azaarsenal
移动通信基站的防雷与接地问题探讨工学论文
摘要: 本文论述了移动基站防雷接地系统经常出现的问题,介绍了移动通信基站防雷接地的重要性,防雷接地系统的构成和基本要求,并结合多年运维经验提出根据实际情况设计移动通信基站防雷接地系统的设计思想。
关键词: 移动通信;基站;防雷;接地
简介由于移动通信基站的天线设置大多安装在建筑物的房顶上,还有一部分安装在铁塔上,相对周围环境而言,形成十分突出的目标,从而导致雷击概率增多。通信设备损坏,耗费了大量人力财力。怎样才能有效地预防雷害,确保移动通信基站设备和工作人员的安全呢?几年来的维护经验告诉我们:必须根据每个基站的实际情况设计移动通信基站的防雷接地系统,实施基站针对性防雷。
1认清移动基站雷害的主要原因
移动基站防雷是一个复杂的系统工程,过去我们按照防雷理论[1],尽量提高基站防雷系统的泄流能力,选用了80kA甚至100kA的大型防雷器,但是防雷效果却不尽人意,经常出现基站防雷器没有明显动作,基站设备却已经发生损坏[2]。是防雷器不好吗?不,防雷器都是检测合格的入网产品。原因是没有按照基站的实际情况设计防雷系统。经调查统计了黑龙江省近两年来的雷击事故,得出一条重要数据;基站内设备被直击雷和雷电感应破坏的概率为零。这是因为基站设备包括基站室外电力变压器的位置普遍较低[3],完全处于建筑防雷设施或铁塔以及架空线路避雷系统和建筑防雷等外围的避雷系统泄放,所以基站设备很难遭到直击雷损害。
2防止地电压反击是基站防雷接地的主要课题
当雷电流基站附近的避雷器对地泄放时,由于接地电阻的存在必然引起基站工作地的电位升高,基站直流负荷如BTS电源、开关电源的监控单元、基站的动力环境监控器等设备相对远端地一般都存在寄生电容,这些设备一端接工作接地,无流的远端地与基站的工作接地间存在电位差,因而产生差模脉冲电压[5]。当超过设备绝缘耐压的容许限度时必然造成设备的损坏。基站的单相交流负荷如基站空调、照明等设备的零线接在变压器的交流地上,当雷电流沿基站附近的避雷器对地泄放时,变压器的交流地和交流重复接地电位也会升高,因此基站的单相交流设备也同样存在地电压反击的问题。
若把基站设备与接地有关的电路简单等效为线路电阻、线路寄生电感(可忽略不计)、线路负载(如传感器、BTS、空调、灯具等)、终端对远端地寄生电容组成的串联回路。假设基站的冲击接地电r为2欧姆,防雷器对地的泄放电流为2kA,这时基站的接地排的瞬间电压为U=1×r=4kV,可见负载两端的瞬间浪涌电压可达4kV,如不采取措施,必然造成设备损坏。
3因地制宜消减反击电压
怎样才能避免地电压反击造成的`损失呢?一般很自然会想到使用交流过压保护器和直流浪涌抑制器,即在交流变压器的低压侧、基站交流配电箱的地零间加装交流过压保护器;在直流负载的电源输入端加装浪涌抑制器。所有交流过压保护器和直流浪涌抑制器必须靠近被保护的设备安装,避免被保护设备由于接地或电源引线过长引起脉冲反射。除此之外一个非常重要的问题就是将基站的工作接地与室外避雷器接地在基站地网上的引接点分开焊接,这样可以大大降低基站工作接地母排的电压浪涌幅值。众所周知,雷电电流沿地网泄放时,在避雷器引下线与地网连接点附近土壤内形成一个强电位场,距离越近电压越高。将基站工作接地与室外避雷器接地分开,可以大大降低基站的反击电压。所以YD5068-98《移动通信基站防雷与设计规范》明确指出:基站工作地与防雷地在基站联合接地网上的引接点距离不应小于5m,条件允许时宜间距10~15m。实际上除电力线路外,基站的铁塔遭雷击次数最多,与铁塔共用接地网的基站经常受到地电压反击的损害,如果铁塔地网边缘距离基站大于5m,应在基站附近另建环形工作接地网;条件差的基站可以沿铁塔地网与基站工作接地引接线,补设接地桩;只能利用铁塔地网的基站也应把铁塔避雷接地的引接点与工作接地的引接点分别在对角塔基上安装。
