乖乖纯00
标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
方差方差和标准差: 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差; 样本方差的算术平方根叫做样本标准差。 样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
没有关系 标准差是和平均数之间的差的平方 而数值就算是10000 要是平均数是10000 标准差还是0 只和平均数相差程度有关与本身的数值大小无关。
江苏友道木业
问题一:请教数据统计时标准差太大如何处理 发生这样的情况肯定是你数据量比较小。但是你又说了满足正态分布,如果改变数据可能就改变了分布,但是改变分布也不使得你的标准差发生大的改变。因为标准差是数据本身产生的,除非你改数字。那之后你就只能改变描述数据的方法,不知道你想体现这个数据什么特征。你要不试试均值除以标准差 问题二:标准差 大于 平均值可以吗 这个问题有点偏题之嫌。 标准差貌似不能大于均值,其实可以。因为这两个东西没有理论上的必然联系。 我试了一组数,四个1,四个-1,一个24,一个25,这十个数字的均值是,标准差是(使用Excel之STDEVP函数)。另一组数,六个0,两个10,一个14,一个15,均值,标准差是。 只要加大数据之间的差距,标准差一定扩大,但扩大差距的同时,平均水平可以保持不变。 另外,如果是非负数,也同样可以实现标准差大于均值的情况。如,九个1,一个100,均值为,标准差为。 这个问题的提出可能与一个常见现象有关:平均值越大,标准差经常也越大。但这种经验并不能妨碍使用标准差公式算出极端值。 而且,差异过分大的数值,在社会现象当中通常不会汇集到同一个数据 *** ――即“同质总体”中,个体差异太大就不能构成“同质”了。 很高兴为您解答有用请采纳 问题三:请教:参数估计标准差太大,估计值不理想,如何处理 在贸易统计中, 对于限额以下批零餐饮企业普遍采用抽样调查方法进行解决。然而,由于当前市场经济情况的多样性,经济发展的不均衡性,以及地域宽广性,导致情况多种多样;实际情况的复杂,决定了方案的复杂性,增加了具体抽样的难度。经过多年的探讨,区域二相抽样调查比较符合当前我国的实际情况,我们在这里根据试点所掌握的情况针对采用区域二相抽样调查的贸易抽样方案中如何确定样本量进行分析。一、样本单位数量的确定原则一般情况下,确定样本量需要考虑调查的目的、性质和精度要求。以及实际操作的可行性、经费承受能力等。根据调查经验,市场潜力和推断等涉及量比较严格的调查需要的样本量比较大,而一般广告效果等人们差异不是很大或对样本量要求不是很严格的调查,样本量相对可以少一些。实际上确定样本量大小是比较复杂的问题,即要有定性的考虑,也要有定量的考虑;从定性的方面考虑,决策的重要性、调研的性质、数据分析的性质、资源、抽样方法等都决定样本量的大小。但是这只能原则上确定样本量大小。具体确定样本量还需要从定量的角度考虑。从定量的方面考虑,有具体的统计学公式,不同的抽样方法有不同的公式。归纳起来,样本量的大小主要取决于:(1)研究对象的变化程度,即变异程度;(2)要求和允许的误差大小,即精度要求;(3)要求推断的置信度,一般情况下,置信度取为95%;(4)总体的大小;(5)抽样的方法。也就是说,研究的问题越复杂,差异越大时,样本量要求越大;要求的精度越高,可推断性要求越高时,样本量也越大;同时,总体越大,样本量也相对要大,但是,增大呈现出一定对数特征,而不是线形关系;而抽样方法问题,决定设计效应的值,如果我们设定简单随机抽样设计效应的值是1;分层抽样由于抽样效率高于简单随机抽样,其设计效应的值小于1,合适恰当的分层,将使层内样本差异变小,层内差异越小,设计效应小于1的幅度越大;多阶抽样由于效率低于简单随机抽样,设计效应的值大于1,所以抽样调查方法的复杂程度决定其样本量大小。对于不同城市,如果总体不知道或很大,需要进行推断时,大城市多抽,小城市少抽,这种说法原则上是不对的。实际上,在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。二、样本量的确定方法如何确定样本量,基本方法很多,但是公式检验表明,当误差和置信区间一定时,不同的样本量计算公式计算出来的样本量是十分相近的,所以,我们完全可以使用简单随机抽样计算样本量的公式去近似估计其他抽样方法的样本量,这样可以更加快捷方便,然后将样本量根据一定方法分配到各个子域中去。所以,区域二相抽样不能计算样本量的说法是不科学的。1.简单随机抽样确定样本量主要有两种类型:(1)对于平均数类型的变量对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。