艾薇喵跑
大数据时代数据管理方式研究1数据管理技术的回顾 数据管理技术主要经历了人工管理阶段、文件系统阶段和数据库系统阶段。随着数据应用领域的不断扩展,数据管理所处的环境也越来越复杂,目前广泛流行的数据库技术开始暴露出许多弱点,面临着许多新的挑战。 人工管理阶段 20 世纪 50 年代中期,计算机主要用于科学计算。当时没有磁盘等直接存取设备,只有纸带、卡片、磁带等外存,也没有操作系统和管理数据的专门软件。该阶段管理的数据不保存、由应用程序管理数据、数据不共享和数据不具有独立性等特点。 文件系统阶段 20 世纪 50 年代后期到 60 年代中期,随着计算机硬件和软件的发展,磁盘、磁鼓等直接存取设备开始普及,这一时期的数据处理系统是把计算机中的数据组织成相互独立的被命名的数据文件,并可按文件的名字来进行访问,对文件中的记录进行存取的数据管理技术。数据可以长期保存在计算机外存上,可以对数据进行反复处理,并支持文件的查询、修改、插入和删除等操作。其数据面向特定的应用程序,因此,数据共享性、独立性差,且冗余度大,管理和维护的代价也很大。 数据库阶段 20 世纪 60 年代后期以来,计算机性能得到进一步提高,更重要的是出现了大容量磁盘,存储容量大大增加且价格下降。在此基础上,才有可能克服文件系统管理数据时的不足,而满足和解决实际应用中多个用户、多个应用程序共享数据的要求,从而使数据能为尽可能多的应用程序服务,这就出现了数据库这样的数据管理技术。数据库的特点是数据不再只针对某一个特定的应用,而是面向全组织,具有整体的结构性,共享性高,冗余度减小,具有一定的程序与数据之间的独立性,并且对数据进行统一的控制。 2大数据时代的数据管理技术 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据有 3 个 V,一是大量化(Volume),数据量是持续快速增加的,从 TB级别,跃升到 PB 级别;二是多样化(Variety),数据类型多样化,结构化数据已被视为小菜一碟,图片、音频、视频等非结构化数据正以传统结构化数据增长的两倍速快速创建;三是快速化 (Velocity),数据生成速度快,也就需要快速的处理能力,因此,产生了“1 秒定律”,就是说一般要在秒级时间范围内给出分析结果,时间太长就失去价值了,这个速度要求是大数据处理技术和传统的数据挖掘技术最大的区别。 关系型数据库(RDBMS) 20 世纪 70 年代初,IBM 工程师 Codd 发表了著名的论文“A Relational Model of Data for Large Shared DataBanks”,标志着关系数据库时代来临。关系数据库的理论基础是关系模型,是借助于集合代数等数学概念和方法来处理数据库中的数据,现实世界中的实体以及实体之间的联系非常容易用关系模型来表示。容易理解的模型、容易掌握的查询语言、高效的优化器、成熟的技术和产品,使得关系数据库占据了数据库市场的绝对的统治地位。随着互联网 网站的兴起,半结构化和非结构化数据的大量涌现,传统的关系数据库在应付 网站特别是超大规模和高并发的 SNS(全称 Social Networking Services,即社会性网络服务) 类型的 纯动态网站已经显得力不从心,暴露了很多难以克服的问题。 noSQL数据库 顺应时代发展的需要产生了 noSQL数据库技术,其主要特点是采用与关系模型不同的数据模型,当前热门的 noSQL数据库系统可以说是蓬勃发展、异军突起,很多公司都热情追捧之,如:由 Google 公司提出的 Big Table 和 MapReduce 以及 IBM 公司提出的 Lotus Notes 等。不管是那个公司的 noSQL数据库都围绕着大数据的 3 个 V,目的就是解决大数据的 3个 V 问题。