雪蓝的枫叶
电动机故障诊断技术的应用分析论文
无论是在学习还是在工作中,大家一定都接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。相信写论文是一个让许多人都头痛的问题,下面是我收集整理的电动机故障诊断技术的应用分析论文,欢迎阅读与收藏。
摘要:
当前,大型机械设备中安装电动机是非常普遍的,是辅助机械设备生产功能的一种手段,然而电动机在长期不间断工作,在电能转化为机械能的过程中造成温度持续上升、电动机性能降低、工作效率低下、电动机出现故障的情况,因此故障诊断技术的快速发展是延长电动机使用寿命的关键。本文立足于现实角度,针对现阶段电动机容易出现故障的类型,维修管理中应用的故障诊断技术的如何应用进行分析。希望通过本次研究,来探讨故障诊断技术在电动机维修管理上的应用情况,从而对相关专业知识有更深层次的理解。
关键词:
故障诊断技术,电动机,维修管理,技术
引言:
电动机的出现可以追溯到上个世纪初,随着二次工业革命的快速发展,电动机发挥了巨大的作用。随着我国科学技术、生产技术的突飞猛进,电动机在制造业、工业、农业中发挥了巨大的作用。然而长时间通过工程机械高频率使用电动机,很容易造成电动机故障。因此,故障诊断技术也顺势而生,当前电动机的故障主要包括四种类型,然而该如何进行故障诊断,从而对症下药,是当前专家学者与技术人员共同重视的问题,也是需要持续研究的课题。
1、电动机出现的故障类型分析
转子故障
转子故障主要是因为电动机在长期运行的过程中,由于转子长期处于机械制动的高频率里,所以很容易存在转子故障。电动机转子也包括两个板块:定位轴承、非定位轴承。定位轴承主要是承担转子在高速运转过程中承担负荷力度。在电动机运行的过程中为了避免其他外部作用力造成的损害电动机的情况,还需要安装非定位轴承。
因此,定位轴承与非定位轴承都可能因为电动机遭受了各种作用力造成损害或者损毁的情况,最终导致电动机出现转子故障,这种故障出现是电动机的常见故障之一,也是电动机无法持续运转的关键因素,最终形成断条。
定子故障
定子故障的产生很大程度是因为电动机的外部绝缘体受到了损害导致的;还有一种可能是由于电动机在使用的过程中出现了匝间短路故障。一旦出现了匝间短路则匝间绝缘需要承担暂态过电压。出现这种情况很大程度上是由于电动机长期处于较差环境中,并且持进行高速作业,造成的短路故障、绝缘变形、绝缘损坏的情况下出现的定子故障。
定子故障的产生也是非常常见的,维修人员可以通过故障检修技术来探讨电动机的使用状况、预计电动机的未来使用寿命。定子故障的产生也说明电动机的各个零部件、线路的性能出现了问题。
气隙偏心故障
气隙偏心故障的产生是由于电动机在组装过程中产生零部件、线路出现偏差。出现这种故障一般情况下是由于组装问题、组装人员专业素质导致的。
出现气隙偏心故障的另一原因就是电动机长期作业,在不断震动和高频度使用的过程中造成了零部件松动、轴承故障,或者是因为定子铁芯内径的椭圆度不符合电动机的长期作业指标,从而导致的气隙偏心故障。一旦出现这种故障,很容易产生连锁效应,导致电动机无法正常运作,最终导致定子、转子之间出现了间隙。当电动机无法正常运转时,自然对工程机械的使用造成了困难。
轴承故障
轴承故障的产生原因与气隙偏心故障有相似之处,也是由于零部件长期作业的过程中出现了松动、间隙之后产生的问题。由于轴承承担着电动机运转的多方力量,所以在实际运作的过程中很容易出现温度升高的情况。当温度不断升高,则轴承的径杆因热量影响,产生胀力,从而使轴承松动。电动机的轴承受到转子重力的影响,也必然会导致轴承径杆的表面因为长时间的旋转导致了磨损的情况。再加上轴承圈和轴表面在长期的旋转中呈现机械摩擦,最终导致电动机内部出现热量,最终对轴承造成破坏,导致电动机无法正常、持续的运转。
2、电动机故障诊断技术的应用分析
神经网络诊断
神经网络诊断的方法是目前使用较多的一种诊断方法。神经网络诊断是模仿人类大脑神经元结构,将电动机内部作为大脑结构,从而建立起非线性动力学网络系统,最终由各个单元进行集成式扫描处理,高度并联。
通过互联网数学模拟的能力,进行电动机的故障诊断工作。神经网络诊断方法与传统的计算机诊断方法有所不同。只需要通过软件编制相应的程序,以软件编制任务为基础,高度实行诊断指令,感知与处理电动机内部各个零部件的参数、具体数据,并对比故障之前的.电动机各项零部件的参数,从而扫描出高故障的零部件样本。
