朵喵喵ljh
推荐《农业工程学报》,核心期刊、CA期刊、EI期刊、CSCD期刊
复合影响因子:
《农业工程学报》被以下数据库收录:
CA 化学文摘(美)(2014)
JST 日本科学技术振兴机构数据库(日)(2013)
Pж(AJ) 文摘杂志(俄)(2014)
EI 工程索引(美)(2016)
CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)
北京大学《中文核心期刊要目总览》来源期刊:
1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;
期刊荣誉:
中科双效期刊;Caj-cd规范获奖期刊;
小喵酱一小只
工程测量参考文献
参考文献是在学术研究过程中对某一著作或论文的整体的参考或借鉴,关于工程测量论文参考文献有哪些?以下是我整理的工程测量参考文献,仅供参考,欢迎大家阅读。
[1] 李青岳. 工程测量学[M]. 北京: 测绘出版社,1984
[2] 李青岳, 陈永奇. 工程测量学[M]. 北京: 测绘出版社,1995
[3] 张正禄. 工程测量学[M]. 武汉: 武汉大学出版社,2002
[4] 张正禄等. 工程的变形监测分析与预报[M]. 北京: 测绘出版社, 2007
[5] 张正禄等. 地下管线探测和管网信息系统[M]. 北京: 测绘出版社, 2007
[6] 黄声享,郭英起,易庆林.GPS在测量工程中的应用[M]. 北京:测绘出版社,2007
[7] 张希黔,黄声享,GPS在建筑施工中的应用[M]. 北京:中国建筑工业出版社, 2005
[8] 黄声享,尹 晖,蒋征. 变形监测数据处理[M]. 武汉:武汉大学出版社, 2004
[9] 张正禄主编. 工程测量学[M].武汉:武汉大学出版社,2002
[10] 尹晖 编著.时空变形分析与预报的理论和方法[M].北京:测绘出版社,2002
[11] 张正禄等. 工程测量学[M]. 武汉: 武汉大学出版社, 2005
[12] 齐民友等. 概率论与数理统计[M]. 高等教育出版社, 2002.
[13] 张正禄等. 科傻系统使用说明书[M], 2006.
[14] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社,2003.
[15] 潘正风,杨正尧等. 数字测图原理与方法[M]. 武汉: 武汉大学出版社, 2004
[16] 李庆海,陶本藻. 概率统计原理和在测量中的应用[M]. 北京: 测绘出版社, 1982
[17] 张正禄, 吴栋材等. 精密工程测量[M]. 北京: 测绘出版社, 1992
[18] 吴翼麟, 孔祥元等. 特种精密工程测量[M]. 北京: 测绘出版社, 1993
[19] 陈龙飞, 金其坤. 工程测量[M]. 上海: 同济大学出版社, 1990
[20] 于来法, 杨志藻. 军事工程测量学[M]. 北京: 八一出版社, 1994
[21] 覃辉等. 土木工程测量[M]. 上海: 同济大学出版社, 2004
[22] 王兆祥等. 铁道工程测量[M] . 北京: 铁道出版社, 1998
[23] 陈永奇, 李裕忠等. 海洋工程测量[M]. 北京: 测绘出版社, 1991
[24] 吴子安, 吴栋材. 水利工程测量[M]. 北京: 测绘出版社.1990
[25] 钱东辉. 水电工程测量学[M]. 北京: 中国电力出版社.1998.
[26] 秦昆, 李裕忠等. 桥梁工程测量[M]. 北京: 测绘出版社, 1991
[27] 吴栋才, 谢建纲等. 大型斜拉桥施工测量[M]. 北京: 测绘出版社, 1996
[28] 张项铎, 张正禄. 隧道工程测量[M]. 北京: 测绘出版社, 1998
[29] 田应中,张正禄等. 地下管线网探测与信息管理[M]. 北京: 测绘出版社, 1998
[30] 冯文灏. 工业测量[M]. 武汉: 武汉大学出版社, 2004
[1]黄杏元,马劲松,汤勤.地理信息系统概论[M].修订版.北京:高等教育出版社,1990:165-171.
[2]《第二次全国土地调查技术规程》,TD/T1014-2007.北京,中华人民共和国国土资源部,2007.
[3]陈泽民.中国矢量数据交换格式的应用研究[J].武汉大学学报信息科学版,2004,29(5):451-455.
[4]吴文新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,28-29.
[5]Kang-tsungChang著,陈建飞等译.地理信息系统导论[M].北京:科学出版社,2003,43-44.
[6]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.
[7]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1990:130-133.
