现,某些抗菌肽对部分病毒、真菌、原虫和癌细胞等有杀灭作用,甚至能提高免疫力、加速伤口愈合过程。 抗菌肽的广泛的生物学活性显示了其在医学上良好的应用前景。 抗菌肽的作用机制 自从发现抗菌肽以来,已对抗菌肽的作用机理进行了大量研究。目前已知的是,抗菌肽是通过作用于细菌细胞膜而起作用的,在此基础上,提出了多种抗菌肽与细胞膜作用的模型。但严格地说,抗菌肽以何种机制杀死细菌至今还没有完全弄清楚。 目前一般认为,Cecropin类抗菌肽作用于细胞膜,在膜上形成跨膜的离子通道,破坏了膜的完整性,造成细胞内容物泄漏,从而杀死细胞。 对于抗菌肽破坏膜的完整性,使细胞内外屏障丧失,从而杀死细菌这一观点已得到基本统一的认识,但对其具体作用过程、是否存在特异性的膜受体、有无其它因子协同等问题尚不十分清楚,存在不同看法。不同抗菌肽的作用机制可能不一样,尚有待进一步研究。 抗菌肽基因工程 抗菌肽在动物体内含量极微。从动物体内提取抗菌肽产量低、费时长、工艺复杂、费用昂贵,无法实现大规模生产,这成为制约抗菌肽进入实际应用的最大障碍。因此,开展抗菌肽基因工程研究具有重要意义。 目前,已进入临床应用的基因工程药物多数是采用原核表达系统生产的,但由于抗菌肽对细菌的杀伤作用,不能用原核表达系统直接表达具有生物活性的抗菌肽,而如果采用融合蛋白的形式表达,将给表达产物的后处理带来很大麻烦。因此,国内外的研究者多采用真核表达系统进行抗菌肽基因工程研究。 近年来,以酵母为基因工程受体菌的研究引起人们的重视,酵母具有比大肠杆菌更完备的基因表达调控机制和对表达产物的加工修饰及分泌能力,并且不会产生内毒素,是基因工程中良好的真核基因受体菌。自1978年Hinnen等首先试验酵母转化成功后,已有人干扰素基因、乙型肝炎表面抗原基因、α-淀粉酶基因等数十种外源基因在酵母中获得表达。国内研究者大量研究表明,利用酵母表达抗菌肽是一条可行的道路,如能在表达产率上得到进一步提高,将为抗菌肽早日进入临床应用奠定良好的基础。

