小琳子雄霸天下
2008年5月12日14时28分,在青藏高原东缘龙门山地区发生了汶川8级强烈地震,成为继2001年11月14日昆仑山口西级地震之后在中国大陆发生的又一次强烈地震,造成了惨重的人员伤亡和巨大的财产损失。
面对“5·12”汶川8级地震突发灾害,中国地质科学院组织专家,最先对发震动力学背景进行了科学分析,第一时间奔赴震中地区开展地表破裂变形与地震地质灾害调查。随后组织来自院本部、地质研究所、水文地质环境地质研究所和地球物理地球化学勘查研究所的80余位科学家,系统开展地震科学钻探选址、活动断裂与地震变形观测、地应力测量、地质灾害地面调查、堰塞湖与水工环综合评价。6位专家参加国家汶川地震专家委员会,编辑出版《汶川地震灾区地震—地质灾害图集》,组织召开汶川地震动力学分析研讨会,2位专家参加国土资源部抗震救灾前方指挥部工作。在第33届国际地质大会期间,组织汶川地震大型展览,应邀作汶川地震、地震科学钻、地表破裂等学术报告,受到国际同行的高度关注。组织申报汶川地震断裂带科学钻探工程,2008年11月第一口地震科学钻开工;组织落实国家专项、“973”课题、地质调查项目等科研任务,有效地调整了面向地质灾害的学科结构和人才布局。
在2008年度科技成果汇报交流暨十大科技进展评选会,许志琴院士作汶川大地震发震背景与科学钻探报告,董树文、吴珍汉研究员作汶川大地震中国地质科学院的快速反应报告,评委会将“5·12汶川地震后中国地质科学院的快速反应与调查研究”评选为中国地质科学院2008年度科技特别进展。
中国地质科学院领导为首批赴震区调查组送行
第一时间组织开展发震动力学背景分析和地震地质灾害考察
“5·12”汶川地震发生后,中国地质科学院专家以高度的责任心,最先对发震动力学背景进行了科学分析;5月14日董树文、张岳桥研究员等科学分析了汶川地震发生动力学背景,彭华研究员等报道了汶川地震前地应力异常资料,并通过中国地质调查局《汶川地震简报》(2,3)上报国土资源部。2008年5月15日许志琴、董树文等参加中国地质调查局汶川地震机制会商会,讨论了地震背景和机理。2008年5月18日通过新华社面向国内外发布发震构造背景、地震破裂性质和余震长期活动的科学报告,全国各媒体纷纷转载。
2008年5月16~24日,院组织以董树文副院长为领队,由吴珍汉研究员、张岳桥研究员、张永双研究员、陈正乐研究员、杨农研究员、雷伟志副研究员、石菊松博士、施伟博士共9位专家组成的中国地质科学院地震地质灾害考察队,爬跋山涉水、风餐露宿,冒着生命危险,克服重重困难,深入地震重灾区北川县城、映秀镇、陈家坝、青川县城、关庄镇与红光镇东部,实地考察活动断裂、地震破裂与地震地质灾害,获得汶川8级强烈地震地表变形、地震灾害和地震触发地质灾害第一手宝贵观测资料。6月6日完成第一篇汶川地震地表破裂论文,7月份发表在《地质学报》(英文版)。
中国地质科学院考察队向国土资源部抗震救灾指挥部提交了多份有价值的考察报告,向当地政府和群众提供了及时有效的地震科学知识及抗震救灾建议,积极协助县市抗震救灾指挥部开展地震地质灾害调查和应急排查工作。5月21日,董树文研究员、张岳桥研究员、吴珍汉研究员在广元市接受四川人民广播电台、广元市电视台、广播电台联合采访,科学地解读地震原因,解惑群众惊恐和不安。
中国地质科学院专家第一时间赶赴震中区开展地震地质灾害野外考察
a—在北川县城南郊任家坪测量地表破裂变形;b—在关庄西北观测东河口堰塞湖;c—接受地方电视台和广播电台联合采访,普及地震科学知识
参加国家汶川地震专家委员会和国土资源部抗震救灾工作
5月21日中国地质科学院6位专家被选为国家汶川地震专家委员会委员,许志琴院士任专家委员会副主任,赵文津院士、董树文研究员、廖椿庭研究员、张岳桥研究员、吴树仁研究员为专家委员会成员;5月28日组织召开首次汶川地震动力学分析研讨会,对地震机理、地震预报及相关科学问题进行了深入讨论;6月20日许志琴与董树文等编辑出版《汶川地震灾区地震—地质灾害图集》,为抗震救灾和震后重建提供了重要参考资料;赵文津院士分析了我国大震地质、地球物理数据,对地震工作和地震预报工作提出建设性的意见。9月4日董树文委员作为国土资源部代表出席了国务院新闻办主持的“汶川地震专家委员会汶川地震新闻发布会”,介绍了地震—地质灾害损失与防治工作。5月24日~6月24日,中国地质科学院韩子夜所长和吴珍汉研究员进入国土资源部抗震救灾前方指挥部,在总指挥汪民副部长直接领导下开展工作,协调地震地质灾害应急调查,深入汶川地震重灾区实地考察地质灾害,为抗震救灾工作做出了积极贡献。
6月1~25日,在国土资源部科技与国际合作司支持下,中国地质科学院组织开展了汶川地震综合调查,许志琴院士任组长,龙长兴所长和胡平副所长任副组长,分应急选址、地应力监测、活动断裂与场址稳定性调查、科学钻选址、物化探测量与监测5个小组,分别开展野外调查与观测工作,获得宝贵的多学科综合观测资料。5月23日~6月5日,中国地质科学院水文地质环境地质研究所受国土资源部委派,组织以张发旺副所长为领队专家队伍10余人,奔赴汶川地震灾区,圆满完成了10个堰塞湖的调查评价任务,提交了6份技术报告,受到水利部抗震救灾指挥部和武警水电官兵的充分肯定,为堰塞湖监测和治理工程设计施工提供了重要依据。6月下旬,地质力学研究所组织专家赴汶川地震震中地区,布设天然地震观测台站,为余震精确定位和深部地震构造分析提供了重要的地球物理观测资料;水文地质环境地质研究所根据国土资源部和中国地质调查局相关部署,组织专家赴甘肃陇南市和文县,开展灾后重建规划地质安全与水土资源保障程度综合评估,为灾后重建的宏观决策提供科学依据。
中国地质科学院组织专家积极投入汶川地震地质灾害调查
a—国家汶川地震专家委员会董树文委员出席9月4日汶川地震新闻发布会,介绍地质灾害损失与防治工作;b—地质力学研究所龙长兴所长带领活动断裂与场址稳定性调查骨干成员抵达地震灾区;c—地球物理地球化学勘查研究所技术人员在地震灾区开展物华探野外测量;d—水文地质环境地质研究所张发旺副所长与武警水利专家讨论堰塞湖灾害隐患及治理方案;e—地质研究所地震科学钻选址组专家在野外测量地震变形和同震位移;f—地质力学研究所何长虹副书记带领专家在震中地区了解地震灾情并选择天然地震观测地点
组织实施汶川地震断裂带科学钻探工程
在汶川地震专家委员会和国土资源部指导下,在中国地质调查局直接领导下,中国地质科学院许志琴院士带领有关专家策划并组织申报“汶川地震断裂带科学钻探工程”,得到温家宝总理等领导及时重要批示。2008年11月第一口地震科学钻开工,成为世界上响应地震最快的地震科学钻探工程。汶川地震科学钻探工程将采用先进钻探工艺,对汶川地震和复发微震的源区进行直接取样,开展地质构造、地震地质、岩石力学、化学物理、地震物理、流变学等多学科观测、测试分析和综合研究,揭示控制断裂作用和地震发生的物理过程和化学作用,为地震监测、预报或预警提供基础数据和重要信息,促进地震科学发展。
