• 回答数

    3

  • 浏览数

    174

内涵帝在此
首页 > 期刊论文 > 灌溉排水学报参考文献格式

3个回答 默认排序
  • 默认排序
  • 按时间排序

杨大公主H

已采纳

75-57-01-01专题报告.华北地区大气水-地表水-土壤水-地下水相互转化关系研究.1990

蔡述明,马毅杰等.三峡工程与沿江湿地及河口盐渍化土地.北京:科学出版社,1997

陈吉余,沈焕庭等.三峡工程对长江河口盐水入侵和侵蚀堆积过程影响的初步分析.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,350~368

陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究.水利学报,1996,1:38~46

陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟.水利学报,1997,5:77~83

程竹华,张家宝,徐绍辉.黄淮海平原三种土壤中优势流现象的试验研究.土壤学报,1999,36(2):154~161

冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟.水利学报,1996,8:8~15

冯绍元等.非饱和土壤中氮素运移与转化及其数值模拟.水利学报,1996,8:8~15

冯绍元等.排水条件下饱和土壤中氮肥转化与运移模型.水利学报,1995,6:16~22

郭元裕.农田水利学(第二版).北京:水利电力出版社,1986

黄冠华,叶自桐,杨金忠.一维非饱和溶质随机运移模型的谱分析.水利学报,1995,11:1~7

黄冠华.大尺度非饱和土壤水分运动的随机模型及有效参数的解析结构.水利学报,1997,11:39~48

黄冠华.土壤水力特性空间变异的试验研究进展.水科学进展,1999,10(4):450~457

黄康乐.求解二维饱和—非饱和溶质运移问题的交替方向特征有限单元法.水利学报,1988,7:1~13

黄康乐.求解非饱和土壤水流问题的一种数值方法.水利学报,1987,9:9~16

黄康乐.求解非饱和纵向弥散系数的一种简便方法.水利学报,1987,2:51~54

黄康乐.野外条件下非饱和弥散系数的确定.土壤学报,1988,25(2):125~131

黄康乐.原状土等温吸附特性的试验研究.灌溉排水,1987,6(3):26~29

黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅰ.水利学报,1996,6:9~13

黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅱ.水利学报,1996,6:15~23

康绍忠,李晓明等.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994

康绍忠,刘晓明,张国瑜.作物覆盖条件下田间水热运移的模拟研究.水利学报,1993,3:11~17

康绍忠.土壤水动态随机模拟研究.土壤学报,1990,27(1):17~24

雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988

雷志栋,杨诗秀.非饱和土壤水一维流动的数值模拟.土壤学报,1982,19(2):141~153

李恩羊.渗灌条件下非饱和土壤水分运动的数学模拟.水利学报,1982,4:1~10

李法虎.土壤中水、热、溶质运移的研究现状及展望.灌溉排水,1994,13(1):7~9

李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,1991

李韵珠,陆锦文,黄坚.蒸发条件下粘土层与土壤水盐运移.1985,济南,国际盐渍土改良学术讨论会论文集:176~190

李韵珠、李保国.土壤溶质运移.北京:科学出版社,1997

刘亚平,陈川.土壤非饱和带中的优先流.水科学进展,1996,7(1):85~89

刘亚平.稳定蒸发条件下土壤水盐运动的研究.1985,济南,国际盐渍土改良学术讨论会论文集:212~225

罗秉征,沈焕庭等.三峡工程与河口生态环境.北京:科学出版社,1994

戚隆溪,陈启生,逄春浩.土壤盐渍化的监测和预报研究.土壤学报,1997,34(2):189~198

启东县土壤普查办公室,南通市农业局,江苏省土壤普查办公室.江苏省启东县土壤志.1985

任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究.武汉水利电力大学博士论文,1994

任理.有限解析法在求解非饱和土壤水流问题中的应用.水利学报,1990,10:55~61

邵爱军,李会昌.野外条件下作物根系吸水模型的建立.水利学报,1997,2:68~72

邵明安,杨文志,李玉山.植物根系吸收土壤水分的数学模型.土壤学报,1987,24(4):296~304

邵明安.植物根系吸收土壤水分的数学模型(综述).土壤学进展,1986,14(3):6~15

沈荣开,任理,张瑜芳.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟.水利学报,1997,2:14~21

沈荣开.非饱和土壤水运动滞后效应的研究.土壤学报,1993,30(2):208~216

沈荣开.土壤水运动滞后机理的试验研究.水力学报,1987,4:38~45

石元春,李保国,李韵珠,陆锦文.区域水盐运动监测预报.石家庄:河北科学技术出版社,1991

石元春,李韵珠,陆锦文等.盐渍土的水盐运动.北京:北京农业大学出版社,1986

史海滨,陈亚新.吸附作用与不动水体对土壤溶质运移影响的模拟研究.土壤学报,1996,33(3):258~266

史海滨、陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价.水利学报,1993,8:49~55

水建高,张瑜芳,沈荣开.不同渗漏强度条件下淹水土壤中NH4+-N转化运移的数值模拟.水利学报,1996,3:57~63

隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅰ—有限元分析及应用.地理学报,1992,47(2):181~186

隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅱ—数学模型.地理学报,1992,47(1):74~79

孙菽芬.土壤内水分流动及温度分布计算——耦合型模型.力学学报,1987,19(4):374~380

王福利.用数值模拟方法研究土壤盐分动态规律.水利学报,1991,1:1~9

王亚东,胡毓骐.裸地蒸发过程土壤盐分运移的实验及数值模拟研究.灌溉排水,1992,11(1):1~5

魏新平,王文焰,王全九,张建丰.溶质运移理论的研究现状和发展趋势.灌溉排水,1998,17(4):58~63

席承藩,徐琪等.长江流域土壤与生态环境建设.北京:科学出版社,1994

谢森传,杨诗秀,雷志栋.水平入渗条件下溶质含量对土壤水分运动的影响和土壤水盐运动综合扩散系数Dsh(θ)的测定.灌溉排水,1989,8(1):6~12

徐绍辉,张佳宝.土壤中优势流的几个基本问题研究.水文地质工程地质,1999,6:27~30

徐绍辉.土壤中优势流的数值模拟研究.中国科学院南京土壤研究所博士后研究工作报告,1998

薛泉宏,蔚庆丰等.黄土性土壤K+吸附、解吸动力学研究.土壤学报,1997,34(2):113~122

杨邦杰,隋红建.土壤水热运移模型及其应用.北京:中国科学技术出版社,1997

杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟.武汉水利电力大学学报,1989,22(4):157~164

杨金忠,蔡树英等.区域水盐动态预测预报理论与方法研究.国家教委博士点基金资助项目研究报告,1993

杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响.水科学进展,1994,5(1):9~17

杨金忠,叶自桐等.野外非饱和土壤中溶质运移的试验研究.水科学进展,1993,4(4):245~2

杨金忠.一维饱和与非饱和水动力弥散的实验研究.水利学报,1986,3:10~21

杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展.水科学进展,1998,9(1):84~98

杨培岭,郝仲勇.植物根系吸水模型的发展动态.中国农业大学学报,1999,4(2):67~73

姚其华,邓银霞.土壤水分特征曲线模型及其预测方法的研究进展.土壤通报,1992,23(3):142~145

尤文瑞.土壤盐渍化预测预报的研究.土壤学进展,1988,16(1):1~8

张妙仙.次生盐渍化土壤潜水系统水-盐-作物产量动态模拟及调控.中国科学院、水利部水土保持研究所,博士学位论文,1999

张明炷,黎庆淮,石秀兰.土壤学与农作学(第三版).北京:水利水电出版社,1994

张蔚榛,张瑜芳,沈荣开.排水条件下化肥流失的研究——现状与展望.水科学进展,1997,8(2):197~204

张蔚榛.土壤水盐运移数值模拟的初步研究.农田排灌及地下水土壤水盐运动理论和应用论文集,武汉:武汉水利电力大学,1992,244~263

张蔚榛等.地下水与土壤水动力学.北京:中国水利水电出版社,1996

张效先.饱和条件下田间土壤纵向及横向弥散系数的试验和计算.水利学报,1989,1:1~7

张效先.求田间土壤横向弥散系数的一种实验和解析解.水利学报,1989,6:29~35

张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中铵态氮转化和运移的研究.水利学报,1994,6:10~19

张瑜芳,张蔚榛,沈荣开等.排水农田中氮素转化运移和流失.武汉:中国地质大学出版社,1997

张瑜芳,张蔚榛.垂向一维均质土壤水分运动的数值模拟.工程勘察,1984,4:51~55

张瑜芳.土壤水动力学.武汉水利电力大学研究生教材.1987

中国科学院环境评价部,长江水资源保护科学研究所.长江三峡水力枢纽环境影响报告书(简写本).北京:科学出版社,1996

中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境的影响及对策研究.北京:科学出版社,1988

朱学愚、谢春红等.非饱和流动问题的SUPG有限元素数值法.水利学报,1994,6:37~42

祝寿泉,单光宗等.三峡工程对长江三角洲土壤盐渍化演变的影响及其对策.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,454~462

左强,陆锦文.裸地水、汽、热昼夜变化规律的模拟与分析.中国博士后首届学术大会论文集(下集),北京:国防工业出版社,1993

左强.改进交替方向有限单元法求解对流-弥散方程.水利学报,1993,3:1~10

Aboitiz M et soil moisture estimation and forecasting for irrigated .,1986,22(2):180~190

Bear of fluid in porous Elsevier,New York,1972.(中译本,多孔介质流体动力学,J.贝尔著,李竞生、陈崇希译,孙纳正校,北京:中国建筑工业出版社,1983)