343 评论

whahappy502

扫描版(部分文字乱码)分子生物学技术在动物营养学上的应用及其发展前景(上)摘要:本文从营养与基因表达调控、基因工程、转基因等三个方面综述了分子生物学技术在动物营养学中应用的最新进展,并对动物营养学的发展前景作了展望。自从发现双螺旋结构以来,分子生物学取得了飞跃性的发展,形成了以基因工程为主要内容的的现代分子生物学技术@在生物学、医学等研究中得到广泛的应用,几乎渗透到生命科学的每一个领域,成为研究和揭示生命现象本质和规律的一种重要工具。当前,世界各国都将分子生物学纳入本国科技发展的重点,可以预见,"21世纪将是生命科学的世纪,全世界所共同面临的许多重大问题,诸如饥饿与营养、疾病、能源与环境污染等问题的根本解决,在很大程度上将依赖于分子生物学技术的发展和应用。及时全面的了解和掌握分子生物学理论和技术的发展动态及研究热点,将具有重要的意义。就目前来看,我国动物营养学方面的研究工作基本尚处在机体水平:即在机体水平上研究各种营养素对机体的作用、在机体内的代谢与平衡、影响机体吸收营养素的因素等问题。分子水平方面的研究还刚刚起步,尚处于初级阶段。动物机体的生理病理变化,如生长发育、新陈代谢、遗传变异、免疫与疾病等,就本质而言,都是动物基因的表达调控发生了改变的结果,许多生理现象的彻底阐明,最终需要在基因水平上进行解释,所以动物营养学的各方面研究应与分子生物学技术,尤其是基因工程技术相结合,从分子水平上来解释各种营养素对机体的作用机制、动物机体的生理病理变化等问题,这也是动物营养学今后发展的必然趋势之一。*营养与基因的表达调控随着分子生物学技术不断发展,越来越多与代谢有关的动物基因被克隆和鉴定,人们对营养与基因调控的关系越来越感兴趣。营养与动物基因表达调控的研究已成为当今动物营养学研究的一个热点领域;如何通过改变日粮组成成分来调节体内相关基因的表达,从而使动物体处于最佳生长状况已成为现代动物营养学研究的重点;通过营养对动物基因表达的调控途径及其机制的研究,将为人们如何更加有效地对某些特定有益基因的表达提供理论依据。已有大量证据表明,主要的营养物质如糖、脂肪酸、氨基酸以及一些微量元素(如锌)对动物体内许多基因的表达都有影响。!"!营养对磷酸烯醇式丙酮酸激酶基因表达的调控PEPCK是动物肝和肾中糖元异生作用的关键酶,目前较为研究清楚的是日粮中糖含量对PEPCK基因表达的调控。糖类对PEPCK的调控主要是通过对其启动子的作用,当动物进食含有大量糖类的饲料时,PEPCK的启动了就会关闭,从而导致ABA8C水平大幅度下降,而当禁食或饲喂高蛋白质低糖的饲料时,PEPCK的启动子就会处于打开状态,从而PEPCK水平得到大幅度提高,其具体调控机制大致如下:?556D4(*0)#)等通过对大鼠ABA8C基因的分析表明,ABA8C基因启动子位于1 E+.至F#,之间,其中包含了大多数激素调控基因转录所必需的组织特异性调控元件。日粮中糖的含量水平会影响胰岛素、;?GA等激素的相对水平,而胰岛素与;?GA等激素相对水平又会影响到特异性!"#!转录因子的活性,特异性转录因子与$%$&’启动子上的相应调控元件结合与否,又会影响$%$&’基因的表达(,)。现有大量证据表明,$%$&’基因一系列复杂的调控元件中,有包括胰岛素、甲状腺激素、糖皮质激素、视黄酸对$%$&’基因转录的正调控元件和胰岛素对$%$&’基因转录的负控调元件,在上述调控元件中,*+,$调控元件-&.%/和$(-0/调控元件是最重要的两种,*+,$对$%$&’基因的诱导和胰岛素对$%$&’基因的抑制作用就是通过这两个调控元件来进行调控的。因此,当进食含大量糖类的饲料时,由于*+,$水平的急剧下降以及胰岛素水平的急剧上升,从而抑制$%$&’基因的表达,导致肝中$%$&’水平大幅度下降,当禁食或饲喂高蛋白低糖的饲料时,则情况恰好相反。!"#营养对脂肪酸合成酶($%&)基因表达的调控1+2是脂肪酸合成的主要限制酶,存在于脂肪、肝脏及肺等组织中,在动物体内起催化丙二酰&3+连续缩合成长链脂肪酸的反应,其活性高低将直接控制着体内脂肪合成的强弱,从而影响整个机体中脂肪的含量。有关营养与1+2基因的表达调控,2!4!&56789-:;;(/曾报道:糖类能诱导1+2基因的转录,而脂肪则抑制这种诱导的表达。&3<=9等(:;;>)试验研究也表明,当给禁食后的成年鼠饲喂含高糖低脂肪的饲料时,1+2基因的表达就增强,而且相应的?.@+含量的增加幅度与碳水化合物的摄入量也成正比。糖类对1+2基因表达的影响。为区分活体中激素水平变化的协同作用,13?,葡萄糖的作用效果。最近H3I73J等-:;;G/试验研究也表明,在成年大鼠肝细胞培养物中G E磷酸E"E脱氧葡萄糖水平与1+2的?.@+含量呈正相关。因此G E磷酸E"E脱氧葡萄糖极有可能是参与1+2基因表达的重要中间代谢物。脂肪对1+2基因表达的影响。&56789-:;;(/的研究表明,脂肪抑制1+2基因表达主要与脂肪抑制1+2基因转录的能力和脂肪中脂肪酸的碳链长度、双键位置和双键的数量有关,饱和脂肪酸和(J E;)族脂肪酸不能抑制1+2基因的表达,多不饱和脂肪酸($K1+)中的-J E G/和-J E(/族脂肪酸是1+2基因的有效抑制剂,研究表明,日粮中$K1+可使1+2?.