汶川地震科学钻探工程一号孔开钻仪式
徐绍史部长向汶川地震断裂带科学钻探工程中心主任王学龙副局长和首席科学家许志琴院士授牌
组织第33届国际地质大会汶川地震大型展览与专题报告
2008年8月中国地质代表团参加在挪威奥斯陆举行的第33届国际地质大会上应组委会特邀作汶川地震学术报告,举办了汶川地震大型展览,展版面积18m×3m(图3);董树文研究员在“地质灾害”每日主题会上作了题为“汶川地震灾情与中国地质科学家反应”的报告,许志琴院士在专题会议上作汶川地震科学钻探学术报告,张岳桥研究员在国际岩石圈研究专题会上作有关汶川地震破裂与变形学术问题的报告,受到各国代表的高度关注。
副院长董树文研究员在地质灾害“每日专题”作汶川地震学术报告
第33届国际地质大会汶川地震大型展览
地质力学研究所全力以赴抗震救灾
“5·12”汶川大地震,震撼了中国,震撼了世界。在祖国面临大灾大难的关键时刻,地质力学研究所没有观望,没有等待,更没有退缩,立即组织有关专家,无条件投入抗震救灾行动,连夜展开震源机制分析,震情迁移分析,灾情分析。在老所长董树文副院长的组织领导下,紧急组成了调查组,第一时间奔赴灾区,冒着生命危险,开展活动断裂、地质灾害调查,收集掌握宝贵的第一手科学资料,发挥专业优势,为抗震救灾提供科技支撑。随后又多次派出专家组,前往灾区开展相关工作;同时组织多名专家、研究生组成专家组,在局的统一部署下,紧急展开地质灾害遥感解译以及环境承载力评估等方面工作,他们不分昼夜地坚守在自己的岗位上。
地质力学研究所先后直接参加抗震救灾一线工作的人员有62人,其中赴震区前线的人员有35人,坚守在后方的人员有27人;有3位专家进入国务院汶川地震专家委员会,有7位专家进入科技部专家组,为全国抗震救灾工作提供科技支撑。在整个抗震救灾行动中,地质力学研究所干部职工无私无畏的精神,坚强有力的行动,卓有成效的工作,得到了各级领导和同行们的肯定和认可,得到了各种方式的表彰。地质力学专业委员会荣获中国科协“抗震救灾先进集体”称号,张岳桥、杨农、雷伟志、施玮分别获得有组织评选的抗震救灾先进个人光荣称号。
地质力学研究所专家在地震灾区开展地震变形与地质灾害现场调查
地应力观测站5月12日观测到的地壳应力应变变化曲线
地壳应力应变变化曲线
地质力学研究所天然地震台网观测的余震震中分布图
水文地质环境地质研究所专家赴四川灾区调查堰塞湖险情
2008水文地质环境地质研究所专家赴四川灾区调查堰塞湖险情年5月23日~6月2日,受中国地质调查局委派,水文地质环境地质研究所党委、所领导抽调精干力量张发旺、张兆吉、王贵玲、王建中、韩双平、韩占涛、聂振龙、侯宏冰、蔺文静、钱永等10位同志,与水环地调中心的孙建平等5位同志、天津地调中心肖国强等3位同志一起到四川灾区的绵阳、德阳两个重灾区调查堰塞湖险情。
震后的灾区一片疮痍,加之堰塞湖出现的地方均处于位于发震断裂附近的深山中,是震灾最严重的地方,道路山体滑坡、坍塌等非常严重,有些地段,山体松动,地势险峻,随时都有继续垮塌的危险。
面对如此艰难险境,调查组成员不畏艰险,不顾劳累,连续作战,只要天气情况允许就出发。山里道路往往已经被巨石堵塞,调查组只能徒步前进,沿途河谷狭窄,两侧山体陡峭,许多地段岩体松动,摇摇欲坠,随时有滚落的可能。如遇到余震发生,后果不堪设想。5月25日下午,在四川青川县又发生了震后的最大一次余震,震级高达级,此时,调查队员刚刚从山中出来不到2个小时。
就是在这样的条件下,调查组通过一星期的辛苦工作,配合水利部出色地完成了调查任务,提交了7个堰塞湖的调查报告,受到水利部抗震救灾指挥部绵阳堰塞湖前沿指挥部的充分肯定,提出的建议已经被采纳,用于堰塞湖的治理工程设计和施工中。
中国地质科学院年报.2008
水文地质环境地质研究所专家在地震灾区调查评价堰塞湖险情
地球物理地球化学勘查研究所积极投入抗震救灾及调查研究工作
“5·12”汶川8级地震突发之后,在国土资源部和中国地质调查局统一部署下,地球物理地球化学勘查研究所以高度的责任心和使命感,积极投入到抗震救灾工作中去。
五月下旬,国土资源部选派人员组建部抗震救灾前线指挥部,韩子夜所长受汪民副部长指派,担任前线指挥部办公室主任,除了办公室的日常工作外,还负责指挥部的后勤工作。在韩子夜所长的带领下,前线指挥部办公室高效运转,为部领导决策、统领所属各单位在灾区井然有序地工作提供了有力的支撑。
汪民副部长、韩子夜所长及科研人员在至四川前线指挥部研讨抗灾工作
选址物探测量组在现场工作
物探测量组在布设测线
六月初经国土资源部再次统一调遣,地球物理地球化学勘查研究所先后派出两批专家前往灾区第一线参加抗震救灾工作。由胡平副所长亲自带队,统一指挥,两批专家一行12人,携带7台套物化探设备,四辆越野车以及其它有关装备,分成两组积极投入到“汶川强震活动断裂调查与灾区重建场址稳定性评价”工作当中去。第一组即物化探监测组,主要进行了天然电磁场、地磁场和地气监测工作,为余震活动趋势分析和活动断裂调查提供了重要的数据。第二组即应急选址地球物理测量组,主要开展了EH4电磁测深和高密度电阻率法测量工作,为探明擂鼓盆地基岩埋深及构造发育情况和灾后重建选址提供了重要依据。
另外,在此期间,地球物理地球化学勘查研究所分别派遣两名同志前往灾区参加了抗震救灾捐赠仪器的验收工作和国土资源作家协会的撰稿工作;还有三名同志被派驻京参加了部局机关抗震救灾的保障和宣传工作。
国家地质测试中心参加汶川地震断裂带科学钻探(WFSD)—地下流体异常及地震前兆关系研究
目前已建设WFSD现场流体实验室,利用在线脱气装置、质谱仪等,进行了实时流体监测,主要测定组分包括He,CH4,CO2,Ar,H2,O2,N2和氡。正随钻建立流体地球化学剖面,开展流体变化与地震前兆的相关性研究。
WFSD现场流体实验室
WFSD现场在线脱气装置
肖肖肖肖肖雪*
高幼龙1张俊义1薛星桥1谢晓阳2
(1中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051;2西北化工研究院,陕西临潼,710600)
【摘要】本文在地调项目工作实践的基础上,系统地总结了地质灾害实时监测的含义、特点和系统构成。详细介绍了巫山县地质灾害实时监测预警示范站的构建,针对实际运行状况,评价了实时监测技术的可行性和可靠性。
【关键词】地质灾害实时监测远程传输示范站
1 引言