对于山项基站尤其应注意将基站的工作接地与铁塔避雷接地及站基室外接地分开,因为山顶基站的接地电阻较大,接地引线较长,雷电流泄放相对缓慢,所以地电压反击比较严重。
降低基站接地电阻也有利于电压反击事故。接地电阻较大的山上基站,可利用塔基钢筋、蓄水池、无爆炸和电击危险的金属管路等自然接地体,埋设地桩有困难的山上基站也可从塔基沿山体的自然沟壑,最好选择阴暗潮湿的地方,制作横向辐射接地网,辐射接地网长度应小于30m,塔基四周辐射的横向接地网越多也有利于雷电散流。
4适当地选用电源线路保护空开
防止雷电波侵入避雷的响应特性有远近软硬之分:气体放电管和火花间隙防雷器是基于斩弧技术的角形火花隙和同轴放电火花隙,当线中电压超过防雷器的击穿电压后,防雷器的绝缘电阻立刻急剧下降,放电能力较强,残压相对较高,恢复电压低于原来的击穿电压,属于硬响应特性;属于软响应特性的压敏电阻和浪涌抑制二极管,其特点是响应时间短,放电电流小,残压低,而且恢复电压基本不变。硬响应特性的防雷器工频后续电流和防雷器绝缘劣化可能造成线路短路,所以防雷器前面应该配置过流保护空气开关或熔丝。其额定电流应小于防雷器的最大短路允许强度。如果主电路保护空开关大于防雷器的最大保险丝强度,应设避雷器分路保护空开。
5实现分级防雷
防雷器的残压是保护基站设备的最重要参数,一般来讲,泄流能力强的防雷器,响应时间长,残压高。世界上没有任何一种防雷器能满足所有混合雷电冲击波、残压以及响应时间指标要求,所以应根据基站电源设备的绝缘等级划分防雷层次,实现多级防护,对雷电能量逐级减弱,使各级防雷器残压相互配合,最终使过电压值限制在设备绝缘强度之内。另外多级防护对于某一级防雷器失效、防雷器的残压不配合设备绝缘强度等也是必须的。我们认为应该结合YD5078-98《通信工程电源系统防雷技术规定》和基站的实际情况,从交流电力网高压线路开始,根据基站主要电源配套设备的耐雷电冲击指标和防雷器残压要求,采取分级协调的防护措施,进行基站的防雷系统设备。避雷器的直流1mAA参考电压是我们选择避雷器的绝缘要求,选用时应考虑电网的电压波动上限值和操作过电压远小于直流1mA参考电压。
实现各级防雷器的能量分配与电压配合的要点在于利用两级防雷器之间线缆本身的感抗。电缆本身的感抗有一定的阻碍电流及分压作用,使雷电流更多地被分配到前级泄放。当保护地线与其它线缆紧贴敷设或处于同一条电缆之内时,要求两级防雷器之间线缆长度在15m左右,当防雷器接地线与被保护电缆有一定距离(>1m),这时要求线缆长度大于5m即可。在一些不适合采用线缆本身作退耦措施的,如两级防雷器靠近或线缆长度较短时,可利用专门的退耦器件,这是无距离要求。
参考文献
[1]YD5068-98移动通信基站防雷与接地设计规范[S].
[2]张殿富.移动通信基础[M].北京:中国水利水电出版社.
[3]金山,刘吉克,陈强.YD/T 1429-2006通信局(站)在用防雷系统的技术要求和检测方法[S].2006.