Bouma morphology and preferential flow along Water Management,1981,3:235~250

Brandt A et from a trickle source:Ⅰ.Mathematical .,1971,35:675~683

Bresler transport of solutes and water under transient unsaturated flow .,1973,9(4):975~985

Bresler transport of solutes and water under transient unsaturated flow .,1973,9:975~986

Chandra S P O,Amaresh K root⁃water uptake .,1996,122(4):198~202

Chung S,Horton heat and water flow with a partial surface .,1987,23(12):2175~2186

Clothier B E,Kirkham M B,Mclean J situ measurements of the effective transport volume for solute moving .,1992,56:733~736

and one⁃dimensional absorption .,1983,47:641~644

Cushman J H et Galerkin in time,linearized finite element model of two⁃dimensional unsaturated porous media .,1979,43:638~641

De Smedt F,Wierenga P transfer in porous media with immobile .,1979,41:59~69

De Smedt F,Wierenga P transfer through columns of glass .,1984,20(2):225~233

de Vries D transfer of heat and moisture in porous ,1958,39(5):909~916

Elrick D E et the sorptivity of Sci.,1982,132(2):127~133

Eric K,W,Mary P of preferential flow in tree⁃dimensional heterogeneous conductivity fields with realistic internal .,1996,32(3):533~545

Feddes R A,Kowalik P J,Zaradny of field water use and crop for Agricultural Publishing and Documentation,Wageningen,the Netherlands,1978,19~20

Flury,Markus,Hannes Fl hler Susceptibility of soils to preferential flow of .,1994,30:1945~1954

Gardner W aspects of water availability to ,89:63~73

Gardner W of root distribution to water uptake and .,1964,16:41~45

Gardner W of the flow equation for the drying of soils and other porous .,1959,23:183~187

Gaudet J transfer,with exchange between mobile and stagnant water,through unsaturated .,1977,41:665~671

Gerke H H,van Genuchten M dual⁃porosity model for simulating preferential movement of water and solutes in structured porous .,1993,29(2):305~319

Germitza,Page E empirical mathematical model to describe plant root .,1974,11(2):773~781

Ghodrati M,Jury A field study using dyes to characterize preferential flow of .,1990,54:1558~1563

Gureghian A 2⁃D finite⁃element scheme for the saturated⁃unsaturated with applications to flow through ditch⁃drained .,1981,50:333~353

Hanks R J,Bowers S solution of the moisture flow equation for infiltration into layered .,1962,26:530~534

Hanks R J,Klute A,Bresler numerical method for estimating infiltration,redistribution,drainage,and evaporation of water from .,1969,5:1065~1069

Herkelrath W N,Miller E E,Gardner W uptake by plant:Divided root .,1977,41:1033~1038

Hillel D,Talpaz H,Van Keulen macroscopic scale model of water uptake by an nonuniform root system and salt movement in the soil ,121:242~255

Hornung V,Messing predictor⁃corrector alternating⁃direction implicit method for two⁃dimensional unsteady saturated⁃unsaturated flow in porous .,1980,47:317~323

Jaynes D B,Logsdon S D,Horton method for measuring mobile/immobile water content and solute transfer rate .,1995,59:352~356

Jones M J,Watson K of non⁃reactive solute through unsaturated soil Water Resources Council,Technical Paper ,1982

Jury W A,Bellantuoni and water movement under surface rocks in a field soil:Ⅰ.Thermal .,1976,40(4):505~509

Jury W A,Bellantuoni and water movement under surface rocks in a field soil:Ⅱ.Moisture .,1976,40(4):509~513

Lantz R evaluation of numerical diffusion(Truncation error)..,1971,11:315~320

Li Yimin,Ghodrati transport of solute through soil columns containing constructed .,1997,61:1308~1317

Mahrer Y,Katan soil temperature regime under transparent polyethylene mulch:Numerical and rxperimental Sci.,1981,131:82~87

Mantoglou A,Gelhar L modeling of large⁃scale transient unsaturated flow .,1987,23(1):37~46

Mantoglou theoretical approach for modeling unsaturated flow in spatially variable soils:Effective flow models in finite domains and .,1992,28(1):251~267

Milly P C and heat transport in hysteretic inhomogeneous porous .,1982,18(3):489~498

Mohanty B P et transport of nitrate to a tile drain in an intermittent⁃flood⁃irrigated field:Model development and experimental .,1998,34(5):1061~1076

Molz F J,Remson term models of soil moisture use of transpiring .,1970,6:1346~1356

Molz F of water transport in the soil⁃plant system:A .,1981,17:1254~1260

Molz F transport in the soil⁃root system:Transient .,1976,12:805~807

Mualem modified dependent⁃domain theory of Sci.,1984,137:283~291

Murali absorption during solute transport in soils.Ⅱ.Simulations of competitive Sci.,1983,135(4):203~213

Murali absorption during solute transport in soils.Ⅱ.Simulations of competitive Sci.,1983,135(4):203~213