随着现代科学技术的发展和边缘学科的相互渗透,自动控制、网络传输等越来越多的技术被不断应用于地质灾害的监测当中,极大地提高了监测的自动化水平,在一定程度上缓解了生产力匮乏和地质灾害急剧增加之间的矛盾。国际上,美国、日本、意大利等发达国家在一定的区域范围内建立了基于降水量、渗透压、斜坡变形等参数的地质灾害实时监测系统,借助国际互联网实现了监测数据的集中处理与实时发布。与之相比,我国地质灾害监测的实时化、网络化水平依然较低,监测信息为公众服务的功能未能得到明显体现,预警的信息渠道不畅,对重大临灾的地质灾害缺乏快速反应能力。因此,在我国进行地质灾害实时监测预警研究,对重大灾害体实施实时化监测预警,具有十分现实的意义。
笔者在参加地质调查计划项目《地质灾害预警关键技术方法研究与示范》的过程中,对实时监测技术进行了较为深入的研究,并在我国重庆市巫山县新城区建立了地质灾害实时监测预警示范站,经过个水文年的示范运行,验证了实时监测的可行性和可靠性。在对示范成果初步总结的基础上形成此文,以期实时监测技术得以快速成熟及推广应用,为我国地质灾害防治事业作出贡献。
2实时监测的含义和特点
实时监测(Real-Time Monitor,RTM)指通过各种监测、采集、传输、发布技术,让目标层人员在第一时间内了解、掌握有关灾害体的变形动态和发展趋势,进而作出决策的多种技术的集合。其最主要的特点为实时性,即远程的目标层人员可在第一时间获取灾害体的全部变形信息,而获取的过程是自动的,无需技术人员值守干预。显而易见,实时的特性可以最大限度地解放劳动力,降低监测人员风险和运营成本。
同传统监测技术相比,实时监测的数据采集方式是连续的、跟踪式的,数据的采集周期很短,通常在数小时之内,甚至更短。这对于跟踪灾害体变形过程,进行反演分析具有十分重要的意义。其庞大的数据量通常也会对配套的软硬件系统提出更高的要求。
不难理解,实时监测也是自动化监测。所使用的监测仪器均需自动化作业方可实现无人值守。监测仪器自动化分为两种,一种是监测仪器本身具备定时采样和存储功能,另一种是通过第三方的自动采集仪控制采样。不管使用何种方式或基于何种原理,其数据采集是能够自动或触发实现的。
监测数据远程传输是实时监测的另一主要特点。通常情况下,监测控制中心设立在远离灾体、经济相对发达的城镇区,需要借助公众通信网络或其他介质将各种类型的监测数据“搬运”过来,进行相应的转换计算,生成目标层人员所需要的成果。这个“搬运”过程即监测数据的远程传输。传输分为两种方式,一种是有线传输方式,如架设通信线缆或光缆,在电话线两端加载 Modem等;另一种是无线传输方式,如借助 GSM/GPRS或 CDMA网络、UHF数传电台或通信卫星等。
由于实时监测是数据自动采集、传输、发布等多个技术的集合,其中的任何一个环节失败均可导致系统无法正常工作,因此,实时监测是存在风险性的。其风险构成除电力(如断电停电)等保障体系统风险和监测仪器(如传感器、采集仪故障)、传输系统(如占线、网络资源不足、数据安全)、发布系统(如网路阻塞、病毒入侵、系统崩溃)等技术风险外,还包括人为抗力风险,如监测仪器设施的人为破坏、网络系统的恶意攻击等。对于风险的营救除最大程度地降低保障体系风险和技术风险外,需要通过立法、宣传等有效措施降低人为抗力风险,并设技术人员对监测系统进行即时维护,保障系统正常运行。
3实时监测系统构成
实时监测系统由监测仪器设施、数据采集系统、数据传输系统和网络发布系统四个子系统构成。各子系统均可独立运行,以单链的方式协同工作。其工作原理如图1所示。
图1实时监测系统工作原理示意图
监测仪器设施
监测仪器及设施是获取灾害体变形参数最前端、最主要的组成部分,固定安装于灾害体表层或深部,并能够表征灾害体对应部位的变形、变化。监测仪器的类型取决于所采用的监测方法。在地质灾害监测中,常用的监测方法包括灾害体地表及深部位移、应力、地下水动态、地温、降水量等(表1)。监测仪器的精度、数量及布设位置是在地质灾害勘查及综合分析的基础上,从控制灾害体主体变形的需要设计确定的。监测仪器通常和相应的监测设施,如监测标(墩)、保护装置等相互配合,完成灾害体相关参数的获取。
数据采集系统
顾名思义,数据采集系统用于收集、储存各类监测数据,是通过单片机或工业控制技术实现的。目前,多数监测仪器均有配套的数据采集及存储装置,可按设定的数据采集间隔定时自动化工作,并对原始数据进行转换计算。数据采集装置通常具有 RS-232或其他标准通信接口,可以方便地将数据下载至 PC中作进一步分析处理。对于不具备配套数据采集装置或仅具备便携式读数装置的监测仪器,则可以通过第三方的数据采集仪实现自动采集工作,通用型的数据采集仪可方便地将频率、电压等模拟信号转换为数字信号加以存储和处理,并具备标准通信接口和PC交换数据。由于数据采集仪多置于监测仪器附近,二者间通常使用线缆相连接。
表1常用监测技术方法简表
数据传输系统
数据传输系统用于完成数据采集仪—控制中心—用户间的数据传递。实际上,控制中心—用户间通常是利用国际互联网、通过发布系统实现的,所以狭义上的数据传输指数据采集仪—控制中心之间(即灾害体现场至控制中心)的数据传递。
按照灾害体和控制中心空间距离的长短,可将数据传输分为近距离数据传输(一般低于2km)和远程数据传输两种类型。前者由于传输距离较短,一般采用线缆连接,后者则采用远程数据传输装置。
按传输介质,远程数据传输分为有线传输和无线传输两种方式。目前常用的有线传输方式有电话线连接(即在电话线两端加载 Modem对数据进行调制、解调)、光缆连接等,无线传输方式有数传电台(用于中远距离)、GSM/GPRS或 CDMA移动通信网络、通信卫星等(图2)。
图2常用的数据传输方法
信息发布系统
信息发布系统通过国际互联网,以 Web主页的方式向目标层人员(即用户)提供各类监测信息。监测信息包括灾害体地质条件、发育特征、监测网布置方式、多元监测数据、监测数据随时间推移曲线变化情况、监测信息公告及图片、视频等。
信息发布系统由底层数据库和发布主页两部分构成。前者用于管理各类基础信息及监测数据,为后者提供数据源,后者为用户提供信息访问平台。二者之间通常采用B/S等架构交换数据。
信息发布系统一旦建立完成后,一些信息内容,如灾害体地质条件、发育特征、监测网布置方式等说明性的文字便相对固定下来,在短时间内不会做大的改动,这些信息通常称为静态信息。而随着时间推移,监测数据及其曲线等信息不断产生,且呈现动态变化并需在主页上自动更新、显示,这些信息称为动态信息。要实现监测数据的实时发布,需建立动态主页来显示动态数据。
由于监测数据是由底层数据库管理的,故只要即时将监测数据自动写入数据库中,为动态主页提供随时更新的数据源,便可实现自动显示,即实时发布。而这一点是易于做到的。
4巫山县地质灾害实时监测示范站简介