计算公式为:n=σ2/(e2/Z2+σ2/N)特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2例如希望平均收入的误差在正负人民币30元之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为。根据估计总体的标准差为150元,总体单位数为1000。样本量:n=150*150/(30*30/(*))+150*150/1000)=88(2)于百分比类型的变量对于已知数据为百分比,一般......>> 问题四:标准差的数值的大小代表什么意义?标准差大好还是小好? 标准差也被称为标准恭差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。 问题五:为什么混凝土标准差过大 你好!!~混凝土标准差是用来评定混凝土同一时期生产质量波动水平的重要指标。 混凝土标准差偏大评定出来的混凝土质量不合格。分析原因每次生产混凝的强度一般波动不太大,强度报告上的数据离散性偏大,一般不超过5MPA 为宜 ,当然高强度混凝土强度至少高10MPA 就比较合适了这个是评定混凝土质量的经验。 有些资料员不懂这个每次都行合格就行 数据偏差太大以至于你后来评定混凝土 标准差偏大的一个原因。 还有就是计算是你的公式数据可否正确仔细核查公式程序。 在一个就是一般评定不超过三个月最好 超出就容易出现你说的问题。谢谢 !~ 问题六:舒尔特表的结果标准差太大说明什么? 不够稳定,这个主要是看顺眼、看不顺眼,并且有时候着急就更不容易找到 可以尝试6×6的、7×7的,以增加难度 一个表格用过几次后就应该换了 问题七:如果变量中有许多零,回归后标准差很大,如何处理好 首先r的范围是(-1,1),应该是绝对值越接近1越线性相关,接近-1是负线性相关,接近1是线性相关 问题八:标准差与方差问题 用标准差与方差没有太大区别,但是比较时只能用一个 它们都是用来度量随机变量和其数学期望(即均值)之间的偏离程度,偏离海度越大,不论是标准差还是方差,都会变大 问题九:标准差太大,需要处理数据吗 方法一:规范化方法 也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。 方法二:正规化方法 这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。 z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。 spss默认的标准化方法就是z-score标准化。 用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。 步骤如下: 求出各变量(指标)的算术平均值(数学期望)xi和标准差si ; 2.进行标准化处理: zij=(xij-xi)/si 其中:zij为标准化后的变量值;xij为实际变量值。 3.将逆指标前的正负号对调。 标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。
vivilovetu
标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差小说明数据更加准确。
扩展资料:
标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
参考资料:百度百科:标准差
旋转吧陀螺
是的,控制变量的标准差大小会对结果有很大的影响。标准差是一个衡量变量变化程度的指标,它反映了变量的变化范围。如果标准差较大,则变量的变化范围也较大,这会影响结果的准确性。因此,在实验中,应该尽量控制变量的标准差,以保证实验结果的准确性。
飞天小杨杨
方法一:规范化方法也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。方法二:正规化方法这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。spss默认的标准化方法就是z-score标准化。用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。
毕业论文检测标准就是毕业论文。是否是原创的,是否有抄袭率,一般抄袭率要低于15%,甚至低于5%。而毕业论文的检测一般都是有网络上的软件或者一些网站里面可以有偿查
数学函数里,经常有自变量,因变量一说。你知道这其中有什么区别吗?下面就让我来为大家介绍一下吧,希望大家喜欢。 因变量和自变量的区别 因变量 函数关系式中,某特定
定性论文和定量论文是两种不同的研究方法,它们的区别如下: 1. 研究对象不同:定性研究的对象通常是文字、图片、录音、视频等非数字化的数据,而定量研究的对象通常是
本科毕业论文检测要求各个学校可能会有区别,一般学校查重率在30%以下就算合格,不过也有部分学校可能要求在25%甚至20%以下,只有论文合格才能答辩。
单纯的数字数据还好,可以直接应用统计软件