[4]曹和生,吴少丰,匡本贺.GB/T 21431-2008建筑物防雷装置检测技术规范[S].2008.
[5]张农.关于基站防雷接地的问题[J].邮电设计技术,2004(4).
cissy521121
施工临时用电的存在问题及解决方法论文
[摘要]针对建设工程施工现场临时用电具有明显的特点,为保障施工现场人的生命及设备财产安全,本文对施工现场临时用电存在的具体问题及按有关规范标准解决方法进行了阐述,希望能为大家提供参考借鉴。
[关键词]施工现场 临时用电 存在问题 解决方法
一、用电管理
1.存在问题。(1)工地无配备专业电工,而是让略懂些用电知识的人员去从事电工作业。(2)电工不按规范设置用电线路和保护措施。(3)临时用电工程无编制专项施工组织设计,没采取必要的安全防护措施。(4)编制的用电施工组织设计没有负荷计算,无线路图,有的和施工现场实际脱节,根本起不到指导施工用电的作用。
2.解决方法。(1)安装、巡检、维修或拆除临时用电工程必须由电工完成。(2)电工工作属于特种作业,特种作业由于对操作者本人及他人和周围设施的安全有重大危害因素,因此需经过国家规定的有关部门组织的特种作业人员安全培训,在取得操作证后方准其作业。(3)电工作业时应正确穿戴相应的劳动保护用品。(4)施工现场用电设备在5台以上或设备总容量在50KW及以上者,应编制用电施工组织设计。
二、三级配电系统
1.存在问题。(1)配电系统没按“总配电箱(或配电柜)—分配电箱—开关箱”方式设置形成三级配电。(2)各级配电箱没按要求实行分级保护,扩大了事故停电范围。
2.解决方法。(1)总配电箱设在靠近电源的区域,分配电箱的距离不得超过30m,开关箱与其控制的固定式用电设备的水平距离不宜超过3m。(2)施工现场应按“一机一箱一闸一漏”设置。(3)总配电箱(或配电柜)、分配电箱、开关箱保护参数(延迟时间、动作电流)应按过载保护的延迟时间总配电箱比分配电箱长,分配电箱比开关箱长;过载保护的额定动作电流总配电箱比分配电箱大,分配电箱比开关箱大原则选择。达到分级保护的目的。
三、二级漏电保护系统
1.存在问题。(1)用电系统漏电保护的设置少于二级。(2)漏电保护器安装于靠近电源一侧。(3)漏电保护器参数不匹配或动作失灵。
2.解决方法。(1)二级漏电保护系统是指用电系统至少应设置总配电箱漏电保护和开关箱漏电保护二级保护,总配电箱和开关箱中二级漏电保护器的额定漏电动作电流和额定漏电动作时间应合理配合,形成分级分段保护。(2)漏电保护器应安装在总配电箱和开关箱靠近负荷的一侧,即用电线路先经过闸刀电源开关再到漏电保护器,不能反装;漏电动作电流≤30mA额定漏电动作时间≤,使用于潮湿场所的漏电保护器额定漏电动作电流≤15mA,额定漏电动作时间≤。(3)总配电箱中漏电保护器的额定漏电动作电流应大于30mA,额定漏电动作时间应大于,但其额定漏电动作电流与额定漏电动作时间的乘积不应大于。(4)漏电保护器应动作灵敏,不得出现不动作或错误动作的现象,应按产品说明书安装使用,应逐月检验其特性。
四、保护接零
1.存在问题。(1)保护零线引出不符合规范,重复接地点不足。(2)保护零线没随所有线路自始至终敷设,没与用电设备外壳相连,起不到保护作用。930没采用专门色标的电线作保护零线,线径过小。