因此,在设计 noSQL 时往往考虑以下几个原则,首先,采用横向扩展的方式,通过并行处理技术对数据进行划分并进行并行处理,以获得高速的读写速度;其次,解决数据类型从以结构化数据为主转向结构化、半结构化、非结构化三者的融合的问题;再次,放松对数据的 ACID 一致性约束,允许数据暂时出现不一致的情况,接受最终一致性;最后,对各个分区数据进行备份(一般是 3 份),应对节点失败的状况等。 对数据的应用可以分为分析型应用和操作型应用,分析型应用主要是指对大量数据进行分类、聚集、汇总,最后获得数据量相对小的分析结果;操作型应用主要是指对数据进行增加、删除、修改和查询以及简单的汇总操作,涉及的数据量一般比较少,事务执行时间一般比较短。目前数据库可分为关系数据库和 noSQL数据库,根据数据应用的要求,再结合目前数据库的种类,所以目前数据库管理方式主要有以下 4 类。 (1)面向操作型的关系数据库技术。 首先,传统数据库厂商提供的基于行存储的关系数据库系统,如 DB2、Oracle、SQL Server 等,以其高度的一致性、精确性、系统可恢复性,在事务处理方面仍然是核心引擎。其次,面向实时计算的内存数据库系统,如 Hana、Timesten、Altibase 等通过把对数据并发控制、查询和恢复等操作控制在内存内部进行,所以获得了非常高的性能,在很多特定领域如电信、证券、网管等得到普遍应用。另外,以 VoltDB、Clustrix 和NuoDB 为代表的 new SQL 宣称能够在保持 ACDI 特性的同时提高了事务处理性能 50 倍 ~60 倍。 (2)面向分析型的关系数据库技术。 首先,TeraData 是数据仓库领域的领头羊,Teradata 在整体上是按 Shared Nothing 架构体系进行组织的,定位就是大型数据仓库系统,支持较高的扩展性。其次,面向分析型应用,列存储数据库的研究形成了另一个重要的潮流。列存储数据库以其高效的压缩、更高的 I/O 效率等特点,在分析型应用领域获得了比行存储数据库高得多的性能。如:MonetDB 和 Vertica是一个典型的基于列存储技术的数据库系统。 (3)面向操作型的 noSQL 技术。 有些操作型应用不受 ACID 高度一致性约束,但对大数据处理需要处理的数据量非常大,对速度性能要求也非常高,这样就必须依靠大规模集群的并行处理能力来实现数据处理,弱一致性或最终一致性就可以了。这时,操作型 noSQL数据库的优点就可以发挥的淋漓尽致了。如,Hbase 一天就可以有超过 200 亿个到达硬盘的读写操作,实现对大数据的处理。另外,noSQL数据库是一个数据模型灵活、支持多样数据类型,如对图数据建模、存储和分析,其性能、扩展性是关系数据库无法比拟的。 (4)面向分析型的 noSQL 技术。 面向分析型应用的 noSQL 技术主要依赖于Hadoop 分布式计算平台,Hadoop 是一个分布式计算平台,以 HDFS 和 Map Reduce 为用户提供系统底层细节透明的分布式基础架构。《Hadoop 经典实践染技巧》传统的数据库厂商 Microsoft,Oracle,SAS,IBM 等纷纷转向 Hadoop 的研究,如微软公司关闭 Dryad 系统,全力投入 Map Reduce 的研发,Oracle 在 2011 年下半年发布 Big Plan 战略计划,全面进军大数据处理领域,IBM 则早已捷足先登“,沃森(Watson)”计算机就是基于 Hadoop 技术开发的产物,同时 IBM 发布了 BigInsights 计划,基于 Hadoop,Netezza 和 SPSS(统计分析、数据挖掘软件)等技术和产品构建大数据分析处理的技术框架。同时也涌现出一批新公司来研究Hadoop 技术,如 Cloudera、MapRKarmashpere 等。 