我是一只喵
本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。 文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。 根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。 如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。 论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。 为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x) 为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。 在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。 LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。 如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。 LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。 为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H : 由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: • Dataset : Tusimple • Embedding dimension = 4 • δ_v= • δ_d=3 • Image size = 512*256 • Adam optimizer • Learning rate = 5e-4 • Batch size = 8 • Dataset : Tusimple • 3rd-orderpolynomial • Image size =128*64 • Adam optimizer • Learning rate = 5e-5 • Batch size = 10
之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇
不管是导师还是读者,评判论文的第一感是先审核题目,选题是撰写论文的奠基工程,在一定程度上决定着论文的优劣。下面我给大家带来2021各方向硕士论文题目写作参考,希
1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大
主要应用领域图像识别技术可能是以图像的主要特征为基础的,每个图像都有它的特征。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。图像识