2.解决方法。(1)施工现场专用的电源中性点直接接地的电力线路必须采用TN-S接零保护系统,保护零线应由工作接地线、配电室(总配电箱)电源侧零线或总漏电保护器电源侧零线处引出,单独敷设,不作他用。(2)在TN接零保护系统中,通过总漏电保护器的工作零线与保护零线之间不得再做电气连接。(3)TN系统中的保护零线除必须在配电室或总配电箱处做重复接地外,还必须在配电系统的中间处和末端处做重复接地,每一处重复接地电阻应不大于10Ω。(4)保护零线应采用绿黄双色线,任何情况下均不得用绿黄双色线作负荷线。(5)三相四线制架空线路的保护零线截面不小于相线截面的50%,单相线路的保护零线截面与相线截面相同,用电线路中的保护零线最小截面为5mm2,配电装置和电动机械相连接的`保护零梯级开发应为截面不小于 mm2的绝缘多股铜线.保护零线应从线路始端开始设置,随线路至末端,与电气设备(包括电箱)不带电的外露可导电部分相连。
五、电箱设置
1.存在问题。(1)电箱内无隔离开关或设置不规范。使用木制电箱,电箱无标记。(2)电线从电箱箱体侧面、上顶面、后面或箱门进出。电器安装于木板上。(3)电箱安装位置不合理。
2.解决方法。(1)配电箱、开关箱应采用冷轧钢板或阻燃绝缘材料制作,钢板厚度应为,其中开关箱箱体钢板厚度不得小于,配电箱箱体钢板厚度不得小于,箱体表面应做防腐处理。配电箱、开关箱外形结构应能防雨、防尘。配电箱和开关箱应进行编号,并标圾其名称、用途,配电箱内多路配电应作出标记。(2)总配电应高干地电源进线端,即为电线进入电箱后的第一个电器。隔离开关应采用分断时具有可见分断点,能同时断开电源所有极的隔离电器,不能用空气开关或者漏电保护器作隔离开关,不得使用石板开关。(3)电线应从电箱箱体的下底面进出,电箱进出线口处应作套管保护。 (4)电箱的安装应符合以下要求:一是配电箱、开关箱应装设端正、牢固,固定式电箱的中心点与地面的垂直距离为,移动式电箱中心点与地面的垂直距离宜为。二是配电箱、开关箱前方不得堆放妨碍影响操作、维修的物料,周围有足够2人同时工作的空间和通道,电箱安装位置应为干燥、通风及常温场所,不受振动、撞击。
六、线路敷设
1.存在问题。(1)用电架空线路架设在脚手架上,或穿越脚手架引入在建工程。(2)采用木杆或者钢管作为电线杆。(3)架空线路和灯具架设高度过低。(4)电线外皮老化、破损,绝缘性差。
2.解决方法。(1)施工现场用电线路的敷设应架空或埋地敷设。(2)室外架空电线最大弧垂与施工现场地面最小距离4m,与机动车道最小距离6m,与建筑物(含外脚手架)最小距离1m。(3)室内配线距地面高度不得小于。电缆沿墙壁敷设时最大弧垂距地不得小于2m。(4)电杆不得采用竹竿,宜采用钢筋混凝土杆或木杆。木杆梢径不应小于140mm。(5)电缆线路严禁穿越脚手架引入在建工程必须采用电缆埋地引入。(6)(TN—S)接零保护系统的电缆线路必须采用五芯电缆。
参考文献:
[1]施工现场临时用电安全技术规范JGJ46-2005.
[2]建设工程施工现场安全手册.经济科学出版社.
[3]建筑施工安全检查标准JGJ59-99.