Neuman S P et element analysis of two⁃dimensional flow in soil considering water uptake by roots.Ⅰ. .,1973,37:522~527

Niber J L,Walter M ⁃dimensional soil moisture flow in a sloping rectangular region:experimental and numerical .,1981,17(6):1772~1730

Nielsen D R,Biggar J displacement in soils:Ⅰ.Experimental .,1961,25:1~5

Nielsen D R,Biggar J displacement in soils:Ⅲ.Theoretical .,1962,26:216~221

Nielsen D R et flow and solute transport process in unsaturated .,1986,22(9):89~110

Nimah M N,Hanks R for estimating soil water,plant and atmosphere interrelations:Field test of .,1973,37:522~527

Olsen S R,Kemper W of nutrients to plant .,1968,80:91~151

Parlange M B et basis for a time series model of soil water .,1992,28(9):2437~2446

Philip J R,de Vries D movement in porous materials under temperature ,1957,38(2):222~232

Pickens J F et element analysis of transport of water and solutes in tilo⁃drained .,1979,40:243~264

Selim H M,Kirkham two⁃dimensional flow of water in unsaturated soils above an impervious .,1973,37:489~495

Smiles D E et dispersion during absorption of water by .,1978,42:229~234

Smiles D E,Philip J transport during absorption of water by soil:Laboratory studies and their .,1978,42:537~544

Stephens D B,Neuman S surface and saturated⁃unsaturated analysis of borehole infiltration tests Above water Resour.,1982,5:111~116

Van Genuchten M closed⁃form equation for predicting the hydraulic conductivity of unsaturated .,1980,44(5):892~898

Van Genuchten M comparison of numerical solutions of the one⁃dimensional unsaturated⁃saturated flow and mass transport Resour.,1982,5:47~55

Van Genuchten M Hermitian finite element solution of the two⁃dimensional saturated⁃unsaturated flow Resour.,1983,6

van transfer studies in sorpting porous media.Ⅱ.Experiment evaluation with Tritium(H2O).Soil .,1977,41:272~285

Wu G,Chieng S multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated model ,1995,38(3):817~826

Wu G,Chieng S multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated ,1995,38(3):827~838

Yeh T⁃C J et analysis of unsaturated flow in heterogeneous soil: istropic .,1985,21(4):447~456

Yule D F,Gardner W and transverse dispersion coefficients in unsaturated plain field Resources Research,1978,14(4):582~589

Zhang R,Huang K,van Genuchten M efficient Eulerian⁃Lagrangian method for sovlving solute transport problems in steady and transient flow .,1993,29(12):1431~1438

Zhang Weizhen,Zhang crop root uptake model and the simulation of the soil water movement on the condition of the crop of the International Conference on Modeling Groundwater Flow and Pollution,Nanjing University,Nanjing,China,~12