[8]陈先伟,郭仁忠,闫浩文.土地利用数据库综合中图斑拓扑关系的创建和一致性维护[J].武汉大学报信息科学版,2005,30(4):370-373.
[9]毋河海.关于GIS中缓冲区的建立问题[J].武汉测绘科技大学学报[J].1997,22(4):358-364.
[10]张国辉,胡闻达,李慧智.基于GDI+的缓冲区建立及边界描述方法[J].测绘科学技术学报,2010,27(3):292-232.
[11]冯花平,连文娟,卢新明.求缓冲区算法[J].山东大学学报自然科学版,2005,24(3):57-59.
[12]张欣,陈国雄,钟耳顺.优化栅格细化算法的线状地物提取[J].地球信息科学,2007,9(3):25-27.
[13]潘瑜春,钟耳顺,刘巧芹.土地资源数据库中线状地物面积扣除技术研究[J].资源科学,2001,24(6):12-17.
[14]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.
[15]尹为华,刘盛庆.ARCGIS在地类面积统计中的应用[J].科技资讯,2012:29.
[16]刘洪江,曹玉香.基于ArcGIS实现地类图斑净面积的计算[J].城市勘测,2012(10)114-116.
[17]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996.
[18]任娜,张道军.基于空间推理及语义的图斑扣除线状地物面积关键算法及其在土地调查建库中的应用[J].安徽农业科学,39(35):22013-22016.
[19]计长飞.土地利用现状图的矢量化方法研究[J].测绘与空间地理信息,2011,34(4):159-163.
[20]马欣,吴绍洪,康相武.线状地物的区域影响模型及其在综合评价中的应用[J].地理科学进展,2007,26(1):87-94.
[1]吴战广,张献州,张瑞,杨龙杰。基于物联网三层架构的地下工程测量机器人远程变形监测系统[J].测绘工程,2017,02:42-47+51.
[2]付海军。浅谈工程测量技术的发展及应用[J].工程建设与设计,2016,16:5-6.
[3]赵红强,成晓倩,韩瑞梅。多基线数字近景摄影测量在建筑工程中的应用[J].测绘与空间地理信息,2016,12:33-36.
[4]张冠海。工程测量中测绘新技术的应用分析[J].化工管理,2017,01:84.
[5]何屹雄,花向红,许承权,姚周祥,黎洋。全站仪建筑物立面图测量方法研究及工程实践[J].测绘地理信息,2017,01:10-13.
[6]冯志成。工程测量中应用GPS控制测量平面及高程精度[J].工程建设与设计,2017,01:111-113.
[7]练伟东。提高水利工程测量水平的措施探析[J].住宅与房地产,2017,03:285.
[8]丛林,孙梅君。城市规划管理中工程测量的作用探讨[J].住宅与房地产,2017,03:142.
[9]黄维。建筑工程测量模式对测量精度的影响分析[J].住宅与房地产,2017,03:196.
[10]程永刚。浅谈建筑工程测量对于工程质量的作用和意义[J].江西建材,2017,02:228.
[11]缪健军。建筑工程测量中数字测量技术应用分析[J].宏观经济管理,2017,S1:68-69.
[12]尤潇华。大伙房输水工程TBM2标隧洞测量贯通控制技术研究[J].东北水利水电,2017,01:8-10+71.
[13]张健,魏峰,詹勇。现代工程测量新技术在水利工程的应用探析[J].科技创新与应用,2017,03:219-220.
[14]岳太恒。土木工程施工中的测量施工分析[J].科技创新与应用,2017,01:251.
[15]高爽。浅析摄影测量与遥感在工程测量中的应用[J].中国新技术新产品,2017,03:98.
[16]胡杨。测绘新技术在工程测量中的应用[J].科技与创新,2017,03:157-158.
[17]史雨露,李宗义。现代测绘技术在工程测量中的应用[J].四川水泥,2017,01:340.
[18]崔继忠。数字化测量技术在工程测量中的应用[J].科技创新与应用,2017,04:282.
[19]卢秋羽,殷润浩,张俊毅。数字测量技术在建筑工程测量中的应用[J].四川水泥,2017,01:282.
[20]杨紫薇。数字测量技术在建筑工程测量中的应用[J].中国新技术新产品,2017,02:95-96.
[21]赵海龙。工程测量技术现状与发展[J].门窗,2017,01:235.
[22]吴涌泉,石频。现代测绘技术在工程测量中的'应用[J].门窗,2017,01:240.
[23]胡斐。施工测量在建筑工程中的作用[J].山西建筑,2017,03:205-206.
[24]张建媛。浅论建筑工程测量技术的应用[J].江西建材,2017,03:216.