重庆市巫山县新城区是我国地质灾害危害最为严重的地区之一,全县约1/3的可用建设用地受到不同程度地质灾害的威胁。通过论证对比,在城区27个较大滑坡(崩塌)中,选择了近期变形相对较为明显、危害较为严重的向家沟滑坡和玉皇阁崩滑体建立实时监测预警系统进行应用示范。选用GPS监测地表位移、固定式钻孔倾斜仪和TDR技术监测深部位移、孔隙水压力监测仪监测滑体孔隙水压力及饱水时的水位、水温,同时通过安装仪器的附加功能或定期搜集的方法兼顾了地温、降水量及库水位等监测。截至目前,共建立GPS监测标22处(含基准标)、固定式钻孔倾斜仪和TDR监测点(孔)各3处、孔隙水压力监测3孔7测点。多种监测仪器在同一地理位置同组安装,这样不仅便于不同监测方法之间资料的相互印证对比,还可以仅使用一台采集仪及传输装置采集、传输多种监测数据,降低监测系统建设成本;另外,同组安装便于修建监测机房(现场站)保护监测仪器设施。以上监测方法除GPS因建设成本、人为抗力风险等原因采用定期观测外,其余监测方法均采用实时化监测。
示范站数据采集系统
固定式钻孔倾斜仪、TDR、孔隙水压力监测仪三种监测仪器均具备配套的数据采集装置,其中TDR监测技术使用工业控制机作为数据采集装置,恰好可以作为另两种监测仪器的上位机,通过多串口扩展,将固定式钻孔倾斜仪和孔隙水压力监测仪连接至工控机,定时下载、存储数据,并在预定时间统一传输至控制中心,同时在工控机上存放数据备份,防止数据丢失。示范站数据采集系统结构图如图3所示。
图3示范站数据采集系统结构图
远程无线传输系统
示范站控制中心设在巫山县国土资源局,距向家沟滑坡直线距离,距玉皇阁崩滑体约,其间采用GPRS网络进行数据的远程无线传输。
GPRS(General Packet Radio Service,通用分组无线业务)是中国移动通信在GSM网络上发展起来的数据承载业务,具有传输速度快、永远在线、按量计费等优点。GPRS使用TCP/IP协议,因此可方便地将数据写入指定(具固定IP地址)的服务器中。
GPRS数据传输硬件为商用型GPRS-MODEM,控制软件自主编写,用于控制数据传输时间、目标地址及传输过程的错误处理,由服务器端和客户端两部分构成。服务器端用于设置网络配置、数据库连接方式及数据文件、日志文件和配置文件的存放路径。客户端安装于现场站数据采集仪(工控机)上,控制网络连接、上传时间、数据编码、数据备份及传输错误处理。客户端软件和所有的数据采集软件设置为不间断工作状态,在按控制参数工作的同时,接受控制中心的配置指令即时对控制参数进行调整。
示范站信息发布系统
示范站信息发布系统硬件由1台小型服务器和2台 PC终端的100M局域网构成。通过2M带宽的ADSL接入Internet。底层数据库和WEB主页同时安装于服务器上。服务器操作系统为Mi-croSoft Windows Server 2000,数据库系统采用 MicroSoft SQL Server 2000。WEB主页用 和Visual C﹟编写,和数据库之间采用B/S架构。在病毒防护和网络安全方面,采用商业软件瑞星RAV 2004和天网防火墙系统。
(1)数据库系统
数据库系统是信息发布系统的基础,按管理内容分为基础信息管理、数据管理、辅助信息管理三部分。基础信息管理的内容包括监测站(包括中心站和现场站)、监测钻孔、监测点、发布信息、发布图片等;数据管理内容包括固定式钻孔倾斜仪、GPS、TDR监测系统、BOTDR监测系统、孔隙水压力监测仪、环境温度、降水量、库水位等;辅助信息管理内容包括分级用户、下载信息、访问统计次数等,数据库系统构成如图4所示。
(2)数据伺服处理程序
数据伺服处理程序用于转换、计算现场站传来的数据,并即时将处理后的结果写入数据库中。处理程序采用Visual BASIC语言编写,通过计时器控制的定时功能触发写库过程,并在完成写库过程后删除原数据以防止重写。不难看出,数据伺服程序是传输系统和发布系统之间的连接,它使两个彼此独立的系统有机地结合起来。
(3)示范站信息发布主页
信息发布主页为远程用户提供所需的全部信息,包括示范站的概况、实时的监测曲线、最新的监测数据等。从发布信息内容、访问方式及管理维护的角度出发,主页设计成导航区、发布区、管理区和下载区,为远程用户、管理员提供交互。
图4示范站数据库系统构成框图
导航区为远程用户提供必要的导航信息,包括公告信息、图片及相关的专业网站链接,展示示范站建设工作的进展、取得的阶段性成果及有关的预警内容。
发布区用于提供示范站概况、实时监测曲线及数据查询。
示范站概况包括示范区自然地理条件、地质条件、示范站工作的整体部署,监测仪器设施(GPS、固定式钻孔倾斜仪、TDR、BOTDR、孔隙水压力监测仪等)的性能指标,监测现场站(含中心站)、监测钻孔、监测点的基础信息等内容。
实时监测用于显示各种监测曲线,是发布主页最核心的内容。从访问方便的角度出发,实时监测采取了“选择灾体—选择监测剖面—选择监测点—选择监测时段—显示监测曲线”逐级打开、层层剥落的展示方式,并全部做成图形方式链接,以增强访问的直观性。监测曲线的坐标设计成自适应型,图形的大小在系统的配置文件中设置,并标明数据的最新更新时间。曲线是以图片的形式显示的,用户可以方便地将其下载到自己的PC中保存。
从安全考虑,数据查询进行了加密,用户需用授权的用户名和密码登录后方可查看。查询采取了“选择监测方法—选择监测点—选择监测起始时间—显示数据表”组合式筛选的方式。输入界定参数并提交后系统从底层数据库中找到所有符合条件的记录,按日期排序后列表显示。用户可以全部或部分选取查询结果,粘贴至个人PC作为WORD文档保存。
管理区专为系统管理员设计,用于管理员远程管理文本、图片、数据等信息,进行信息的添加、修改、删除、上传下载等操作。分为信息管理、图片管理、数据管理、下载管理4个相互独立的模块,具有模糊查找等高级功能。
下载区为授权用户提供工作图片、视频、监测报告、软件等较大文件的下载功能,补充主页在文件交换方面的不足。
主页面布局如图5所示。欲了解发布系统的更多内容,请登录Http://。
5示范站实时监测系统运行评价
由于本文着重论述实时监测技术的可行性和可靠性,因此不对监测成果和滑坡稳定性动态做更多分析。从以上论述明显可以看出,在地质灾害监测中,构建实时监测系统从技术上是可行性的。本节主要针对巫山县实时监测预警示范站运行过程中出现的各种问题,从故障统计、故障原因分析等方面,对示范站采集系统、传输系统、发布系统的可靠性进行简单评价,并提出意向性的改善建议。
图5示范站信息发布主页面
