sunxiaoyan85
众所周知,环境因素会造成生物体的DNA损伤,例如紫外线。在人类和动物中,这种DNA损伤可能会导致癌症。但幸运的是,细胞有几种不同的策略修复受损DNA。
生活在地球上的人类,受到了地球磁场和大气层的保护,隔绝了绝大多数来自太空的有害辐射,然而,太空中的宇航员离开了地球的保护,他们会受到更强的辐射,因此面临更强的DNA损伤风险。
现在,中国和美国都宣布了载人登陆火星的计划,这种长期的星际旅行,宇航员们会面临长期太空辐射,身在太空微重力环境下的他们,身体会选择怎样的策略来修复辐射导致的DNA损伤呢?限于之前的技术和安全障碍,这个问题一直没能得到研究。
2021年6月30日,MiniPCR Bio、麻省理工学院、美国宇航局,以及几位美国中学生,在 PLOS One 期刊发表了题为: A CRISPR-based assay for the study of eukaryotic DNA repair onboard the International Space Station 的研究论文。
这项研究是 首次在太空中完成的CRISPR基因编辑实验 ,为研究太空微重力环境下DNA损伤修复奠定了基础,对于人类 探索 广阔的太空,以及将来的星际旅行,甚至星际移民具有重要意义。
在国际空间站中,受实验设备等多种条件限制,难以直接观察细胞如何修复更复杂或更广泛的损伤。因此,研究团队想到了CRISPR基因编辑,使用CRISPR基因编辑造成细胞DNA的精确损伤,然后在国际空间站的宇航员就可以观察细胞上如何将这些DNA损伤修复的。
宇航员在国际空间站上通过对酵母细胞的实验,使用CRISPR基因编辑酵母细胞,使其DNA产生精确损伤、培养酵母使其修复DNA、提取基因组并PCR,以及对基因组进行纳米孔测序, 这些全部实验过程均在国际空间站的太空飞行环境中进行 。
研究团队使用了营养缺陷型酵母,这种酵母由于缺乏尿嘧啶生物合成所必须的URA3基因,因此无法在正常培养基中生存繁殖。
然后,NASA宇航员对这些酵母进行了转化实验,导入携带了URA3基因、Cas9基因和靶向ADE2基因的sgRNA,以及针对ADE2基因的修复模板。
正常情况下,酵母在培养基上形成的菌落为白色,而当ADE基因突变后,菌落呈红色。
质粒转化后,这些营养缺陷型酵母由于导入了URA3基因,从而可以在培养基中生存和繁殖并形成菌落,而且,观察到了培养基中出现了红色酵母菌落,可以直观看出CRISPR基因编辑成功编辑了ADE2基因。PCR实验进一步证明了CRISPR基因编辑的成功。
此外,还通过纳米孔测序,进一步推断这些酵母所采取的细胞修复机制,测序结果表明,所有被成功基因编辑的呈红色的菌落,它们的基因序列与修复模板序列一致,这表明 它们都是通过同源重组进行的修复 ,而不是非同源末端连接的修复方式。这为将来量化DNA修复途径奠定了基础。
这项研究成功证明了这种新方法的可行性,这项研究标志着 CRISPR/Cas9基因组编辑首次在太空成功进行 ,这也是首次在太空中向活细胞中导入来自生物体外部的遗传物质。
研究团队表示,希望这项技术能够对太空中的DNA修复进行广泛的研究,接下来还将继续改进新方法,以便更好地模拟电离辐射引起的复杂DNA损伤。
值得一提的是,这项研究的想法,是由美国两个高中的几名学生提出,并在学术界、工业界和NASA的支持下得以完成。
总的来说,这项研究不仅在太空极端环境下成功进行了 CRISPR基因组编辑 、 miniPCR 和 纳米孔测序 等新技术,而且还能将这些新技术整合到一起,用来研究太空微重力环境下的DNA修复和其他细胞基本过程。这对于人类 探索 广阔的太空,以及将来的星际旅行,甚至在星际移民具有重要意义。
论文链接:
miss樱桃小米虫
类器官 类器官(Organoids),是指利用成体干细胞(ESCs)或诱导式多能干细胞(iPSCs)进行体外三维(3D)培育的具有一定空间结构的组织类似物。类器官能高度模拟体内组织结构及功能并能够长期稳定传代培养。类器官模型是介于细胞系和动物模型之间的一种新型功能化体外模型,可用于解析遗传发育、建立疾病模型、筛选药物和检测毒性以及探索个性化医疗方案。迄今为止世界各国科学家陆续培养出脑、肝、胃、肺、肠、肾脏和胰腺等各种类器官。 2013年,类器官技术被《Science》评为十大科技突破之一,2017年,又被《Nature Methods》评为生命科学领域的年度技术(Method of the Year 2017)。 荷兰科学家Hans Clevers教授是类器官研究领域国际公认的先驱和鼻祖,早在2009年,Hans Clevers就发现Lgr5蛋白是肠道干细胞的标志物,并成功建立了首个肠道干细胞体外3D类器官培养体系,开创了类器官作为疾病模型的研究时代。 目前,类器官在生命科学研究中应用广泛,通过改变不同类器官的基因可以极大地帮助研究生物学过程和疾病建模。然而,由于缺乏简单的基因组工程方法,基因组编辑人类类器官的构建比较困难。 