[25]汤棹颖。路桥工程测量中GPS的应用现状与发展趋势分析[J].福建建材,2017,01:27-28.
[26]王献奇,张翠萍。激光跟踪测量在大型水轮发电机组安装工程的应用[J].水电与新能源,2017,02:22-25.
[27]徐辉,袁子喨。发电工程测量中UTM投影变形的处理与实践[J].工程勘察,2017,03:53-58.
[28]罗毅。GPS测量技术在工程测量中的应用[J].工程技术研究,2017,02:48+50.
[29]王芳,戴建安,晏承志,孟伟。工程测绘中GPS测量技术的应用研究[J].资源信息与工程,2017,01:129-130.
[30]王学强。工程测量中GPS控制测量高程精度分析[J].江西建材,2017,05:208-209.
[31]罗琼。无人机航空摄影测量技术在电力工程测量中的应用分析[J].通讯世界,2016,23:179-180.
[32]杨天。精密工程测量中全站仪三角高程精度分析[J].四川建材,2017,02:187+191.
[33]陆立飞。浅论GPS(RTK)在工程测量中的应用及其优点[J].世界有色金属,2017,01:83+85.
[34]李宇。工程测量中GPS技术存在的问题及其解决措施[J].世界有色金属,2017,01:69+71.
[35]熊金鹤。现代技术在工程测量中应用的探讨[J].世界有色金属,2017,01:57+59.
[36]史晓峰。影响工程测量中的精度因素及控制分析[J].地下水,2017,01:117+172.
[37]庞秀淼,李胜利。免棱镜全站仪在工程测量中的应用[J].资源信息与工程,2017,01:116-117.
[38]陈晨。现代测绘技术在工程测量中的应用研究[J].资源信息与工程,2017,01:126-127.
[39]唐信东。新技术在建筑工程测量中的应用分析[J].江西建材,2017,05:214.
[40]张树升。建筑工程中测量技术的应用分析[J].江西建材,2017,05:217+221.
工程测量参考文献二:
[41]杨雪芬。浅析工程测量技术及应用[J].低碳世界,2017,03:97-98.
[42]张城泉。探讨RTK技术在市政工程测量中的应用[J].工程建设与设计,2017,02:7-8.
[43]朱庆伟,王家伟,王涛。工程测量中高精度对中杆设计研究[J].西安科技大学学报,2017,02:280-284.
[44]王文贤。工程测量与现场施工管理的关系[J].交通世界,2017,08:126-127.
[45]刘勇。GPS测量技术及其在工程测量中的应用[J].世界有色金属,2017,02:92-93.
[46]张欣,王章朋,罗斌,丁剑。基于参考线方法的大型建筑工程放样测量[J].施工技术,2017,06:136-138.
[47]李宗义,史雨露。工程测量在信息化测绘战略跨越中的拓展[J].四川水泥,2017,02:278.
[48]潘雨竹。公路工程中工程测量技术的应用分析[J].江西建材,2017,06:225+228.
[49]章锦杰。任务驱动教学法在中职“建筑工程测量”综合实训课中的实践与探索[J].新课程研究(中旬刊),2017,02:63-65.
[50]姚海军。现代工程测量技术的发展与应用[J].工程技术研究,2017,03:77+105.
[51]张莞玲。数字化测绘技术在工程测量中的应用[J].工程技术研究,2017,03:78+102.
[52]田峰,苏宗跃。基于工程测量技术的发展趋势浅析[J].中国新技术新产品,2017,08:88-89.
[53]许东昕。电力线路设计工程中的测量设备结合卫星地图的应用[J].工程技术研究,2017,03:121+126.
[54]胡兴强。浅论GPSRTK技术在工程测量中的应用[J].科技风,2017,03:272.
[55]李晓伟。轨道精密工程测量技术在地铁轨道运营维护中的应用研究[J].铁道勘察,2017,02:1-6.
[56]王素权。RTK技术在水利工程测量中的应用分析[J].建材与装饰,2017,01:276-277.
[57]黄勇。对于工程测绘测量技术应用的分析与研究[J].世界有色金属,2017,03:198-199.
[58]郭伟。GPS实时动态(RTK)测量在工程测量中的应用研究[J].工程建设与设计,2017,07:54-55+58.
[59]张元。建筑工程测量模式对测量精度的影响分析[J].世界有色金属,2017,03:16-17.
[60]娄义康。建筑工程施工测量的精度要求探讨[J].世界有色金属,2017,03:13-14.
[61]何民华。浅谈建筑工程测量在施工中的应用[J].科技展望,2017,09:29.