根据巫山县地质灾害监测预警示范站建设工作日志,监测系统故障主要发生在传输子系统,故障表现形式为数据不传输或不正确传输,主要原因为GPRS网络信号不稳定造成传输随机中断所致;其次,拨号连接失败后的重复尝试连接导致服务器80端口长期无效重复占用,当超过服务器最大连接数后导致网络无法正确访问;再次,监测地区不规律的停电常常使保障体系失效,从而丢失数据。此外,示范站服务器系统遭受过病毒破坏和恶意攻击,两次造成网络系统崩溃。可见,实时监测系统在基础通信条件和保障体系完备的条件下,是能够稳定可靠运行的。在建设过程中通过安装长时后备电源系统、功能完善的病毒防火墙和网络防火墙,可有效降低保障体系风险,进一步提高系统运行的稳定性。
6结语
巫山县地质灾害实时监测预警示范站自2003年陆续建设运行以来,在技术人员的维护下,系统运行正常,取得了数十万个监测数据,发布公告信息及图片近百条(幅),编写监测分析简报数期,实现了监测信息远程实时访问,取得了良好的示范效果。实践证明,将实时监测技术应用于地质灾害防治中是完全可行的,也是比较可靠的。可以预见,实时监测技术将是地质灾害监测的必然发展趋势。
参考文献
[1]殷跃平等.长江三峡库区移民迁建新址重大地质灾害及防治研究.北京:地质出版社,2004
[2]王洪德,高幼龙等.《地质灾害预警关键技术方法研究与示范》项目设计书.2003(未出版)
[3]刘新民等.长江三峡工程库区滑坡及泥石流研究.成都:四川科学技术出版社,1990
[4]何庆成,侯圣山,李昂.国际地质灾害防治现状.科学情报,2004,(5)
[5]邬晓岚,涂亚庆.滑坡监测的现状及进展.中国仪器仪表,2001(3)
[6]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报.第12卷,第2期.2001,(6)
[7]曹修定,阮俊,展建设,曾克.滑坡的远程实时监测控制与数据传输.中国地质灾害与防治学报.第13卷第1期.2002(3)
[8]夏柏如,张燕,虞立红.我国滑坡地质灾害监测治理技术.探矿工程(岩土钻掘工程).2001年增刊
魔王夫人
深埋隧道工程的灾害地质问题论文
摘要 :在进行深埋隧道工程施工过程中,由于洞程较长,洞深埋设较大,地质条件较复杂,在施工时,如果处理措施不当会出现高地温、岩爆、高压涌水等问题。鉴于此,以实际工程为例,对深埋隧道工程主要存在的灾害地质问题进行了分析和探讨,保证了施工的顺利进行,以期为类似工程提供参考与借鉴。
关键词 :深埋隧道工程;灾害地质;高压涌水
1工程概况
太行山高速公路邯郸东坡隧道位于武安市岭底村南、七水岭村东、涉县东坡村东北处。隧道为分离式特长隧道,隧道工程总施工长度为3134m。左幅为ZK38+624~ZK41+740,长3116;右幅为K38+642~K41+776。最大埋深为176m。本文以此工程为例,对深埋隧道工程主要灾害地质问题进行分析和探讨。
2深埋隧道中的高地温难题
深埋地下隧道的工程中,地质问题是需要进行探索和研究的关键领域,最先要通过预测天然地温,一旦地温超过30℃一般将其称之为高地温。高地温不仅会恶化深埋隧道作业的环境,还会严重降低工人的劳动生产率,甚至会对现场施工人员的生命造成极大危害。此外,对深埋隧道施工材料选取的难度也相应增加[1]。然而,地温值是随着地下工程埋深在不断变化的,但地下工程的最大埋深和地温值的增加关系不是呈线性的,因为造成这种深埋隧道中的高地温问题的原因主要是地下水活动以及近期岩浆活动中放射性生热元素含量较高等。
3深埋隧道与岩爆的高地应力问题
在深埋地下隧道的工程中,其中一个突出的地质难题就是岩爆问题。地下隧道工程埋得越深,其地应力就会越高。深埋隧道工程和近地表工程的不同之处除了具有较高的水平构造应力外,最主要取决于围岩出现的高地应力。它不仅在硐侧壁引起高压应力,还导致硐顶部出现高拉应力,这样会导致硐室围岩不稳定,埋下隐患。由于高地应力的存在,一些黏性土含量较高,而硬岩含量较低的围岩就会产生被塑性挤出的可能。高地应力不断释放,地下隧洞就会发生变形,往往会出现隧洞短时间内突然变小的异常现象。就好比从掌子面距离正洞30m开始,洞身变形的长度有40m,起初的支架保护结构破坏就会非常严重,通过测量计算,隧洞拱顶的下沉在10~20cm之间,隧洞的拱脚和边墙也出现不同程度的挤压和移位,甚至还有混凝土开裂的情况[2]。这时就需设计一套科学有效、刚柔结合、综合治理的施工方案。为克制高地应力,考虑使用约1万根超长锚杆,要求总长超过11×104m,把地下隧洞中的断面改成环形成拱,做到先柔后刚、先放后抗的设计要求。岩爆受影响的原因有地震爆破,也有相邻岩爆或机械等外因动力的振动,但其中影响岩爆的最基本原因是岩石的结构特征。经过大量的数据分析发现,岩石颗粒排列呈定向排列还是随机排列,岩石是胶结连接还是结晶连接,是钙质胶结还是硅质胶结,这最终关系着岩爆烈度的强弱。例如:(1)随机排列的花岗岩、闪长岩等岩石的岩爆烈度,会比片麻岩、花岗片麻岩、糜棱岩等具有定向排列的围岩颗粒更强一些;(2)结晶连接的深层岩浆岩石中的岩爆烈度比胶结连接的沉积岩强;(3)具有硅质胶结岩石的天生桥二级水电站引水隧洞比关村坝的隧道中钙质胶结岩石的爆烈度强。
4深埋隧道中的高压涌水难题
深埋地下隧道的施工过程中,除了高地温以外,涌水问题也成为隧道运营中亟待解决的又一难题。由于地质条件复杂,隧道通过的地段会挖掘出很多水流量大的地质单元,一般就会出现涌水量大或水头压力高的情况。地下水水压在深部岩体中极高时,就会导致岩体水力劈裂。这就说明在高水头压力的作用下,在岩体的突水点附近,岩体断续裂隙、裂缝是朝着某个方向的,受网状交织的构造裂隙影响,经过融合后发生扩展的裂隙、空隙最终张裂开来。随着隧道深部岩体涌水量越来越大,地下水水压越来越高,会导致深埋隧道工程围岩水力劈裂。一旦出现水力劈裂的情况,就会迅速连通裂隙,空隙的张裂程度就会越来越大,涌水的渗透力会越来越强。再加上动水压力的影响,裂隙会再扩展,而使在裂隙面上的充填物发生剪切变形和位移。不论是在深埋隧道工程中还是在浅埋隧道中,容易发生的地质灾害主要表现为断层破碎带,岩体不整合接触面和结构不利组合段造成的塌方、地震,还有瓦斯爆炸、有害气体以及溶岩塌陷、泥屑流等[3]。其中,瓦斯爆炸主要指甲烷CH4在相对封闭的煤系构造地层中,由冲击波的产生、剧烈的氧化作用而导致的爆破,其灾害性极强。
5基岩裂隙水
基岩裂隙水的含义
只有储存在坚硬岩石裂隙中的非可溶性地下水,才被统一归纳在基岩裂隙水的`传统范畴中,根据含水介质的基础特征,可以将地下水分为空隙、裂隙、岩溶3种,但并非在地下水、岩石以及岩石中的空隙这3者之中产生对应关系。贮水空隙系统具有双重空隙介质,在地下水勘探中,关于贮水空隙类型还探索到了新的领域。基岩裂隙水主要存在于受符合地质构造条件的属坚硬或半坚硬的岩石所控制的以裂隙为主的贮水空间,是具有运动、富集规律的地下水。不管是溶蚀裂隙地下水在可溶性岩石中的部分,还是孔隙裂隙水中的半坚硬岩石,都属于基岩裂隙水,而它与其他类型地下水的基本区别,关键在于是不是受地质构造因素的严格控制。岩石含水的裂隙有成岩裂、构造裂和风化裂,主要是依照它的成因来划分的。如果非要与风化裂隙水和成岩裂隙水作比较,那么水源集中、水量较大的必定是构造裂隙。