通过这种方法,能够更强的感知到电动机内部故障,判断是定子故障还是转子故障,并判断什么区域的零部件出现了松动、磨损的情况。因此,可以看出神经网络诊断主要是将电动机内部各项参数提前掌握,最终实现运算、对比、扫描工作来确诊。
专家系统诊断
专家系统故障诊断与神经网络诊断有相似之处,前者是依靠互联网数字技术,而专家系统诊断则是依靠了人工智能技术。该技术是综合了电动机故障检修相关专家的意见,并结合智能技术检测电动机各项参数,最终进行综合判断。
在使用专家系统诊断时,工程师需要根据自身知识素养来建立诊断模型,通过模型对比,逐一排查的方式,对电动机故障确诊。这种方法是目前较为新颖的检测技术,在建立模型、与专家系统诊断结合的过程中,能够对应解决故障,针对性延长电动机使用寿命,而且综合判断的准确率很高,在快速检测中实现全面排查工作,还能够对电动机有更加系统的诊断报告,帮助相关人员了解与判断电动机状态、未来预计使用寿命。
信号处理诊断
信号处理诊断技术是针对电动机发生故障后发出信号、指令来判断故障情况。除了一些先进的电动机机器设备外,一些企业会在电动机的绝缘设备上安装诊断用信号处理装置,通过安装这种装置,能够完全对应信息处理要求。而维修人员、工程师则根据信号处理诊断技术,对电动机发出的信号时域、时频来进行分析(分析内容是信号的时域、频域、频率分量的变化、信号非平稳时的时变函数判断),从而对相关设备发出的故障进行计算、参数对比,信号处理方式。
混合诊断方法
混合诊断方法也是常见的故障诊断技术,是结合以往的应急型故障诊断方法(该方法需要综合素质较高的工程师、检修工人来进行,结合仪器检测来综合判断电动机故障原因,但由于是肉眼检测和主观判断检测,所以准确率不高)的基础上,结合电动机维修管理工作,实施定期维护、管理工作,来进一步获取电动机内部定子、转子、各项零部件的数据参数,从而避免一旦出现故障会出现明显的数据误差,不利于判断重点损坏区域。当前,这种故障诊断技术随着互联网技术、数字技术的推进,也逐渐走向智能化,方便检修人员实时进行参数对比,方便预判电动机的状态,制定故障维修方案。
3、结束语
本文主要分析的是故障诊断技术在电动机维修管理中的应用,针对目前电动机故障类型进行系统分析与探讨,并针对故障诊断技术的分别具体应用进行详细的探讨,希望通过本文的分析,能够对相关专业知识有更深层次的了解。电动机是工程机械运行的重要组成部分,因此了解故障诊断技术的基础上,能够对相关专业研究有一定的引导作用。
参考文献
[1]刘迎春.故障诊断技术在煤矿机电设备维修中的运用探讨[J].现代工业经济和信息化,2019,9(02):111-113.
[2]王镇林.“电动机故障诊断”实训教学中任务驱动教学法的“微课”应用[J].科技创新导报,2018,15(31):144,146.
[3]孙慧影,林中鹏,刘银丽,李萌.基于随机游走蜂群算法优化的RBF神经网络电动机故障诊断研究[J].水电能源科学,2017,35(08):165-168.
大实现家
故障诊断技术在设备维修的应用论文
摘要 :根据矿山机电设备的特点及使用情况,对现代故障诊断技术在矿山机电设备维修中的应用做了进一步的探讨,尤其是对其中的智能故障诊断技术进行了重点研究,希望借此可以为矿山机电设备的维修提供参考。
关键词 :故障诊断;机电维修;智能诊断
在现代矿山生产过程中,高技术含量的机电设备在煤矿生产一线获得了广泛的应用,但是因为受到工作环境等方面因素的影响,机电设备在运行过程中会出现故障,给煤矿安全、稳定生产带来了隐患。利用故障诊断技术能够深入地了解机电设备运行过程的典型状态,还能够检测出设备运行过程中存在的潜在隐患,及时发现设备存在的主要问题,为故障预测和处理提供可靠依据。因此,找到矿山机电设备故障产生的主要原因,并利用故障诊断技术对原因进行及时准确的诊断分析,对保证机电设备的正常稳定运行以及矿山的生产安全都是非常重要的。
一、矿山机电设备产生故障的原因
(一)机械零部件配合关系变化。导致矿山机电设备出现故障的原因主要是设备的机械零部件关系变化或者零部件自身损伤而造成的。其中,零部件损伤有设备运行过程中相关零件之间的相互影响的因素,这种影响使零部件自身在形态、尺寸、功能等方面发生了变化,不能够充分发挥其应有的性能。
