小老虎山大王
矩阵对角化有三种方法
1、利用特征值和特征向量将矩阵对角化
由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。
2、利用矩阵的初等变换将矩阵对角化
矩阵的初等变换
矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:
1 对调两行;
2 以数k≠0乘某一行的所有元素;
3 把某一行所有元素的k倍加到另一行对应的元素上去。
把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。
如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。
另外:分块矩阵也可以定义初等变换。
3、利用矩阵的乘法运算将矩阵对角化
矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。
元信上成客服1
一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个)。不可能多于两个。
如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有n个线性无关的特征向量;这里不同的特征值,对应线性无关的特征向量。重点分析重根情况,n重根如果有n个线性无关的特征向量,则也可对角化。
特征值和特征向量数学概念
若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。
以上内容参考:百度百科-特征值和特征向量
初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多
第1章 矩阵与线性方程组1.1 矩阵的基本运算1.2 向量空间、内积空间与线性映射1.3 随机向量1.4 内积与范数1.5 基与Gram-Shmidt 正交化1
矩阵对角化有三种方法 1、利用特征值和特征向量将矩阵对角化 由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。 2、利用矩阵的
你好,对论文进行修改。毕业论文没有调查数据,则会导致论文内容的不严谨。毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。
据我所知,矩阵可以解高次方程,在线性代数中也有运用。