3数据管理方式的展望 通过以上分析,可以看出关系数据库的 ACID 强调数据一致性通常指关联数据之间的逻辑关系是否正确和完整,而对于很多互联网应用来说,对这一致性和隔离性的要求可以降低,而可用性的要求则更为明显,此时就可以采用 noSQL 的两种弱一致性的理论 BASE 和 CAP.关系数据库和 noSQL数据库并不是想到对立的矛盾体,而是可以相互补充的,根据不同需求使用不同的技术,甚至二者可以共同存在,互不影响。最近几年,以 Spanner 为代表新型数据库的出现,给数据库领域注入新鲜血液,这就是融合了一致性和可用性的 newSQL,这种新型思维方式或许会是未来大数据处理方式的发展方向。 4 结束语 随着云计算、物联网等的发展,数据呈现爆炸式的增长,人们正被数据洪流所包围,大数据的时代已经到来。正确利用大数据给人们的生活带来了极大的便利,但与此同时也给传统的数据管理方式带来了极大的挑战。
蓝晶灵儿
大数据驱动公共管理学科现代化论文
在各领域中,大家肯定对论文都不陌生吧,借助论文可以有效提高我们的写作水平。相信许多人会觉得论文很难写吧,以下是我整理的大数据驱动公共管理学科现代化论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
摘要 :
我们目前所处的是一个由数据主宰的大数据时代,数据的共享正改变着我们的工作和生活。而在该时代中,公共管理有着极为深刻的影响,政府部门应该清楚地认识到公共管理学科的重要性,并以科学的态度来面对该学科所面临的机遇和挑战,并且分析大数据对公共管理学科所产生的影响,反思传统管理模式中存在的不足之处,对公共管理行为模式进行改进,从而有效地促进大数据时代下公共管理学科的发展与进步。
关键词:
大数据驱动;公共管理;改革方式
引言:
在公共管理的实施过程中,工程的使用不只意味着管理的过程,因为这需要对各个公共资源进行再分配。行使这个权利的时候是需要调配各种公共资源,在国家法律法规体系下,安排各种公共资源,保障各项资源的有效运转。需要注意的是,必须以群众的利益作为基本前提,防止公共资源的滥用甚至其他严重的后果发生。在整个大数据不断发展的情况下,公共资源的使用,有了更多透明化的监督过程,可以对这些公共资源进行科学合理的配置。
在未来,公共学科的发展变得越来越高效,公共学科也是建立在现代高新技术的基础上,针对目前公共管理存在的弊端,和高新技术进行深入分析,将这些找到的矛盾用人文学科的思想得以解决。在公共管理学科的发展历程之中,各种数据的处理是极为重要的。只有有效利用大数据处理的方法,才能够更好地促进公共管理,将公共政策和现代数据结合,促进我国的公共管理不断进步。在现代化的发展历程之后,我们还应该不断关注公共学科的发展特点,探讨公共学科可能出现的风险问题,不断提高科学决策的准确度,根据大数据的分析结果,促进公共学科的改进。
一、大数据的实际内涵以及其发展概述
在运用大数据技术时,部门研究者认为大数据是一种统计模式,是运用各种现代信息技术进行自动记录和延续扩充的过程,而非人工设计的数据。不过,这类观点是以大数据统计为出发点,然而实际上大数据并不仅仅只是进行数据资源的整理和收集,更重要的是对数据进行分析[1]。
二、大数据对公共管理学科的驱动机制
大数据的发展给公共管理的影响是深远的,从大数据的发展可以不断提高公共管理的效率,大数据的深入发展,能够帮助我们先入进行公共管理。在未来,要促进公共学科的发展,就需要依靠大数据,在大数据的帮助之下,深入挖掘公共管理的实质,帮助我们找到科学的管理项目,从而为公共决策做出准确的判断。以往在公共学科的时候还没有发挥大数据的价值,缺乏一定大数据的思想。发展是一个缓慢过程,在这个公共学科的成长过程中,我们必须研究大数据的专业特征。利用公共学科的机制,回到数据的创新作用。总地来说,可以从以下几个方面找到大数据的影响。