基岩裂隙水的特点
由于主控因素作用,不同的蓄水构造中分布、富集基岩裂隙水的基本规律和决定主控的因素也基本相同,具有独特的分布和运动规律。我国基岩裂隙水富集的基本特色理论就是蓄水构造系统,其主要特点如下。(1)基岩裂隙水具有复杂多样的埋藏和分布形态。将储存、运移基岩裂隙水的空间和通道,叫做岩石裂隙。基岩裂隙的大小和基岩裂隙的形状,以及控制埋藏和分布裂隙发育带的产状,都是受地质构造、地层岩性、地貌条件等影响的。埋藏、分布不均匀的基岩裂隙水,大多具有不规则的含水层、多种多样形态、分布呈带状的特点[4]。比如用脆性和塑性这两种地层做比较,会产生较强的赋水性。若裂隙发育在褶皱构造中,像褶皱轴、转折、背斜倾伏等处,富水段的形成就会比较容易,而压性断裂破碎带中的赋水性是比较差的。(2)复杂的基岩裂隙水中,由于储存空间中不均匀的介质,埋深程度不同的同一含水层,其地下水的运动状态也各有不同。对于岩石中所要形成和分布的空隙,最基础的因素是地质构造,主要表现在:岩石裂隙的发育和裂隙水的储存都是受地质构造和地层岩性所影响,其中,基岩裂隙水的运动规律也被地质构造所牵制。由于地下水面的不同,即便是在基岩相同的裂缝水中,也是有时而出现无压水,时而出现承压水的情况[5]。层流、管道流、紊流、明渠流水是在岩石裂隙、溶洞的特殊形态作用下形成水运动的不同状态,因此,基岩裂隙水的不均一性以及强烈的方向感,是导致裂隙岩体的透水复杂多样、不具有规律性的根本原因。
6结论
在深埋地下隧道的工程中,比较突出的几大地质难题包括高地应力及岩爆问题、高压涌水突水问题、高地温问题等。此外,还有像地震震害、瓦斯有害气体爆炸以及涌水突泥、围岩塌方、岩溶塌陷、泥屑流等。于是,在这个复杂的、系统的深埋隧道工程中,关于灾害地质的研究,对隧道工程能否顺利开展是关键的一步,在隧道工程施工前应按照隧道工程的各方面具体情况,采取有效、有针对性的防御措施。
参考文献:
[1]重庆交通科研设计院.公路隧道设计规范:JTGD70—2004[S].北京:人民交通出版社,2004.
[2]上海市隧道工程轨道交通设计研究院,清华大学.隧道工程防水技术规范:CECS370—2014[S].北京:中国计划出版社,2014
[3]孙赤.锦屏二级深埋隧道大理岩段突水破坏机理研究[D].成都:成都理工大学,2014.
[4]王洪新.土压平衡盾构刀盘开口率选型及其对地层适应性研究[J].土木工程学报,2010(3):88-92.
[5]武力,屈福政,孙伟,等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18-23.
weiweivivianweiwei
范文一:甘肃省城市建设地质灾害防治研究甘肃省境内泥石流、滑坡发育的基础主要是其特殊的自然条件。陡峭的地形、充足的松散土石和突发性水源是泥石流、滑坡形成的三大条件,另外地震作用也是造成滑坡的因素。甘肃地处黄土高原区,境内主要以黄土为主,而黄土由于结构疏松,孔隙大,渗透性强,具强压缩性和自重湿陷性,垂直节理发育,特别是极为发育的顺坡向卸荷节理,使边坡稳定性降低,易发生滑坡和造成严重的水土流失,大量滑坡、崩塌等重力堆积物受暴雨形成的坡面流及洪水的冲刷,源源不断地为泥石流提供固体物质。 通过计算泥石流、滑坡作用强度和危险度,将城市分为Ⅰ级、Ⅱ级、Ⅲ级和Ⅳ级四个危险等级。经过对甘肃省灾害防治历史和治理现状的研究,提出存在问题,得到泥石流、滑坡灾害的发展趋势,强调防治的可能性和必要性。 根据对城市的分级,危险度高的Ⅰ级和Ⅱ级的城市应采取治理体系为主,预防体系和管理体系为辅的综合控制对策;危险度不高或较低的Ⅲ级和Ⅳ级的城市应采取预防体系与管理体系为主,治理体系为辅的控制对策;对于威胁城市安全的巨型滑坡和规模巨大的泥石流沟则采用躲避对策。 城市泥石流、滑坡防治规划的最基本原则是预防为主,重点治理。对于不同类型的泥石流、滑坡建立不同的治理模...范文二:分析地理信息系统的开发工具及其在地质灾难探究中的应用进展地理信息系统在地质灾难探究中的应用进展 目前,国内外利用地理信息系统,主要用于探究国土和城市规划、地籍测量、农作物估产、森林动态监测、水土流失、地下水资源管理〔4〕和矿产资源勘查〔10〕、潜力评价及开发〔11〕等众多领域。GIS在地质灾难探究中的应用大致有以下几个方面摘要:(1) 地质灾难评价和管理利用地理信息系统的各种功能,建立地质灾难空间信息管理系统[12,13,14,管理地质灾难调查资料,显示并查询地质灾难的空间分布特征信息,评价地质灾难的危害程度,分析地质灾难和影响因素之间的关系,提出减轻和防治地质灾难的办法,对将来可能发生的地质灾难进行猜测〔15,16〕。戴福初等利用GIS对香港地区的滑坡灾难进行历史滑坡编录,分析滑坡的时空分布特征和动态和静态环境因素之间的相关关系,对滑坡灾难风险进行评价和危险区域划分〔17〕。(2) 地质灾难的危险度区划评价由于各种地质因素本身的不确定性,以及地质因素之间相互功能的复杂性,在收集大量的基础地质环境资料前提下,利用GIS对这些基础资料进行有效地处理来提高数据的可靠性,通过选取合适的评价猜测指标〔18〕,运用恰当的数学分析模型〔19,20,21〕,对探究区进行地质灾难危险性等级的划分,从而为地质灾难的管理及防治和预警决策提供依据。(3) GIS和专家系统的集成应用GIS和专家系统的集成应用中,GIS所起的功能主要是管理时空数据,进行空间分析;专家系统所起的主要功能是利用专家知识和空间目标的事实推理判定灾难的危险度〔22〕。二者的结合将使专家经验得到推广,减少野外和室内手工作业工作量,使区域地质灾难的动态管理成为可能。4 结语(1)地理信息系统技术已经广泛渗透到了多种学科领域,从比较简单的、单一功能的、分散的系统发展到多功能的、共享的综合性信息系统,并向多媒体GIS、智能化、三维、虚拟现实及网络方向发展,新兴的地理信息系统将运用专家系统知识,进行分析、预告和辅助决策。(2)地理信息系统的开发工具,从专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别。其中组件式GIS在系统的无缝集成和灵活方面具有优势,代表了GIS系统的发展方向。(3)地理信息系统在地质灾难探究中的应用方兴未艾,尤其在地质灾难评价和管理、地质灾难的危险度区划评价和GIS和专家系统的集成应用方面进展很快。以上希望对您有帮助!另外这有个地质灾害论文的网址,可参阅:
水瓶座A型