偶da幸福
转帖]关于防雷接地问题的探讨中国科学院电工研究所 马宏达摘 要:本文讨论了配电网接地制式与建筑物电气设备的电磁兼容问题;接地网的电阻值及接地网的结构在防雷中的作用;外部防雷和内部防雷两个子系统的放电过程;指出了接地技术中的宣传误导。关键词:建筑物防雷雷电电磁脉冲防护 LEMP 防雷接地 电子(逻辑)接地1、供电系统接地方式与室内电磁兼容的关系配电网接地系统的制式关系到电网的运行安全和建筑物的供电安全[1、2]。西方国家特别重视供电质量,对电源频率和电压质量都有严格的要求;他们对智能建筑物内的电磁兼容问题也很重视,重要建筑物广泛采用屏蔽电缆的供电方式。现在我国智能建筑物的设计已经注意到这一点。现在大城市中的配电变压器已经采用小电阻接地方式,电源线已经广泛采用TN-S和TN-C-S系统,俗称三相五线制;在室内注意按综合布线的规范敷设电气线路。如果把三相电源系统的火线比做上水管道,则N线有如下水管道,它输送的电流有闪光灯和闸流管等电气设备产生的杂波,还有电源系统故障时产生的过电流等。这样电源自成闭合系统,PE线只是起到接地固定电位的作用,平时并无电流流过。如果把N线与PE线合并,这些杂波电流和过电流就会在地线中产生浮动电压,使电子设备遭受损坏和不能正常工作。所以,N线必须绝缘敷设,PE线必须独立敷设,这正是三相五线制供电系统建立的意义。检查N线与PE线是否绝缘良好的办法是测量PE线内的电流,正常情况下PE线内不应该有电流。我们在故宫防雷工程中测量某宫殿的防雷接地时,发现接地电阻表摇摆不定,从而发现N线与PE线有搭接的故障。PE线的作用就是,平时作为电子地(逻辑接地)和设备的保安接地,在雷击时兼做防雷接地。三相四线制的PEN线也有保安接地的作用,但是它不能做电子接地,因为它平时将有杂散电流通过,不能保证电子设备的稳定运行。例如:1993年在北京西便门立交桥东北侧曾有一片平房(商店)发生火灾,原因是有一辆高架货车把电线挂断,发生单相电弧接地事故,而该商店的电气开关未能立即开断,这片平房顶棚内的电线因过电流而熔化并引发火灾。我国农村地区要特别警惕这种架空线配电建筑物的安全问题。IEC防雷标准和我国现行建筑物防雷标准选用SPD的U1ma时,只考虑220/380V电网中性点接地方式,而没有考虑其上一级10kV电网的中性点的接地制式。以至常选用440V、470V的U1ma,这样做是不妥当的。我国多数配电网是采用中性点绝缘或经消弧线圈接地的方式,这些电网发生单相接地故障可能运行几个小时,此时相电压变为线电压,使SPD烧毁。我国水利电力部和机械工业部根据本国情况考虑荷电率制定的避雷器国家标准GBll02-2000,对220V级MOV规定U1ma=600V,相问MOV的U1ma =1200V。这样做既能减少SPD烧毁,又能有效地防雷才是合理的。建筑物雷害事故统计表明:80~90%的事故是由电气线路引入的,直接雷击的事故并不多。在山区和农村中建筑物的供电用架空线直接引入不是好办法;建议参考文献[3],改用铁管穿线屏蔽敷设(见图1):进线杆前连接一段长度大干15m的架空伸长地线兼做避雷线(见图2),此段线路的作用是增加屏蔽铁管前主线路的电感,使1#SPD(氧化锌避雷器)便于启动,在进线杆前再连接2#SPD,进线杆的铁脚和铁管的上端联合接地。图1 建筑物架空线引入时的防雷措施图2 在电杆上做架空伸长地线及避雷线的示意图2、取决接地电阻大小的要素经验表明,接地体的电阻主要决定于它与地的接触电阻。我们在打接地棒后立即测量其接地电阻值时测得某一数值;只要抓住接地棒的上端摇一摇,再测时其接地电阻值将增加。