绿草泱泱
中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。
小笨猪seven
1994年,苏瑟兰德(Sutherland)成功的利用幂级数解法证明了该模型可以解释汇率的峰形分布和汇率与利率差之间的不确定相关关系。1989年,刘人怀发展了Way的方法,提出修正幂级数法,求解了计及表层抗弯刚度的夹层圆板的大挠度方程。1944年,Bethe川用标量势函数近似方法求出了幂级数的首项,从而得到圆孔衍射场的远场解。中国传统数学思想对幂级数理论的研究
shaaaronzy
5分钟提问摘要一元二次函数初高中衔接国内外研究现状:这个概念,在小学开始有所渗透,在初中以后,我们给出了变量与变量依赖关系这种概念,到了高中课本必修1就要系统学习,切实理解和掌握函数的有关概念,包括奇偶性、单调性、最值等问题。在初中进行有关一元二次函数的学习,对于二次函数的学习,学生感到难学。到了高中,大部分学生认为有关的一元二次函更难学,好一点的学生只能用公式去求,所以上到高中学习基本初等函数中有关一元二次函数内容时,大部分说不会,没学过,教师要重新讲授初中内容。因此,为了学生学好必修1基本初等函数的内容,我们以一元二次函数为研究对象作为教学案例,怎样做好初高中的过渡与新内容之间的衔接
不蓉错失927
数形结合 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何. 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学.”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一.华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休. 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围. 数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的.
摘要:虚拟现实技术作为一种综合多种科学技术的计算机领域新技术,是国内外计算机仿真应用研究的热点,涉及众多发展和应用领域,极大地丰富了我们的生活。本文针对虚拟现实
数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文
在国外,尤其是发达国家,由于其经济、政治、文化等方面的成功,促使其形成了相应的比较完善的教育体系。世界各国又都非常重视教师职业道德的研究与建设,形成各有特点又反
论文的国内外研究现状写法如下: 第一,写国内外研究现状的时候首先需要具备的是研究国内的现状,需要举出一系列的数据,同时这些数据必须是来源于正规的数据平台,这样的
此处略去一万字