地震既然是巨大能量释放,那么就存在释放能量的物质,这个物质到底是什么?天然地震的动力,源于地球自身的核能郭德胜 佳木斯大学数学系伊春市汤旺河党校摘要:根据方法论,研究地壳的运动和形变,必须从物质的物理角度和化学角度进行全面的分析总结。物体自身发生形变,产生动力的主要途径是物理变化、化学变化及和核裂变,物体的动能与势能导致物体形变或移动,物质发生化学变化,形成化学能,导致物体形变或移动。而动能、势能、化学能、核能是物质自身形成动力的绝对因素。根据多年的细致的研究发现,地球内部即存在物理变化,又存在化学变化,在地球内部的物质化学变化中,各种物质之间相互转化,形成新的无机物、有机物,单质及核能,而这些物质都具有能量释放的特性,形成动力。对照地下能量物质与地震产生的位置,可以得出,地震发生的位置与核物质存在的位置有着非常密切的关系,再结合大量事实及文献,根据地震与能量物质的一系列复杂关系,循序渐进的逻辑分析、推导,推论出这样一个事实,天然地震的动力,来源于地球内的核能。关键词:铀;铀矿;钚;锎;氡;裂变;聚变;衰变;半衰期;中子;地震;天然核反应堆.前言:受人类活动的影响,全球气候发生了快速的变化,各种自然灾害频繁发生,气候恶化加剧,对人类的生存造成极大的威胁与不适应,如何解决这一问题,已经成为全球地学科学家与学者当务之急。自古以来,科学研究者对地震研究一直纠结于地震的“动力”问题,运用“板块理论”进行了无数次的研究,最终没有得出科学的结论,为什么会出现这样的情况呢?方法论给出了解释,研究地质形变,必须要针对物理变化、化学变化所产生的动力入手,对地震等自然灾害形成的动力进行分析、判别,只有找到地质灾害的动力根源,一切地质灾害问题就将迎刃而解。通过大量的历史资料与文献,结合自己多年的认识和总结,按照方法论、以及正确的逻辑思维分析、判断,在长时间的细致研究与总结中,对地质灾害的动力根源有了全面的了解和更深刻的认识,运用正确的思维逻辑,结合文献对地震等地质灾害问题加以全面的剖析和严谨的论述。一,地壳发生形变分析物体发生形变,不外乎物理变化、化学变化所形成的动能、势能、化学能以及核能所形成的动力,地壳发生形变,是地球外部因素与内部的动能、势能、化学能、核能导致的结果,在地球外部,存在风能、光能、水能,山体势能,在地球内部,存在着煤、石油、天然气,核物质等能量物质,而这些物质都隐含巨大的可释放能量,在一定条件和长时间的转化过程里,就会发生能量的释放。火山爆发、地震现象,这是一种能量释放,造成地壳出现抖动,由于地下本身就存在了各种可燃的能量物质以及核物质,那么,火山爆发、地震的“动力”一定来自地球内部。由此,我们要对地球内部的地质结构以及地球内部各种能量物质进行研究分析,找到使地壳发生形变的根源。二,地震、地下能量物质存在的位置分析根据“盆地、冲积平原,对成煤、成矿起了决定作用”这篇文章,得出这样的结论是,盆地、冲击平原地带会形成煤和天然气,而成煤地带,又是地震发生过的地带。比如山西,历史发生了无数次大地震,而山西是又是产煤的大省,地震、煤矿、天然气有着密不可分的关系。再根据,铀矿与天然气伴生等大量的史料文献,让我们清楚了这样一个事实,铀矿与天然气共存,也存在于盆地及冲击平原内及其盆山边缘,那么,在盆地、冲击平原及其周围就存在这样一个事实。煤、天然气、石油、铀矿、地震在一个以盆地、冲击平原这样地貌的的特殊位置上。在盆地、冲击平原这个特殊位置上,让我们发现了无数的煤矿,天然气矿,油矿、铀矿,而这些物质都是地球上最重要的可以释放能量的物质,在这样特殊的地理位置,又时时的发生着地震,地震与这些能量物质,就存在了千丝万缕的复杂关系。[]三, 地下所有能量物质能否在地下释放能量对于埋藏地下的能量物质,我门所知道的主要是,煤、石油、天然气、瓦斯、核物质。这些储存地下的能量物质能否进行能量的释放呢?按照煤、石油、天然气瓦斯的燃烧、爆炸性质,他们燃烧、爆炸需要氧气条件及明火,氧气的多少决定了能量释放的多少,矿井常常因瓦斯爆炸引发地震,这是井下瓦斯浓度与充足的氧气存在了爆炸的条件。在地下,如果煤、天然气、石油这些矿出现完全的能量释放,那么,就必须存在有足够的氧气。但事实证明,地下的氧气不足以释放这些能量的物质,但现在,大量的事实,以及无数的相关文献证明,地下存在与天然气伴生的铀矿[],铀是核物质,铀矿是运用到各个领域的基础燃料,而且释放的能量巨大。而对于核物质来讲,不需要任何条件,只需要一个“中子”撞击,就能将核物质的能量释放出来。 [9]四,分析地地球内部所存在核物质的特性现在所发现的地下核物质是铀矿,铀的原子序数为92的元素,在自然界中存在三种同位素铀234、铀235和铀238。铀238的半衰期约为45亿年,铀235的半衰期约为7亿年,而铀234的半衰期约为25万年,铀矿石里含有铀234、铀235和铀238。[6]参考关于“铀_钚和铀核裂变产物的若干问题_兼谈2011年福岛核事故泄露的放射性物质”,这篇文章详细的介绍了核物质的衰变、裂变以及产生的高能碎片继续衰变的过程,在铀的三种同位素U234,U235,U238中,铀U235有巨大的能量,1克U235裂变释放的能量相当于吨优质煤所释放的能量,当铀U235在中子、热中子的轰击下,会发生裂变,裂变的途径有60多种,裂变所形成的高能碎片有20多种,主要的高能碎片有锶89(半衰期50天),锶90(半衰期29年),氪(半衰期年),氙半衰期(9个小时),铀233,钡141,等碎片,这些高能碎片,在一定时间内,还会继续发生衰变,裂变,继续释放能量。[6]铀矿中存在钚的痕量,钚的同位素有13种,自然界里有钚244,钚239 ,储量极少,半衰期年限比较长,人造的钚的同位素PU238,PU240,PU234,PU232,PU235,PU236,PU237,PU246等,PU244,半衰期约8千万年,PU239半衰期约万年,PU238半衰期约88年,PU240半衰期约6500年,在研究过程中发现,地球内部还存有着极少量的锎,主要出现在含铀量很高的铀矿中。[]锎的同位素已知的锎同位素共有20个,都是 放射性同位素。其中最稳定的有锎-251( 半衰期为898年)、锎-249(351年)、锎-250(年)及锎-252(年)。其余的同位素半衰期都在一年以下,大部分甚至少于20分钟。锎同位素的 质量数从237到256不等。[]锎-252是个强中子射源,因此其放射性极高,非常危险。锎-252有的概率进行α衰变(损失两颗质子和两颗中子),并形成锔-248,剩余的概率进行自发裂变。一微克(最)的锎-252每秒释放230万颗中子,平均每次自发裂变释放颗中子。其他大部分的锎同位素都以α衰变形成锔的同位素(原子序为96)。可用作高通量的中子源。[] 能够利用的锎的数量非常少,使其应用受到了限制,可是,它作为裂解碎片源,被用于核研究。[]如果含铀量高的铀矿一旦出现锎,锎是强中子源,衰变会释放中子,对于含铀量高的铀矿,就会导致裂变,这如同成熟女人的卵细胞,当遇到精子,就会产生卵细胞分裂。