(一)巨大数据体量对公共管理学科的影响到时候就意味着更多的海量数据。这些数据的发展不仅拥有着较大的体量,还意味着公共管理的难度也在增加。公共管理需要依靠大数据技术,但是却要利用好,到时候做好分析的脚本研究。改善传统的思维,让我们用现代的思想为公共管理做出更多的分析。大数据在现代的应用是深远的,我们要利用各种各样的大数据技术,更多的大数据手段找到公共学科的真正内涵。从而为到时候去建设提供物质基础,这些基本的数据出发,让政府面临更多的公共决策类型,公共管理样本的采集为大数据做出了更多的支持。基础的公共管理样本可以成为数据的来源,也为公共管理学科发展做出深入的影响。为进一步找到目前存在的问题,就需要对公共决策的数据进行整合,从而发挥学科的时代性特征,达到公共管理的具体目标[2]。
(二)多样化的数据对公共管理学科产生的影响大数据时代不只是大数据的数量增加,更多的是数据的种类。公共学科要掌握更高的管理方法,就需要研究现在的数据种类,利用公共学科的深入特点找到管理的不同类型,从而实现较高的管理目标。大数据时代是一个多种类型的时代,在过去的时代中不需要这样多的信息,也不会利用现在的存储资源。然而目前的公共管理,需要我们更多的存储空间是处于到时候去时代之中所面临的管理种类是多种多样的,类型也是十分广泛。在这些众多的种类中,我们面临多种形式的公共资源,必须要深入研究,采取适合于公共管理学科的应对方法,促进我公共管理学科的深入发展,找到承载的.问题,找到学科的管理方向,从而丰富各种类型的表达方式和存储方法[3]。
(三)低密度的数据价值对公共管理学科的影响大数据时代不仅意味着数据的多样化,但需要很多的载体承担这些数据。我们需要提高存储的空间,对目前的存储空间进行深入探索,不断进行改革,从根本上提高存在的空间数据。加强存储空间的创新。首先,现在都很多数据看似已经传出,然而却没有经过深入的加工,且没有一定的压缩功能,这些数据在存储的时候造成了较多的空间占用,空间资源在一定程度上造成了一些无用的数据存储。面对这种情况我们要找到数据存储的内在问题,从根本上提高存储的有效性,并且加强数据之间的传递和流通。目前的现状来看,很多大数据还没有取得较好的效果,信息的关注还停留在过去阶段,这些数据本身价值不好发挥。数据在挖掘的过程中必须依托公共管理学科的知识。融入现代大数据的技术,对数据的价值进行深入发掘和研究,也是公共管理学科的研究型态,帮助我们深入数据的内部,积极探索数据存储的类型,释放更多的空间[4]。
三、大数据驱动下公共管理学科的未来发展
我们目前所处的大数据时代依然处于不断发展的状态,通过上文的分析不难发现,大数据不断的以其庞大的数据体系和繁多的数据类型来影响着公共管理学科的发展,因此,公共管理学科也应该随着大数据时代的发展而做出改变和创新[5]。
(一)公共治理模式与大数据的结合公共学科的管理,需要深入考量学科的特点,对公共治理存在的问题进行深入分析,依托现代大数据的功能,扩大数据的包容性,加强信息的获取渠道探索。利用更多的公众信息平台引导热点话题,从而能够找到公共管理存在的弊端。在施行公共管理时,应该充分地考虑大数据对公共管理和公共治理之间的影响进行分析。大数据时代极大的扩张了人们的信息获取渠道,在此基础上,社会个体可以通过各类信息平台来讨论热点话题,由于各类言论会在互联网中迅速蔓延,在舆论的压力下,公众的言论和态度将会直接影响到政府作出的公共决策。比如,政府可以对一些观点和言论进行审核,利用大数据来进行思维分析[6]。