@+的水平降低D>C E;>C。蛋白质对1+2基因表达的影响。,I5LJ97-:;;:/研究表明,高蛋白饲粮将抑制猪脂肪组织中1+2基因的表达,脂肪组织中1+2基因的?.M@+的含量会显著下降:用蛋白质含量分别为:)C、:#C、")C的日粮饲喂G>E::>8N的肥育猪,其脂肪组织中1+2?.@+的含量分别下降了#!:)C、::!D(C和)#!"C。由此可见日粮蛋白质将会影响脂肪组织中1+2基因的表达,但这种调控具体发生在哪个水平及其作用机理目前还不清楚。!"’营养对()*+,*基因表达的影响长期以来,我国商品猪的瘦肉率较国际优良品种低,而目前常规的育种方法已很难使之有大幅度的提高。因此OP6JN等(:;;))小鼠3Q基因的克隆成功为这方面的研究提供了新的思路。由于R9=SIJ基因具有可以大大降低动物体脂含量这一特性,因此通过营养对R9=SIJ基因表达调控的研究,将有助于深入了解R9=SIJ对动物体重的调控机制。王方年等(:;;;)研究表明,浓度从B??35 TR到:>??35 T R葡萄糖可以显著地促进脂肪细胞中59=SIJ基因的表达。!"-营养与神经肽.(/0.)基因表达的影响@$U是一种含(G个氨基酸残基的生物活性多肽,在体内具有收缩血管、影响激素分泌、调节生物节律及摄食行为等多种生物学功能,其中促进动物采食是@$U最主要的功能之一。试验研究表广东饲料第;卷第G期">>>年:"月综述广东饲料第#卷第$期"%%%年&"月综述明,限饲特别是限制能量采食将会显著提高’()在下丘脑中的表达量,*+,-.等(#/)在限饲、低碳水化合物、低脂肪、低蛋白质日粮组成的试验条件下,发现下丘脑中’()0 1’2显著提高345。!"#微量元素对基因表达的调控&!4!&锌对基因表达的调控锌作为动物体的一种必需微量元素,具有增强机体免疫功能、促进细胞增值分化、参与核酸蛋白质代谢、维持细胞周期正常进行等生物学功能。上述作用以前曾被认为主要是由于含锌酶活性的改变以及对细胞信号传导系统产生影响的结果,但近年来的研究表明,事实并不如此,锌主要是通过对基因的转录和表达的影响而产生一系列的生物学效应。6,7+.89.:;#<=认为,锌离子是>’2聚合酶的一个重要组成成分,锌对于维持>’2聚合酶的活性具有相当的重要性;另外锌通过影响1’2聚合酶活性及转录因子的作用,能够导致基因转录异常,从而使蛋白质表达也发生变化;还有饲料中锌的含量,可以通过影响金属调节蛋白的转录活性而影响金属硫蛋白(6?)基因的表达,@A88,BC:等(#3)认为可将6?基因的表达量作为体内锌状况的重要衡量指标。67’C88;#4=发现低锌日粮限制动物生长的直接原因是由于低锌抑制了体内DEF G D、EH受体、EH结合蛋白等基因的表达。&!4!"其他微量元素对基因表达的调控镉、铜、汞等元素的增加将显著提高6?基因的表达量。I+JA;#/=研究表明高铜将显著提高体内EH基因的表达水平。IC+K,:等(M$)认为铁可以通过控制01’2的稳定性和翻译过程,调节铁蛋白的水平。"基因工程技术所谓基因工程,就是按照人们的意愿在体外获得目的基因,再按预先的设计,在体外将目的基因进行酶切连接,构建成适当的表达裁体,然后导入细菌或动物细胞或机体内,以研究该目的基因的结构与功能、表达的调控机制、或者获得该基因的表达产物。分子生物学技术的核心就是基因工程,而基因克隆和表达是基因工程的核心技术。下面就抗菌肽、植酸酶,甜菜碱等,对基因工程技术在动物营养学领域中的应用作一简单阐述。$"!抗菌肽基因工程自从NJ0C:等(M&)首次从美国惜古比天蚕;HOC8JP+JKC 中成功地分离到两种抗菌肽蚕素(,:)2和N后,国内外很多科学家对这一类抗菌肽进行了深入细致的研究,发现在许多昆虫、植物、哺乳动物中均有这样的多肽存在,它们由<%多个氨基酸残基组成,不同来源的多肽的氨基酸序列具有较强的保守性且共同具有如下特点:(&)’端由碱性氨基酸残基组成;(")Q端均酰胺化;(<)绝大多数多肽在第二位均为?KP,它对杀菌活性至关重要;(/)它们都有较广的杀菌谱。其抗菌机制大致如下:抗菌肽作用于细菌的细胞膜,破坏膜的完整性,造成离子通道,最终导致细胞内含物的泄漏。由于抗菌肽具有广谱杀菌作用、相对分子量较小、热稳定、水溶性好等优点,更为重要的是抗菌肽对真核细胞几乎没有作用,仅仅作用于原核细胞和发生病变的真核细胞,在目前不少病原菌对原有抗生素逐步产生耐药性,尤其是肉用动物长期使用抗生素受到严格检查和批评时,对畜禽体内自然产生的抗菌肽功能的了解以及设计一种方法来调节动物体内自然抗菌肽的功能便显得极为重要,其中通过抗菌肽基因的克隆与表达而大量生产抗菌肽是一种较为直接而有效的方法。目前昆虫和植物抗菌肽基因工程,在国内外已有不少成功的报道,但就畜禽抗菌肽基因工程国内外尚未见报道。因此,运用基因工程技术,通过对畜禽抗菌肽的研究,对提高畜禽的抗病能力、减少甚至替代抗生素的使用将起积极的促进作用。目前,猪抗菌肽((1 G<#)已被发现(8..