270 评论

Sunny彩妆半永久

1.钱正英.中国水利。北京:水利电力出版社,19912.中国水利百科全书(1—4卷).北京:水利电力出版社,19913.中国农业百科全书.水利卷(上、下册).北京:农业出版社,19874.熊运章,朱树人.灌溉管理手册.北京:水利电力出版社,19945.康绍忠,蔡焕杰.农业水管理学.北京:中国农业出版社,19966.刘肇讳、雷声隆.灌排工程新技术.武汉:中国地质大学出版社,19937.郭元裕.农田水利学.北京:水利电力出版社,19808.郭元裕.农田水利学.第2版.北京:水利电力出版社,19869.郭元裕.农田水利学.第3版.北京:水利电力出版社,199710.康权.农田水利学.水利电力出版社.北京:199011.武明仁.灌溉排水.北京:农业出版社,199012.黎庆怀.土壤与农作.J[京:水利电力出版社,197913.陈亚新,康绍忠.非充分灌溉原理.北京:水利电力出版社,199514.FAO Irrigation and Drainage Papers 24.Crop Water Requirements.Rome,197715.FAO Irrigation and Drainage Papers 33.Yield Response to Water.Rome, 197916.康绍忠等.土壤一植物一大气连续体水分传输理论及其应用.北京:水利电力出版社,199417.雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,198818.D.希勒尔著,华孟,叶和才译.土壤和水一物理原理和过程.北京:农业出版社,198119.康绍忠等.陕西省作物需水量及分区灌溉模式.北京:水利电力出版社,199220.粟宗篙.灌溉原理与应用.北京:科学普及出版社,199021.《喷灌工程设计手册》编写组.喷灌工程设计手册.北京:水利电力出版社,198922.傅琳等.微灌工程技术指南.北京:水利电力出版社,198823.陈大雕,林中卉.喷灌技术.第2版.北京:科学出版社,199224.郑耀泉等.喷灌与微灌设备.北京:水利电力出版社,199825.王彦军等.一种新型的节水灌溉技术——渗灌.节水灌溉,1997(2)26.I.维尔米林.联合国粮农组织灌溉与排水丛书36分册.局部灌溉.罗马,198027.王文焰等.波涌灌溉试验研究与应用.西安:西北工业大学出版社,199428.王智.长畦分段灌溉法灌水技术的研究.灌溉排水,1986(4)29.林性粹.旱区农田节水灌溉技术.北京:农业出版社,199l30.米孟思.膜上灌节水技术.节水灌溉.1998(2)31.林性粹等.农田灌水质量指标的分析与评价.水利学报.1996(11)32.A.H.考斯加可夫著,陈益秋译.土壤改良原理.北京:中国工业出版社,196533.J.K.Rydzewki,C.F.Ward.Irrigation Theory and Practice.London:Fenthch Press, 198934.水利电力部.灌溉排水渠系设计规范(SDJ217—84) (试行),北京:水利电力出版社,198435.水利电力部.灌溉试验规范(SL13—90),北京:水利电力出版社,199036.中华人民共和国国家标准.灌溉排水工程设计规范(送审稿).199637.苏联国家建设委员会建筑法规.土壤改良系统和建筑物.199338.日本国农林水产省构造改善局.日本土地改良工程规划设计规范.(1)旱地灌溉规划,1982(2)滴灌,1987(3)管道输水工程设计,1988(4)大面积水田规划,1998中国灌溉排水技术开发培训中心与日本国际协力事业团,1994年译印。39.姜永吾.水利工程.台北:三民书局,198240.黄毓高.排水工程.台北:银乐出版社,198241.高肇藩.给水工程.台北:三民书局,198542.施嘉昌.排水工程.台北:大中国图书公司印行,198843.施嘉昌.灌溉排水原理.台北:中央图书出版社,198844.水利电力部水利建设司.农田基本建设规划.北京:水利电力出版社,197845.水利部科教司.低压管道输水灌溉技术.北京:水利电力出版社,199l46.魏永耀,林性粹.农业供水工程.北京:水利电力出版社,199247.严煦世,赵洪宾.给水管网理论和计算.北京:中国建筑工业出版社,198648.Y.Iabye etc.FAO Irrigation and Drainage Papers 44.Design and Optimization of Irrigation Distribution. Networks. Rome, 198849.Ait-Kadi,Mohamed.U.M.I.Optimization of Irrigation Pipe Netwprk Layout and Design.Dissertation Information Service, 198650.李龙昌等.管道输水工程技术.北京:水利电力出版社,199851.李晓等.管道灌溉系统的管材与管件.北京:科学出版社,199652.张蔚傣等.农田排水.武汉水利电力学院,198553.袁宏源,陈大雕,叶自桐.农田灌溉与排水.武汉水利电力大学,198954.国际土壤改良研究所著,朱厚生等译.排水原理和应用.北京:农业出版社,198355.简·范席福加德主编,胡家博译.农田排水.北京:水利电力出版让,198256.沙金煊.农田底下排水计算.北京:水利电力出版社,198557.沈容开,张瑜芳,黄冠华.作物水分生产函数与农田非充分灌溉研究述评.水科学进展,199558.戴同霞、李锡录,张兰亭.打渔张灌区暗管排水试验.水利学报.1982(10)59.罗怀彬.稻田暗管排水.水利学报.1982(4)60.丁福棠.早囚暗管排水试验及效果.1982(4)61.余安仁.武汉市郊潜育化稻田暗管排水改良的田间试验.水利学报,1984(11)62.Daniel Hillel.Advances in Irrigation.Volume 2.Academic Press, 198363.许志方.灌溉计划用水.北京:中国工业出版社,196364.陕西省革命委员会水电局.灌溉用水.北京:水利电力出版社,197765.汪志农,熊运章.灌溉渠系配水优化模型的研究.西北农业大学学报.1993(2)66.汪志农,熊运章.适用半干旱灌区某次配水的优化模型.农田水利与小水电.1993(6)67.汪志农,熊运章.节水灌溉决策支持系统的研究.西北农业大学学报,1998(26)68.范逢源.环境水利学.第1版.北京:中国农业出版社,199469.张六曾著.河山百划录.第1版.北京:海洋出版社,199470.李宝庆等.水资源开发与环境.第1版.北京:科学出版社,199071.水利部水利管理司.水利工程供水水价理论与核定方法.北京:水利电力出版社,199172.许志方,沈佩君.水利工程经济学.北京:水利电力出版社,198773.吴恒安.实用水利经济学.北京:水利电力出版社,1988

108 评论

guoqingyi828

邢永强1李金荣2李金玲3常秋玲1贺传阅1

(1.河南省国土资源科学研究院,郑州 450016;2.郑州大学环境与水利学院,郑州 450001;3.河南省地质调查院,郑州 450007)