(二)设备长期超负荷运行。在实际的使用过程中,若一台设备的实际运行情况超出了其极限应用范围,则该设备会在很大程度上因为超负荷而出现故障。
(三)设备自身性能损耗。机电设备在运行过程中会因为内部和外部因素的影响而使其运行能力持续消耗,包括设备机械零部件的磨损、电子设备的老化等,这些因素使得设备的综合能力开始下降,最终出现各种类型的生产故障。
二、矿山机电设备的故障诊断
(一)设备故障诊断的方法。在通常情况下,设备故障诊断属于一种防护措施,是在不影响基本生产流程的情况下判断该设备各个部分的参数是否处于最佳的应用状态中。在诊断中,通过使用精密设备获得被检测机电设备的运行数据,确定其是否适合运行,是否发挥其正常的功能,是否存在出现损坏的因素等。若发现异常,则分析导致该异常的主要原因、损坏程度有多大、是否能够继续使用,并根据其实际受损程度判断其继续使用的时间。
(二)设备故障诊断的原理。所谓设备故障主要是指设备因为零部件受损或者在使用过程中因为不同因素的影响。这时,一旦出现故障,这些参数的变化将直接作用于设备的零部件,使得其发生物理变化,导致零部件的性能也随之出现变化,这种变化就是所谓的特征因子。这些特征因子可以精确的反映机械系统的实际故障状态,因此也被称作为故障敏感因子,只有这些故障敏感因子处于正常的阈值范围内时,设备才不会出现故障。故障诊断技术就是监测这些敏感因子,一旦矿山设备的故障敏感因子超出了阈值范围,就要发出告警。
三、故障诊断技术在矿山机电设备维修中的具体应用
(一)故障历史记录诊断方法的应用。当机电设备出现故障时,应该及时的分析导致该设备出现故障的相关原因,分析哪些是造成故障的主要因素。这是基于矿山机电设备组成原理而采取的一种典型故障诊断方法。当设备出现故障时,必须分析造成故障的因素,检查设备运行过程,获得最终的分析结果,并将这些结果进行归纳总结,形成一个该类型设备的故障诊断手册。在设备的后续运行过程中,当设备再次出现故障使,就可以根据典型的故障类型判断导致故障的原因,对故障进行针对性的处理、维修。
(二)温度、压力监测诊断方法的`应用。矿山机电设备中大量使用摩擦副、轴承和齿轮传动箱等机械设备,在这些部位设置温度、压力传感器可以实现对这些关键零部件运行状态的在线监测。通过连续对这些部位进行监测、记录相关数据的历史变化情况,可以快速、直观、准确的反应出机电设备的实际运行状态,还能够预测其运行状态变化趋势,从而为设备的维修提供可靠依据。温度、压力是矿山机电设备需要检测的典型参数,能够正确、精确的反映设备的真实工作状态。
共3页: 上一页123下一页
(三)智能诊断方法的应用。智能诊断方法就是通过系统控制的方式,模拟人脑特征,能够快速的获得机电设备的故障信息,并及时的进行传递、处理、再生及应用,通过与系统配合还能够实现设备运行状态的实时监测和预测,为机电设备及系统的运行、维修提供可靠的数据参考。智能诊断方法包括模糊诊断法、灰色系统诊断法、专家系统、神经网络诊断方法等。当前,智能故障诊断领域中最为活跃的方法是专家系统和神经网络方法,这两种方法在矿山机电设备故障诊断中具有较大的应用潜力。这主要是因为矿山机电设备的故障一般具有较强的复杂性和隐蔽性,使用传统的故障诊断方法难以精确、快速的对故障进行定位和分析,而通过应用专家系统或者神经网络,能够模拟人脑思维方式,根据反馈的故障信息快速的进行分析和求解,获得可靠的分析结果。
参考文献:
[1]张瑞景.运用故障诊断技术进行矿山机电设备维修[J].房地产导刊,2014(18).
关于汽车故障诊断技术的发展与应用现状研究的论文 所谓的汽车故障诊断技术,主要就是利用汽车以及内燃机的相关理论,并且结合汽车故障的诊断学作为理论上的指导,通过汽车
技师专业论文工种:汽车维修工 题目:凌志LS400轿车故障灯亮故障排除及氧传感器系统报警检测方法姓名:钱亚亮 学校:西安北方汽车修理职业培训学校 日期:2009
汽车故障诊断技术论文篇二 汽车检测与故障诊断技术研究 [摘 要]随着现代汽车技术的快速发展,汽车的结构越来越复杂,高新技术特别是电子技术
摘要:随着电子技术在汽车上的普遍应用,汽车电路图已成为汽车维修人员必备的技术资料。目前,大部分汽车都装备有较多的电子控制装置,其技术含量高,电路复杂,让人难以掌
怠速不稳的论文怠速不稳是发动机维修中遇到最多的故障。如果诊断思路不正确会延长修理时间、降低工作效率,甚至使车主等待不及而转到另一家汽修厂。本文是笔者在长期实践中