等,M#),它是一个分子量为/3道尔顿的肽,从猪肠中分离,属于富含(KJ G 2KL的肽家族,不裂解野生型大肠杆菌,但对突变型R&"有作用,其作用机制是通过阻断蛋白质和>’2的合成,从而导致这些成分的降解。(1 G<#在一个单层囊泡中可以诱导钙的降低和电流的线性增加,此诱导与肽浓度和膜上甘油磷酸脂(带负电荷)有关。另外在猪小肠中,还发现另一种抗菌肽,:(&,它是以裂解细菌来完成杀菌作用的。2::;#4=运用基因工程技术从猪骨髓1’2中克隆到一种新型的7>’2,其编码一个3M残基的抗菌肽’R G 8O9,:,有三个分子内二硫键,这种肽对’R G敏感型的肿瘤细胞株)2Q G&有裂解活性,但不裂解红血球细胞。;!"#!分子生物学技术在动物营养学上的应用及其发展前景$下%郑家茂赵国芬许梓荣!"!植酸酶的基因工程植酸酶的研究已有近.’年的历史,植酸酶作为一种单胃动物的饲料添加剂,其饲喂效果已在世界范围内得到广泛的确证,随着饲料工业的发展和分子生物学的兴起,从(’年代开始的植酸酶的分子生物学研究,已成为世界性的研究热点之一。目前国内外研究的主要思路集中在通过基因工程这一手段解决饲用植酸酶的两个主要问题:一个是植酸酶在天然材料中表达水平太低,这造成植酸酶难以大量生产及生产成本过高的问题,通过基因工程技术,利用生物反应器则有望成百上千倍地提高它的表达量;另一个问题是天然植酸酶的一些酶学性质,如耐温性,/0适性、催化活性等不能完全适合饲料加工业和养殖业的要求,利用基因工程手段在分子水平上对植酸酶基因进行改造,从而提高其在饲料中使用的有效性。#!#!&在微生物中高效表达植酸酶基因目前,植酸酶基因表达的研究主要集中在来源于曲霉的植酸酶基因/123和/425上。06789:;<=>?4@8等$&(("%将来源于3!A:BCDDEFFG"&"-的/123基因导回原菌株,使/12基因的拷贝数增加到&-个以上,从而使植酸酶的表达量提高到,H’’C I D4。J174:B1等(&((-)在3!K72L6?中表达来源于酵母的植酸酶基因和来源于3!;:操纵元能在烟草中表达,因此将.’/01研究室得到的%&’操纵元;!:?@7A,片段导入烟草,探讨甜菜碱是否能表达是一个诱人的研究领域。"转基因技术转基因技术是指用实验手段,将外源基因导入动物细胞或动物受精卵中,由此稳定整合到动物基因组,并能遗传给子代。目前常用的转基因技术主要有:显微注射法;胚胎多能干细胞虫;精子裁体法;反转录病毒载体法以及电转移技术等等,其中显微注射法是最常用、最有效的基因导入技术。目前培育成功的转基因动物绝大部分是采用该方法获得的。最早的转基因动物是将疱疹病毒基因与BCDE早期启动子联在一起,用显微注射法导入小鼠受精卵获得的转基因小鼠。目前,在动物营养领域转基因技术的研究主要包括:"!3提高动物生长性能生长激素$FG+在动物生产中基本上采用注射方法,虽然有一定的促生长作用,但程序复杂繁琐,解决思路之一就是采用转基因技术。G(11&/等$35;8+人生长激素$HFG+转基猪研究成功,这种转基因猪的生长速度比对照组高出38I,日增重可达3#:"J,饲料利用率提高#3I,采食量减少#EI,陈永福$3553+用自己构建的融合基因KL9 M NFG获得了转基猪,其生长速度提高33!;I O 3D!#I,饲料利用率提高3EI。另外,转基因羊、转基因鸡、转基因兔、转基因牛、转基因鱼等研究也相继获得成功。"!#改变动物体内的代谢途径动物营养研究表明,有些生长发育和维持所必需的营养物质必须由外界供给,例如赖氨酸,但是否可以不必由外界供给呢?可行的方案不外乎这么两种:一种是重建动物体内某些丢失的代谢途径;另一种是导入目前在动物体内尚未发现的代谢途径。转基因技术的出现提供了通过改变动物代谢途径从而让动物自身合成赖氨酸的可能性。-&&.等$355E+已经清楚大肠杆菌合成赖氨酸途径中的酶基因编码,运用基因转移技术也证明了在细胞中施行这些途径的可行性,因此-&&.等提出设想:把赖氨酸在微生物中生物合成的途径导入动物体内,使动物自身就能合成赖氨酸。"!"提高动物产毛性能由于胱氨酸在羊瘤胃中降解,所以饲料中加入胱氨酸并不能提高产毛量。因此能够得到一种自身合成胱氨酸的转基因羊,将会大大提高羊毛产量。P(/Q$3553+发现某些细菌能将硫固定并转化为胱氨酸,他们分别在大肠杆菌和沙门氏菌中分离到了丝氨酸乙酸转移酶基因和K 4乙酰丝氨硫化氢解酶基因,并且将这两种基因与金属硫蛋白$L9+基因启动子联接;并在"R端装上FG基因的序列,然后将这组调控序列通过转基因技术导入羊体内而得到高产羊毛转基因绵羊。D展望综上所述,以基因工程为核心的分子生物学技术应用于动物营养学研究领域,具有很大的潜力,它不仅为动物营养学研究提供了一套全新的技术和方法,而且可在基因水平上解决许多动物机体生理病理变化、营养素的代谢调节机制以及其与机体的相互关系等问题。我们可以设想,基因工程抗菌肽完全可以减少甚至替代抗生素的使用;随着转基因技术的日益完善,各种生长性能优越的动物新品种将层出不穷;用转基因动物来大量生产各种生理活性物质,也将成为现实。无可置疑,#3世纪是高新技术畜牧业应用大发展的时期,以基因工程为主导的分子生物学技术将会为我国的畜牧业的发展开辟广阔前景。