这是因为接地棒与其附近的土壤脱离的缘故。在钻孔埋接地体的时候,灌水和填土后其接地电阻值将有一变化时期。开始其接地电阻值小,后来变大(土壤与接地体脱离),长时期后又变小(因土壤压实)。用碳棒和碳质模块做接地体时其接地电阻值并不如计算那样理想,但是如果在它们的周围涂以LRCP降阻剂则可较理想地达到预期的接地电阻值。这些都说明接地体与地的接触电阻是决定接地电阻的重要因素。接地网的接地电阻与接地网的面积S的开方成反比,在接地网内再补充打接地棒和接地桩,对于降低接地电阻的作用不大。因为接地网的周边接地棒对其中心有屏蔽作用。而且,电子地的稳定不是单*降低接地电阻值所能解决的,重要的是要想法降低接地网的电感和使接地联线中没有电流(此时,接地线的电感电压降占重要地位)。解决的办法是用星形接法连接仪器设备;如果还有困难,接地联线用绝缘线,把接地线用铁管套起来,屏蔽铁管的两端与其附近PE线相连。其道理是使接地线的电压不能耦合到电子回路中去。内部防雷的系统中要避免采用开关型和间隙型过电压保护器,这些间隙在放电时电压急剧截断将引发电路中分布电容和电感的震荡过程,使电子设备遭到损坏。3、接地网的结构及其防雷性能的分析在雷击建筑物时,在钢筋混凝土的结构钢筋内将有震荡电流产生。这些震荡电流将感应室内电气线路产生二次电流。这些二次电流将造成电气设备的损坏。采用SPD限制作用在电气设备上的电压是内部防雷的任务,接地网的等电位连接措施使这二次电流回路中的电流不会很大,用8/20μs电流波形检验。防雷导体流经的雷电流是一次电流,它是排出建筑物的外部放电过程。内部防雷子系统与外部防雷子系统之间虽有电路上的联系,但是各自自成系统,要分别计算不能够混淆,否则将发生严重的计算错误。采用电缆段进线和穿铁管屏蔽进线的防雷方法,是防止雷电流经SPD向电源系统反灌的重要措施。建筑物的基础接地和其周围的埋地接地网是安全散流和整体电位浮动的保证条件。如果防雷接地体是独立的或是室外的一条接地带,则不能保证建筑物的屏蔽条件。对此北京电力科学院的科学家曾经做过屏蔽理论推算和实验检验[4、5]。文[5]探讨了高电压试验室的接地,它的道理可以运用在建筑物防雷中,它说明了减少接地网电感的道理和穿线铁管是屏蔽的有效措施。笔者在某通讯站测量其天线阵地和机房的接地电阻,两座机房接地用的是室外接地带,天线阵地用的是接地网。测量结果发现:机房和天线接地网的联合接地电阻值比单独的天线接地网的接地电阻值还要大,大出的部分是接地带所形成的连线电阻。所以机房的接地一定要做成围绕机房的周圈式的接地网,不能用机房外的接地带来代替。埋地接地网CBN与设备连接网EBN的作用和要求不同,参看图3。图3 公用连接网CBN与设备连接网EBN的原理示意图笔者个人的看法是:(1)公用连接网CBN的作用是安全散流和保证等电位。它必须采用周圈式接地带,其外围可敷设一些接地棒。埋地是散流的重要条件,在土壤电阻率比较低的地方打接地棒对降低接地电阻有效;但是在土壤电阻率比较高、没有地下水的山地,打接地棒很难,对降低接地电阻的作用也不明显。(2)埋地接地网是保证建筑物在雷击时整体地电位浮动(屏蔽作用)的必要条件,如果接地体或接地带敷设在建筑物之外,它不能起到屏蔽的作用。接地网比独立接地体和接地带有更大的电容,在雷电先导形成和向地面发展的过程中,接地网上将感应产生大量的感应电荷,这些电荷与雷电先导电荷的符号相反,在主放电过程中它们复合,在接地导体中放出能量(变为热能),这样产生的雷击电压将比独立避雷针小,有利于整体的防雷效果。