(二)重新认识公共管理决策在这项研究中,实证分析是提出比较四个案例的公众参与风险相关的决策。本研究选取的案例均涉及政府决策者愿意与公共利益团体合作的废物管理冲突,但每一案例的公众参与程度和性质有所不同。与公众参与有关的冲突在所有四个案件中都出现。针对传统问题解决方法的不足,我们开发了一个更广泛的分析框架来解释这些冲突。冲突分析考虑对手关系的历史、权力分配、对解决冲突的态度、隐藏的议程、各种谈判策略以及对谈判协议的承诺(或缺乏承诺)。虽然这种方法是为了分析的目的而制定的,但我们认为,这种方法对于解决此类冲突也具有特定的相关性。冲突管理的概念,作为提高公众参与质量的一种方法。冲突管理的主要特点是:
(1)赋予公众权力;
(2)“良好”(公平)的解决办法;
(3)各方积极支持最终决定。在公共管理的过程中,由于大数据时代的各个特点,公共管理必须进行适当的改革创新,从而更好地应对未来的挑战和机遇。
(三)准确满足公众诉求公共管理决策和决策的一个明显方面基本上没有引起决策内容的注意。我们通过对预算削减和信息技术决策提出以下问题来检验决策内容的影响:内容如何影响决策所需的时间?内容如何影响参与者?内容如何影响所采用的决策标准?内容如何影响决策过程和繁文缛节中使用的信息质量?结果表明,信息技术和预算削减决策在重要方面有所不同。对于信息技术决策而言,成本效益不是一个重要的标准,平均决策时间要长得多,决策通常被视为永久和稳定的。对于削减决策,成本效益是一个重要的标准,决策的速度要快得多,而且被视为不稳定和多变的。令人惊讶的是,决策内容似乎并不影响参与者的数量。在大数据时代到来以前,群众与政府之间缺乏有效的沟通手段,导致群众与政府之间存在隔阂。在如今的大数据时代下,政府和群众之间的沟通交流更加的顺畅,政府能够实时了解到群众所反馈的一些信息,并且在短时间内进行整理和收集,从而使各项公共资源的配比能够科学有效的实施,最大限度地保证群众的利益[7]。
四、结语
公共管理行为涉及的范围非常广泛,公权力的使用者应该谨慎运用每一项公共管理的权利,满足人民群众的利益诉求,即使给出反馈和针对性的公共管理决策。因此,在未来的发展中,公共管理学科的研究领域将不仅仅是为政府的公共决策提供支撑和依据,而是帮助政府更加理性的收集数据,在庞大的数据体量基础上对各项数据资源进行整合,从而提高公共管理和服务质量,使公共管理对人们利益实现最大化。
参考文献:
[1]王博.大数据驱动的公共管理学科现代化[J].湖南工业职业技术学院学报,2018,18(5):30—33.
[2]黄欣卓,李大宇.大数据驱动的公共管理学科现代化———《公共管理学报》高端学术研讨会视点[J].公共管理学报,2018,15(1).
[3]黄欣卓,李大宇.大数据驱动的公共管理学科现代化———《公共管理学报》高端学术研讨会视点[J].公共管理学报,2018,15(1):147—152.
[4]王琳.大数据时代下我国政府公共关系能力建设研究[D].重庆:重庆大学,2017.
[5]王陈程.大数据驱动的公共管理创新[J].山西青年,2019,(2):234.
[6]秦浩.大数据驱动的公共政策转型[J].中国共产党政干部论坛,2020,(2):62—65.
[7]张黎黎.大数据技术与公共管理范式的转型[J].中文信息,2019,(5):255.
物流专业职业规划分析:物流管理是现代企业管理的重要组成部分,被视为“第三利润源泉”,也是继信息产业之后又一具有广泛行业渗透力的新兴产业。我国加入WTO后,物流产
财务管理处于企业管理的重要地位,是企业提高经济效益的重要环节。如何加强企业财务管理是企业财务管理人员亟待解决的问题。一、财务管理存在的主要问题(一)财务管理重视
这是要花钱的
酒店业的日益发展,信息技术在酒店的普及度愈来愈高,对于酒店信息管理系统的要求也越发全面,应用范围涉及决策支持、系统集成、客务关系管理、网络营销等。下面是我为大家
公共卫生学科带头人是实现公共卫生事业发展和促进公共卫生学科发展进步的关键。随着社会的进步和发展,人民群众对于公共卫生服务的需求不断增加,对公共卫生体系建设提出了