310 评论

相关问答

  • 喹诺酮类抗菌药研究发展论文

    1.非甾体抗炎药物的合成及抗炎镇痛活性的研究 2.硫杂杯芳烃金属配合物的合成及抗癌活性研究 3.奥沙普嗪的化学结构修饰研究 4.分蘖葱头中甾体皂苷成分的分离和鉴

    草莓牛奶L 3人参与回答 2023-12-08
  • 食用菌食用研究综述论文

    第一章 食用菌的营养成分自古以来,菌类就受到广大人民的喜爱,被誉为“山珍”,与海味一样都是席上珍品。它营养丰富,滋味鲜美,并具有独特的、其他食品无法替代的风味。

    蓝晶灵儿 2人参与回答 2023-12-09
  • 制备蛋白肽研究进展论文

    随着生物工程技术的迅速发展,生物技术活性物质不断面世,已有不少生物技术药物应用于临床,国内外已批准上市的约40多种,1995年开发数为234种,目前正在研究的则

    清水颐园 3人参与回答 2023-12-06
  • 关于食用菌发展的研究论文

    有,而且不止一篇,但是怎么给您? 有邮箱么? 先上个截图,看是不是您要的…… ============= 整出稿子给你吧,但字数超过限制了…… 中国的食用和药用

    浮生若梦圈 2人参与回答 2023-12-10
  • 皮革抗菌技术研究进展论文

    浅谈当前我国纺织产品开发现状当前.全球纺织消费总t继续保持增长.但欧美市场已经接近饱和.零售业市场竞争加剧使产品分化愈加清晰,纺织服装“快拐时尚“的消费特征更加

    starjing99 1人参与回答 2023-12-08