CRISPR/Cas9是进行基因编辑的强大工具,可以对基因进行定点的精确编辑。在向导RNA(guide RNA,gRNA)和Cas9蛋白的参与下,待编辑的细胞基因组DNA可被看作病毒或外源DNA,得到精确编辑。 在2020年3月份,HansClevers研究团队在《Nature Cell Biology》杂志上发表学术论文《Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing》。 其利用非同源依赖的CRISPR-Cas9技术,可快速高效地对人源类器官进行基因敲入,他们将该技术命名为CRISPR–HOT(CRISPR-Cas9-mediated homology-independent organoid transgenesis),为人源类器官的内源基因敲入提供了重要的工具平台。 研究人员利用这种新方法分析了肝细胞如何分裂以及DNA过多异常肝细胞是如何出现的,并发现敲除癌症基因TP53,异常肝细胞的非结构化分裂会更频繁。以上发现或有助于深入研究相关癌症的发展过程。 研究者们为了印证CRISPR–HOT技术在人源类器官中进行基因敲入的方法可行,首先在两种难以转染的人源类器官(肝脏导管类器官及肝细胞类器官)进行测试,并对两种不同介导方式的基因敲入技术产生的类器官进行对比分析。 图示: HDR与NHEJ的技术路线以及优劣比较 结果发现,虽然抑制TP53的活性之后,HDR介导的基因敲入方式的效率略有提高,但仍然比NHEJ介导的基因编辑效率要低。Hans Clevers研究组的工作用CRISPR-HOT方法,建立了不依赖于对TP53活性抑制的以NHEJ介导的基因编辑技术,简化了基因敲入的流程,对于肝细胞等成体干细胞来源的类器官可视化研究提供了可靠的基因编辑方式。 2020年11月,Hans Clevers研究团队又在《Nature Protocols》杂志发表学术论文《Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver》,阐述利用CRISPR/Cas9基因编辑技术探究人类胎儿肝细胞作为类器官长期扩增的培养条件。 在文章中,作者提出:针对人类胎儿肝细胞和人类肝导管类器官的基因组编辑需要两种不同的实验程序。对于人类胎儿肝细胞类器官,采用基于电转杯电转染的转染策略。为此,类器官必须分解成单细胞或小块细胞,建议从第5代及以后开始对肝细胞类器官进行基因组工程设计,肝细胞类器官电穿孔的能力通常不会随时间而降低,作者已经成功地对人胎儿肝细胞类器官进行了基因组工程,可以做到至少第50代为止。 图示:人类胎儿肝细胞类器官的基因组 工程技术概略图 (采用电转杯电转染) 相反,对于人肝导管类器官,转染步骤是对完整的类器官进行的,是一种离体组织电转染的方式。 图示:人类肝脏导管类器官的基因组工程技术概略图 (采用离体组织电转染) 另外针对不同的基因编辑方式(Knock in和Knock out),作者也分享了非常详细的应对策略(见下图)。 俗话说,工欲善其事,必先利其器。那么在Hans Clevers研究团队深耕的类器官领域中,属于他们的一把利器是什么呢?我们发现,在大牛们的研究过程当中,对细胞的转染操作贯穿其中。而NEPA GENE的 NEPA21基因高效转染系统 正是他们所选用的高效电转仪。 NEPA21 基本介绍 【1】采用全新设计的电转程序,电压衰减(Voltage Decay)模式;基因导入+反向导入模式。 【2】不需要特殊转染试剂辅助,节省实验成本;电转程序中的各项参数实时可见、可调,特别适用于优化原代细胞、非常见细胞的电转参数。 NEPA21高效基因转染系统独有的电压衰减(Voltage Decay)设计,可在获得高转染效率的同时,提高细胞存活率。专门针对难转染的原代免疫细胞、干细胞、神经细胞、活体动物、受精卵以及宫内胚胎等转染。 得益于NEPA21良好的应用体验,Hans Clevers利用其已在类器官领域取得了丰硕的研究成果。目前已有多篇应用文献,是Crispr/Cas9基因编辑的第一品牌电转系统。NEPE21——让细胞转染更简单、更Free。
没有坏处,只有好处,只有情商低了才有坏处
基因组学和应用生物学是一种复杂的科学,因此编辑们希望投稿者能够提供详细而完整的答案,以便他们能够准确地评估投稿者的知识水平。因此,编辑们要求投稿者提供最少200
会制造出奇形怪状的人类。 因为我们可以把我们身体当中的一些较为劣质的基因给剪裁,重新换为一些较为优质的基因,而且把这样的基因内部进行突变或者进行变异,利用其他动
最近要开始学习CRISPR-Cas9实验,对着动辄几十页的说明,实在是看不下去,不如就尝试用读书笔记的方式来学习吧。 今日要讲的当然是张峰老师组的proto
“上帝的手术刀”对海洋生物做了啥? 今年的诺贝尔化学奖颁发给了两位女科学家——埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