莹火虫妹妹
写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》
多多吃好
原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似
这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。
这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。
1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系
本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:
许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。
我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:
从 到 ,通过条件分布 这条边,将两个变量联系在一起。
说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。
贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:
是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。
是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。
是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。
这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。
前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。
我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。
从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。
你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。
你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】
我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:
我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。
然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。
变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】
这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。
两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。
反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】
根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。
由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。
为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。
由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:
注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。
KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。
我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:
让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。
因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。
如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:
在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。
变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:
结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!
感谢阅读,敬请期待!
鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。
从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。
整体分解: 平均场近似的分解:
从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。
【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】
日本尖嘴犬(详情介绍) 犬巴贝斯虫病在我国并不是十分常见,该病的主要发生地区一般在蜱滋生的地区而且呈流行趋势。犬巴贝斯虫病是一种经硬蜱传播的血液原虫病,临床上以
统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅
状态估计根据可获取的 量测 数据 估算 动态系统内部状态的方法。 贝叶斯滤波也就是在已知 观测 和可选的 控制输入 的概率分布下,估计出的 状态
贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但
巴贝斯虫病又称焦虫病是由犬巴贝斯虫引起,以蜱为媒介的一种世界流行的血液寄生性原虫病。本病的流行有明显的季节性和地区性。犬巴贝斯虫的传播必须经蜱,即蜱吸食了患犬的