(3)设备连接网EBN的作用是保证等电位的条件,它本身要有一定的低电感的要求,这与安装的电子设备情况有关,也与设备接地线的连接方法(S星形或M网形)有关。(4)EBN接地连线的电感是造成干扰和危险地电位浮动的根源。所以使电子地稳定的关键条件是使接地连线中的电流为零。要达到这一点就是要从地网CBN的中心部位在电梯井中引上接地线,并与各层楼板的等电位连接板和PE线相连接,要求严格的房间应敷设单独的等电位接地板(如用铁板拉网)。(5)建筑物内的等电位状态也不像静电学等电位那样理想,大楼内还有杂散电流在钢筋中分布。在大楼内各种电气线路都要受到杂散电流的电磁耦合作用。杂散电流在接地网上的电压降(主要是电感分量)就是接地系统不同点的暂态电位差。这个电位差很难直接测量。实际上,更有实际意义的是所谓的开环电压和闭环电流如图4所示。图4 开环电压和闭环电流示意图图4中,Uab为接地网A、B两点间的电位差。电子仪器外壳对EBN的地、或仪器外壳对电源的电位差即是开环电压。假如仪器的外壳在控制室内接地,则仪器电缆外皮(屏蔽层)中流过的电流称为闭环电流。它是决定电子仪器受到共模干扰大小的一个量。开环电压决定了仪器受到的过电压的大小,而闭环电流则决定了共模干扰的大小。(6)人们只有明确了内部防雷和外部防雷两个子系统中电磁震荡的过程及其特性才能提出有效的抗干扰的办法,原则上是合理地运用隔离与连接的措施,消除不希望的电磁耦合,其中用铁管穿线屏蔽电气线路外,把冗余的电气线路的两端全部短路并接地,这两项措施经常是很重要的。4、接地电阻测量的困惑现在城市中建筑物的密度很大,地下管网很多,钢筋混凝土建筑物的接地网接地电阻的测量实际上很难测准。因为接地电阻测量的拉线距离必须大于接地网直径的4~5倍,这一点很难做到。实际上接地电阻的测量是在接地网的网眼中进行的,这与接地电阻的定义是不一致的,其测量的结果是不可信的,(其总的趋势是测量结果偏小,有时甚至成为负值)。现在广泛采用的高频接地电阻测量仪和脉冲接地电阻测量仪所测接地电阻与工频接地电阻不同,它没有标准定义的接地电阻的意义,但是它对接地线断线的检测有参考意义,笔者曾经专门讨论过这个问题[6]5、防止华而不实的炒作行为(1)我不赞成用铜材做接地体,接地体的尺寸是由机械强度和腐蚀因素决定的,不是由热稳定条件决定的。铜是一种战略物资,我们不应把它大量地埋在地下。西方国家现在都已改用钢管做接地体了,我们却宣传用铜作接地体。这无非要提高防雷装置的造价,增加用户的成本,给施工方带来利益。(2)不要听信某些防雷公司的宣传,在接地网的当中打接地桩,那样做是无效的。电子地的稳定问题不仅在于接地电阻值的大小,关键在于要使接地线上没有电流。类似“打接地桩”的宣传是一种误导。(3)还要注意接地措施导致的环境污染问题和对附近钢铁构筑物的腐蚀效应问题。
电子商务参考文献(通用6篇) 在平时的学习、工作中,大家都不可避免地会接触到论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。相信
参考文献自动生成: 知网 百度学术: 谷歌学术: 查找参考文献的网站: 1、文献党下载器(wxdown.org)一款资源集成的文献下载平台,几乎整合了所有中外文
我有这个论文 电缆敷设
近年来,我国电气技术不断提高,在建筑工程中的应用也越来越广泛,给人们的日常生活带来极大的便利。这是我为大家整理的电气职称论文,仅供参考! 电气职称论文篇一
英文论文参考文献示例 无论在学习或是工作中,大家肯定对论文都不陌生吧,通过论文写作可以提高我们综合运用所学知识的能力。你写论文时总是无从下笔?以下是我收集整理的