[62]付鹏程。高职院校工程测量教学改革探讨[J].科技资讯,2017,06:161+163.
[63]王秀春。建筑工程测量技术在实际应用中存在的问题及应对策略[J].江西建材,2017,10:215+219.
[64]屈秀杰。工程测量与三维测绘技术的发展探讨[J].世界有色金属,2017,04:205+207.
[65]黄勇。工程测量的重要性与测量技术及其发展方向[J].世界有色金属,2017,04:230-231.
[66]王恩强。地质工程测量中新型测绘技术的应用探究[J].世界有色金属,2017,04:238+240.
[67]孙立业。论工程测量在施工质量管理中的重要性[J].世界有色金属,2017,04:203-204.
[68]李石贵。浅谈高速铁路精密工程测量技术的特点[J].价值工程,2017,15:126-127.
[69]李贝,陈羽,孙平,李冰,刘万锋。滚动摩擦系数工程测量方法与验证[J].工程机械,2017,04:29-32+7-8.
[70]许康艳。浅谈数字化测绘技术在建筑工程测量中的应用[J].江西建材,2017,11:215+218.
[71]宁林春,方荣华,黄辰虎,王玉春。海港工程浚后测量的实施[J].海洋测绘,2017,02:39-41+50.
[72]王朕。论建筑工程测量中的数字测量技术[J].中国新技术新产品,2017,11:71-72.
[73]何小文。建筑工程测量施工的放样方法及具体运用分析[J].中国高新技术企业,2017,07:170-171.
[74]王恩强。地质工程测量中新型测绘技术的应用探究[J].世界有色金属,2017,04:238+240.
[75]郭刚,贾卫国,张社安,李静,张静波。配电网工程电缆长度测量仪的研制与应用[J].河北电力技术,2017,02:19-21.
[76]何小文。建筑工程测量中存在的问题及应对措施分析[J].中国高新技术企业,2017,08:155-156.
[77]廖全军。浅析数字化技术在工程测量中的应用[J].中国高新技术企业,2017,08:165-166.
[78]赵敏。现代测绘技术在工程测量中的应用及完善策略[J].工程技术研究,2017,05:70-71.
[79]冯宇华。工程测量与三维测绘技术发展探析[J].中国高新技术企业,2016,03:149-150.
[80]霍栋良。影响工程测量精度的因素及控制分析[J].江西建材,2016,01:243.
柏林熊77
电力企业输电线路巡检工作中无人机的运用论文
在当前形势下,电力企业的体制改革已取得了一定的成效,供电服务范围进一步扩大,输电线路的分布也越来越广。由于各地区的自然环境具有一定的差异性,因此,采用人工方式对输电线路进行日常巡检已远远达不到要求。而采用无人机巡检可以在第一时间查明故障位置,且不会受到地形条件的影响,同时,还可以实现多角度、全方位的巡检,进而从整体上掌握输电线路的运行状况。可见,无人机的应用对于电力企业的输电线路巡检工作具有重要意义。
1 无人机的研究设计分析
当前,在输电线路巡检中,应用最为广泛的是遥控直升机和四旋翼无人机。应用无人机对输电线路进行全方位的巡视,可以迅速、准确地判断故障的发生点,大大提高巡视工作的效率。从产生和自身结构来看,无人机是先进科学技术创新研究的产物,它的形成主要涉及以下几方面。
技术方面
遥控直升机采用的是普通直升机的气动布局,一般可以携带图像采集和实时传输设备,在飞行过程中,可以将所“看”
到的各种信息通过传输设备及时传输到监控中心,从而大大提高输电设备巡视、检修工作的效率。四旋翼无人机的气动布局结构是 4 个旋翼相互对称分布。这种结构设置使其具有较高的起降能力。此外,四旋翼无人机还安装有减振云台和无线传输设备,在对输电线路进行巡检时,可以利用微型高分辨率的图像采集设备获得高清信息,并将所获信息及时传输到监控中心。
自身系统构成方面
遥控式无人机的构成主体是遥控直升机的本体。此外,遥控直升机还包括减振悬挂装置、信息采集和传输设备、地面图像的监视和操控系统等。四旋翼无人机主要由本体和地面监控站构成。
功能方面