《灌溉排水学报》,文章编号:1672-3317-(2008)-03-0106-03

摘要 对10m×10m面积内的100个土壤样点取样分析其硝态氮含量,用地质统计学中的区域化变量理论和半方差函数分析,研究结果表明两种含水率土壤中硝态氮含量在一定范围内均具有空间变异性,属于中等程度变异;硝态氮含量的半方差随着取样间距的增加而增加,最后趋于稳定,存在着空间变异结构,最后对其进行拟合,确定其变异程度及空间相关尺度。为进行大范围土壤的取样提供参考。

关键词 硝态氮 空间变异 区域化变量 半方差分析

作物生长所需的养分主要来源于土壤,施用到土壤中的氮肥,经过一系列分解转化作用才能被作物吸收利用。比如经过矿化、硝化与反硝化等过程,氮肥转化为无机态氮即氨态氮和硝态氮。我们知道适量的氮肥是保证农作物获得高产的基本条件,过量的氮肥不仅造成浪费,更为严重的是会引起作物、土壤、大气及地下水的严重污染。我国北方旱地土壤氮素形态一般以硝态氮为主,所以土壤中硝态氮的空间变异必然会引起该土壤中农作物的生长变异。所以开展土壤硝态氮含量空间变异性研究对于提高农作物产量,制定农田施肥方案,提高氮肥利用率有着重要的现实意义。

众所周知,土壤系统本身是一个形态和过程都相当复杂的自然综合体(雷志栋等,1985)。在时间和空间上土壤是一个非匀质的介质,而且有着明显的空间变异。灌区田间实际情况表明,在土壤质地相同的区域内,土壤特性(物理、化学及生物性质)在同一时刻,各个空间位置上的量值并不相同,这种属性即称为土壤特性的空间变异性(黄绍文等,2003;Triantafilis,et al.,2004;高鹭等,2002)。这种空间变异是由两方面的原因造成的:一是成土过程,二是人为活动。特别是人类活动对空间变异的影响更显著。正由于此,一个田块内土壤的变异可分为系统变异和随机变异两部分。

就研究方法来说,经典统计学忽略了土壤属性在空间上的相关性,认为土壤属性是空间上相互独立的,当然这与土壤特性的实际情况不符,因此经典统计学无法揭示土壤属性在一定空间距离上的相关性。空间变异理论(孙洪泉,1990)考虑到了土壤属性的空间相关性,因此研究土壤的空间变异性对指导各种先进的灌溉设施和农业水利技术的应用有着重要意义。

1 基本理论

土壤的空间变异理论(孙洪泉,1990)是以地质统计学(geostatistics)为基础。地质统计学的雏形是20世纪50年代,在南非矿业学家Krige提出的矿产品位和储量估值方法基础上,于20世纪60年代由法国著名的统计学家Matheron在此基础上做了大量研究之后建立起来的。他在提出来区域变量理论,使传统的地学方法与统计学方法相结合,形成了完整的公式系统,又称地质统计学。地质统计学的半方差函数对土壤属性在空间上变化的结构性能够定量和精确描述。地质统计学是以区域化变量、随机函数和平稳性假设等概念为基础,以变异函数为核心,以克立格插值法为手段,分析研究自然现象的空间变异问题(Triantafilis,et al.,2004;高鹭等,2002)。

区域化变量

区域化变量Z(x)是指在空间分布的变量,是在区域内不同位置x取不同值Z的随机变量。它一般反映了某种现象的特征,比如不同位置各点土壤养分含量等。区域化变量具有结构性和随机性的特征。结构性是指在空间两个不同点处土壤养分具有某种程度的自相关性,一般而言两个点间距越小,相关性越好。这种自相关性反映了这种变量的某种连续性和关联性,体现了其结构性的一面。随机性是指在土壤系统内,任意空间点x处,其土壤养分的取值是不确定的,可以看作是一个随机变量,这就体现了其随机性特征。

半方差函数

半方差函数也称为空间变异函数(semivariograms),只要是与空间有关的变量,都可以用半方差函数来计算它。半方差函数既能描述区域化变量的结构性特征,又能描述其随机性变化。半方差函数是描述土壤特性空间变异结构的一个函数。假设随机函数均值稳定,方差存在且有限,该值仅与间距h有关,则半方差函数γ(h)可定义为随机函数Z(x)增量方差的一半。其计算公式为

环境·生态·水文·岩土:理论探讨与应用实践

图1 半方差图

Sketch map of semi-variance

其中n(h)是被向量h相隔的数据对的对数。当然,数据对越多,计算的半方差函数值的精度越高。对不同的滞后距h,式(1)可以算出相应的γ(h)值来。对于每一个滞后距hi,把诸点[hi,γ(hi)]在h—γ(h)图(图1)上标出,再将相邻的点用线段连接起来所得到的图形,称为实验半方差函数图(或实验方差图)。通过方差图可以得到半方差函数的3个极为重要的参数:即变程值a(Range)、基台值C(Sill)和块金值C0(Nugget),其中变程值反映了土壤性质的空间变异特性,在变程值以外,土壤性质是空间独立的,而在变程值以内,土壤性质是空间非独立的。块金值代表一种由非采样间距造成的变异,一般是指土壤性质的测定误差。基台值是指在不同采样间距中存在的半方差极大值。另外,块金方差/基台值可表示空间变异程度。