铀即能自发裂变,又可以人工裂变,在裂变过程中产生巨大能量,同时会发光、发热。铀裂变在核电厂最常见,加热后铀原子放出2到4个中子,中子再去撞击其它原子,从而形成链式反应而自发裂变,产生爆炸。[12]五,一个铀矿形成的能量与地震所释放的能量对比分析根据美国地震学家里克特和古登堡提出的“里氏地震”,汶川八级大地震所释放的能量约为10亿吨左右当量的TNT,按照一千克铀裂变释放的能量相当于2万吨TNT所释放的能量,来推导汶川大地震需要多少铀矿石,一般情况,铀在铀矿石里的比例约0.75/100,按照这个标准计算,10亿吨TNT当量需要多少吨铀矿石呢?把10亿吨TNT当量换算成铀裂变能量,经过计算,需要铀5万千克,换算成铀矿石,约0.6667万吨,这就是说,如果有0.6667万吨的铀矿石完全裂变,就会产生10亿吨TNT当量。2012年11月5日,从国土资源部获悉 ,内蒙古发现大型铀矿,储量达到3万吨,如果三万吨铀矿完全裂变,产生的能量相当于45亿吨TNT当量。2016年1月17日 - 1月14日,记者从全区国土资源工作电视电话会议上获悉,内蒙古发现七处大型铀矿床,内蒙古的铀矿如果完全释放,将远远超过45亿TNT当量,由此对比,内蒙古铀矿如果发生完全裂变,所形成的能量远远超过8级地震所释放的能量。[23]六,地震发生的前后,氡气出现明显量的变化氡是一种放射性惰性气体,铀是氡的母体,因此有铀存在的地方就有氡。根据这一说法,如果地表发生了氡气变化,那么地下就可能存在铀及其他核物质,现在常常运用氡出现的变化探测铀矿。另一方面,很多事实表明,在地震后,氡气有了明显变化,在地震后,对龙门山断裂地带检测,氡出现明显的不同,有铀矿的地方会出现氡气,氡气与铀有着直接的关系。[]七,铀矿的衰变、裂变,与地震和余震现象高度吻合根据奥克洛现象,地球内部存在天然的核反应堆,在一定的时间里就会产生核衰变、核裂变,释放能量,铀矿的大小及含量决定了能量释放的大小,一旦出现铀矿出现衰变、裂变,那么就会释放巨大能量,产生地动、地震现象。[]根据天然气与铀矿同存,及盆地、冲积平原,对成煤、成矿起了决定作用,推导出,铀矿与地震所发生的位置完全处于同一位置,[]根据地球内部还存有着极少量的锎,主要出现在含铀量很高的铀矿中。一个铀矿一旦有了锎及锎的同位素存在,那么铀矿发生裂变的时间,被锎所决定,锎及锎的同位素的衰变有900年的,有几十年的,有几十分钟的,而且是核变的中子源。根据铀是氡的母体,铀矿发生裂变,氡就自然脱离母体,氡气自然会发生变化。根据内蒙古地区铀矿的储量,三万吨的铀矿具备了大地震所产生的当量。根据铀发生裂变所产生的高能碎片,还会遇到其他核物质及其同位素的裂变或衰变所释放出的中子继续撞击,再次裂变。锎的同位素很多,而这些同位素衰变时间,从20几分钟到几百年不等。更重要的是释放中子,高能碎片接受中子,会继续裂变,进而形成持续的能量释放,直至核物质能量释放完为止,这和每次大地震后的余震过程高度相似。根据核裂变的特性,地球内部发生铀矿核裂变,采用声波预测是无法实现的。从上面所发现的结果,铀矿与天然气位置,铀矿能量与地震能量地震位置同处于一个位置,地震发生产生的TNT当量与铀矿转化的TNT的当量匹配,地震、余震的过程,与核裂变释放能量的过程极度相似。[]八,对核聚变的思考与分析核聚变的过程也是一种能量释放的过程。核聚变是小质量的两个原子合成一个比较大的原子,核裂变就是一个大质量的原子分裂成两个比较小的原子, 在同等条件下,核聚变所释放的能量远远大于核裂变。在史料和文献中还未有地球内部发生自然核聚变的解释和说明,只是有文献说明,地球内部发现3H的证据,根据现有的资料和文献,对于地球内部是否存在核聚变还没有科学的证实,更因为,核聚变的条件比较苛刻,需要超高的温度,火山爆发会有较高的温度,地球内部核裂变会出现较高的温度,它们所产生的温度能否满足核聚变的条件,在核裂变中是否还存在核聚变,还有待于进一步的科学证实。[]九,地震的消减方法另据报道,澳大利亚近些年很少地震,通过了解,澳大利亚是铀矿产量高的国家,而且很早就对铀矿进行了开采,到现在有80多年的历史,很多铀矿都被找到和开采,铀矿被开采后,奥克洛天然核反应堆现象也就不存在了。澳大利亚近几十年很少地震,与大量开采铀矿是否有关系?就有必要的思考了。[33]地震属于能量的释放,而对于地下的的能量物质来讲,铀矿的能量巨大,而且,铀矿发生能量释放的方式非常简单,释放的条件是,铀矿的含量达到一定程度,存在中子源,就会出现铀裂变,导致能量释放,出现地壳的震动。通过上述的分析,消除地震的最有效手段,就是快速找到铀矿并开采,把这个可以释放能量的核物质从地球内移除,除去地震的隐患,这是非常可行的办法。另一方面,对所存在的铀矿地区,进行铀矿含量鉴定,因为铀矿石达到一定含量,才会形成裂变条件。[]十,海啸的形成海啸也同地震一样,是海洋内出现巨大能量的释放,但根据已有的资料和文献,还无法断定海啸是哪种能量物质发生了释放,科学界对可燃冰这个能量物质特性,还没有较详细的论证,海洋底部是否也存在核物质也没有相关文献和实证,因而,海啸的发生,是什么哪一种能量物质还难以定论。结论通过上述的逻辑分析和推论,如果所采用的文献和数据是科学的,那么,地震将不再是奥秘。自然发生的地震、余震都是铀矿的含量到了一定程度,在含量高的铀矿中,锎及锎的同位素会发生衰变,射出中子而导致铀矿的裂变,释放能量产生巨大的动力,引起地震震动和无数次持续裂变而产生的余震,同时,根据盆地、冲击平原对成煤成矿、地质灾害起了决定作用,及天然气与铀矿同存,这两篇文章,就可以发现以往很难发现的各种矿物质,同时,对地震的减消提供了合理的指导方向,为减免大地震的发生,为人类不再为地震所困找到了病因,这是造福人类,重新认识地球的一次史无前例的突破。
马胜中 (广州海洋地质调查局 广州 510760) 作者简介:马胜中,男,1968生,1990年毕业于中国地质大学(武汉),工程硕士,高级工程师,从事海洋环境地
文献综述和参考文献 导语:文献综述是科学文献的一种,而参考文献是文献综述的重要组成部分。下面是我分享的文献综述和参考文献,欢迎阅读! 文献综述 一、文献综述是什
论地下工程引起的地质问题及防治措施论文 摘要:随着城市建设的大力发展,地下工程建设越来越多,由此引发的各类工程地质问题也逐渐显现出来,根据城市地下工程的特点,对
我国防灾减灾科技应用与建设的现状、问题及建议 我国地域辽阔,天气变化万千,洪水、飓风、龙卷风、地震等不可抗性灾难频发,此次汶川特大地震给人民的生命和财产造成巨大
季伟峰 (中国地质科学院探矿工艺研究所,四川成都,610081) 【摘要】地质灾害防治工程中对地质灾害体的监测十分必要。本文简要介绍了我国当前地质灾害监测的主要