无人机的功能分析应用遥控直升机巡检的工作流程是由人工进行遥控飞行或者悬停在输电线路的上空,而后再利用信息采集设备对线路的图像信息进行实时采集和传输;应用四旋翼无人机巡检的工作流程是在地面站的引导下,根据输电线路的布设状况进行信息的采集和传输。具体来说,分为以下几个步骤:①四旋翼无人机自主悬停于特定空间位置,而后再进行图像信息采集;②通过调节四旋翼的航向和减振云台,对图像采集设备、被检测设备的光学角度和距离进行合理调整,实现对输电线路设备图像的实时采集和传输;③根据人工操作的各项指令进行控制,而后沿输电线路进行飞行式观测和信息采集。
地面站的功能分析四旋翼无人机地面站的基本功能包括与四旋翼无人机协调进行遥控、遥测通信,对四旋翼无人机的图像信息采集位置的确定起引导作用,实时接收和整理分析无人机所获得的输电线路信息,实时操作、控制无人机的飞行状态和云台状态。
关键技术要点和创新点的分析
无人机巡检输电线路的关键技术要点和创新点主要包括以下几个:①四旋翼无人机具有自主悬停、自主导航飞行的特点,可以进行输电线路跳闸后的故障点查找,并在此基础上,构建一个完整的输电线路全过程立体式的巡检系统。②四旋翼无人机的另一个功能就是可以对输电线路起到防碰撞保护作用,用于输电线路的巡视和检测,同时,还可以对严重自然灾害下的输电线路起到保护作用,比如常见的大风、暴雨等。③地面实时监控技术和图像防抖降噪技术在输电线路巡检中的应用。无人机所配备的可见光视频可以在网络信息技术的作用下及时传输到监控中心。④对四旋翼无人机一体化设计和输电线路的快速检测系统进行优化,有效解决流线型机身的碳纤维制作工艺问题,进而解决锂电池的选型、旋翼的升力、电机的选型和空气动力等相关问题。⑤自主悬停和飞行控制系统具有自驾和手动两种工作模式。在自主悬停的状态下,无人机不仅可以通过地面站的高清录像检查线路,并保留手动模式,还可以按照既定的路线进行自主导航的飞行和巡检。
2 无人机的应用分析
实际应用效果
在输电线路的巡检中,应用无人机可以实现多角度、全方位的高空信息采集,有效降低架空输电线路巡检工作的强度,减少安全隐患,促进巡检效率和质量的提高,尤其是在恶劣的'环境中,比如在铁塔打滑时,无人机可以代替人工蹬杆和走线,进而保障了电网的安全、稳定运行。另外,应用无人机可以大大降低巡检工作的成本,为生产生活用电提供保障。
可见,无人机的应用对当前电力企业的输电线路巡检工作具有重要意义。
无人机的发展前景
无人机的发展前景可以概括为以下几点:
①在高压输电线路中,可快速、准确地查找故障点,并对存在的可疑故障点进行高效、合理的巡检,是高压输电线路稳定运行的保障。
②在输电线路具体的某个路段或局部设备中,可以快速对故障进行巡检,成本低、效率高,具有较好的安全性和技术性。
③可以智能化定点悬停在输电线路金具和绝缘子的上方进行局部检测,操作简单,从而减少人工巡检的任务量和时间,尤其是在环境条件恶劣的输电线路中,无人机的优势更为明显。
④无人机所具有的陀螺稳定可见监视器和红外线成像仪设备不仅能够对输电线路起到录像和检测的作用,实现自动巡检,还能够有效解决地形巡视困难等问题,进一步降低人工巡检的潜在危险性,提高输电线路的运行质量。
3 总结
电力在现代社会发展中发挥着重要作用,是国民经济健康、稳定发展的保障。在科技的推动下,将无人机应用于输电线路巡检中,可以大大提高输电线路的运行效率和质量,并进一步提升其运行的可靠性和稳定性。因此,电力企业要加大对无人机的应用和研究力度,提升其实际应用效果。
参考文献
[1]张永,李德波,吴翔,等。无人机巡检输电线路技术的应用与分析[J].宿州学院学报,2013,28(8):87-88.
[2]诸葛葳。无人机巡检输电线路技术的应用探析[J].科技经济市场,2015(5):16.
[3]周海峰。无人机巡检输电线路技术的应用与分析[J].建筑工程技术与设计,2015(18):1238.
1、牛长松著。英国高校创业教育研究。学林出版社,2009.01。 2、席升阳著。我国大学创业教育的观念、理念与实践。科学出版社,2008.05 3、王英杰、郭小
电力企业输电线路巡检工作中无人机的运用论文 在当前形势下,电力企业的体制改革已取得了一定的成效,供电服务范围进一步扩大,输电线路的分布也越来越广。由于各地区的自
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。 无人机航测技术的应用分析 【
浅谈多旋翼无人机任务系统的优秀论文 前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的
无人机”的开题报告! 接受的话具体要求发过来!