2 材料和方法

研究区概况

试验于2006年在河南省浚县城西一实验田内进行,该区地形地貌类型为冲积平原,地势比较平坦,主要供试土壤为壤土,气候属于半湿润半干旱大陆性季风气候,四季分明。该地小麦、玉米一年两作,当季种植玉米。面积10m×10m,按照1m×1m设置网格,共有100个观测点(图2),采样深度为耕层10~15cm。采样期间晴朗无雨,采样时间分别是2006年6月12日(田间较干,平均质量含水率为)和2006年8月14日(田间较湿,平均质量含水率为)。

图2 采样点平面布置图

Sampling location of the area

测定方法

测定项目:质量含水率和硝态氮。

测定方法及仪器:对田间所采集的土壤样品进行风干,过1mm的筛,然后以5:1的水土比用1mol/L的KCl进行抽滤浸提,在实验室用酚二磺酸比色法进行硝态氮含量的测定。

3 结果与讨论

土壤中硝态氮测定结果的统计特征值

利用Kolmogorov-Smirnov方法对硝态氮含量的总体分布进行非参数检验,从测试结果可以看出,土壤硝态氮含量多数为对数正态分布类型。从硝态氮的均值来看,均值随土壤含水量的减小而增加,说明随着土壤含水量的减小硝态氮向下层淋洗的量也相应减小。

另外前面已经述及,变异系数C1的大小可以反映土壤特性参数的空间变异性程度,一般认为:C1<为弱变异性,≤C1≤为中等变异性,C1>为强变异性。从表1中的统计资料来看,所测得的硝态氮含量变异系数的变化范围为~,均属中等变异性。因为硝态氮在土壤中相对比较稳定,所以其变异系数较少,这与硝态氮在土壤中比较稳定有关。本次实验中,土壤较湿(土壤平均含水率为)时,硝态氮的变异系数为,土壤较干(土壤平均含水率为)时,其变异系数为,所以土壤较湿时硝态氮的变异系数明显大于土壤较干时硝态氮的变异系数,这里可以理解为硝态氮变异系数受不同灌水量的影响,灌水量增加,变异系数增大,灌水量对硝态氮的转化和移动有着密切的关系。

表1 土壤硝态氮含量的统计特征值

前面已经说过,硝态氮在田间的分布具有地学的结构特征和统计学的随机特征。这些统计值只能在一定程度上反映样本总体,而不能定量地刻画土壤硝态氮含量的随机性和不规则性,独立性和相关性,要解释并进行定量化,必须进行空间变异结构分析。

土壤中硝态氮的空间变异结构分析

半变差函数图在一定范围内反映了不同观测点的观测值之间的依赖变化情况,可以检验土壤中硝态氮的空间变异性。从土壤硝态氮含量的半方差函数图(图3)可以看出,在一定范围内硝态氮含量的试验变差函数值均随采样点间距的增大而增加,从非零值达到一个相对稳定的常数,即当其间距增加到一定程度后,半变差函数值在某一常数上下摆动时,这一常数就是基台值C(C0+C1),与这一基台值相对应的间距就是变程a,且变程a等于最大自相关距离。当h<a时,土壤硝态氮含量之间存在着空间上的相关关系,当h≥a时,土壤硝态氮含量值是独立的。当间隔距离h=0时,γ(0)=C0,该值即为块金值C0。

图3 硝态氮含量的半方差图

Semi-variance of soil NO3--N

根据计算的两种不同含水率的土壤中硝态氮含量的实验变差函数值,然后选用球状模型进行拟合。用加权多项式回归法进行计算,编程序可得出球状模型中的各个参数(C,a,C0)(表2)。从表2中可以看出硝态氮含量在含水率为的土壤中其块金值C=,基台值C0=,变程值a=;硝态氮含量在含水率为的土壤中其块金值C=,基台值C0=,变程值a=。对土壤含水率为的土壤,当h≥a=时,自相关函数的值为零,变差函数值趋于稳定,也就是说,当采样间距在之内,硝态氮含量具有明显的空间变异性,把硝态氮含量当作区域化变量处理;当采样间距大于时,硝态氮含量不具有空间相关关系,可以把硝态氮含量看做是相互独立的随机变量。对土壤含水率为的土壤,当h≥a=时,变差函数值趋于稳定,同样,当采样间距小于,硝态氮含量具有明显的空间变异性,把硝态氮含量当作区域化变量处理;当采样间距大于时,硝态氮含量不具有空间相关关系,可以把硝态氮含量看做是相互独立的随机变量。另外从表2 计算结果可以看出来,含水率较大的土壤,其硝态氮含量的变程值稍微小于含水率较低的土壤,说明土壤的含水率也影响到硝态氮含量的空间变异,主要是因为土壤中水分可以滞留较多的硝态氮,因此实际野外采样时要根据土壤的含水率布置取样间距。含水率较小时,取样间距可以布置的大些;含水率较大时,取样间距相对布置的小。

表2 土壤硝态氮含量的半方差参数值

研究区土壤中硝态氮含量的空间变异既具有结构性,又具有随机性。它们对土壤属性的变异性影响程度如何,这可以从块金值与基台值之比(C0/(C0+C1))来表示其空间变异程度,如果该比值较高,说明由随机部分引起的空间变异性程度较大;相反,说明由系统变异引起的空间变异性程度较大;如果该比值在1附近,则说明该变量在整个研究尺度上具有恒定的变异。从表2计算结果可以看出这次研究区土壤的空间变异性主要是由土壤的空间结构本身引起的,而由随机部分引起的变异程度较小,不起主要作用。

4 结论

土壤属性的空间分布具有明显的变异性,而地质统计学中的区域化变量和变差函数是研究这种空间特性的重要理论工具。土壤中硝态氮含量表现出空间变异结构,可以作为区域化变量。

实验结果表明,不同含水率的土壤中硝态氮含量均具有空间变异性,变异系数的变化范围为~,均属中等变异性。含水率较高(土壤平均含水率为)的土壤中硝态氮含量的变异系数大于含水率较低(土壤平均含水率为)的土壤中硝态氮的变异系数。

根据区域化变量和变差函数的理论,对不同含水率土壤中硝态氮含量进行空间变异结构分析,得到其变程值。对含水率为的土壤来说,其硝态氮含量空间的相关距离为;对含水率为的土壤来说,其硝态氮含量空间的相关距离为;在其相关距离范围内,土壤的空间结构本身对硝态氮含量的空间变异性起主要的影响作用。

参考文献

高鹭,陈素英,胡春胜等.2002.喷灌条件下农田土壤水分的空间变异性研究.地理科学进展,21(6):609~615.

黄绍文,金继运,杨俐苹等.2003.县级区域粮田土壤养分空间变异与分区管理技术研究.土壤学报,40(1):79~88.

雷志栋,杨诗秀,许志荣等.1985.土壤特性空间变异性初步研究.水利学报,(9):10~21.

孙洪泉.1990.地质统计学及其应用.北京:中国矿业大学出版社.

Triantafilis J,Odeh I O A,Warr B,et of salinity risk in the lower Namoi valley using non-linear Kriging Water Manage,69(3):203~231.

Spacial Variations of -N in Soil

Xing Yong-qiang1Li Jin-rong2Li Jin-ling3Chang Qiu-ling1He Chuan-yue1

( Researchinstitute of land and resource of Henan Province,Zhengzhou 4504016; of Water Conservancy and Environment Engineering,Zhengzhou Univ.,Zhengzhou 450001; of Geological Survey of Henan Province,Zhengzhou 450007)

Abstract:One hundred soil samplers at a plot of 10m×10m were made at an interval of 1m with different soil moisture and different -N in surface soil(10~15cm)were author analyzed experimental data by the theory of regionalized variable theory and studied the special variations of -N in the results showed that the -N at different soil moisture had spatial variability in a given spatial semi-variances of -N were increased with the increase of the lag(h).Fitting the results with linear regressions,the parameters of the semi-variograms were estimated,and their variable extent and space correlative scale were made.

Key words: -N;spatial variability;regionalized variable theory;semi-variance analysis

331 评论

相关问答

  • 灌溉排水期刊

    没有审稿费但是接收后有收费作为刊登的费用,作者应保证此文稿属首次发表。为保护作者权益,文章通过审查后,编辑部将与作者签订著作权转让合同。论文一旦发表,版权归属于

    桃色蔷薇 2人参与回答 2023-12-05
  • 灌溉排水学报期刊官网

    《灌溉排水学报》是双核心期刊,南大核心,北大核心。原上草论文

    愿无悲喜2015 5人参与回答 2023-12-11
  • 灌溉排水学报的期刊号

    按GB/T7714-2005《文后参考文献著录规则》采用顺序编码制著录,依照其在文中出现的先后顺序用阿拉伯数字加方括号标出。尽量避免引用摘要作为参考文献。确需引

    荔枝爱苹果 5人参与回答 2023-12-08
  • 灌溉排水学报排版格式

    提问的意图何在?

    lostinyoudaidai 8人参与回答 2023-12-07
  • 灌溉排水学报参考文献

    邢永强1李金荣2李金玲3常秋玲1贺传阅1 (1.河南省国土资源科学研究院,郑州 450016;2.郑州大学环境与水利学院,郑州 450001;3.河南省地质调查

    traveler0723 3人参与回答 2023-12-05