谁是小小
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
食客小冬
函数的一致连续是描述函数整体性质的一个重要的概念,在数学分析中对函数的研究起着重要的作 用.现有数学分析教材[1-2]中对一元函数的一致连续性都有详细的阐述,而且网络文库也有大量的充分 和充要条件的分析[3-6],但是对二元函数的介绍却非常少[7-8].文献[7]研究了二元函数在无穷区域上 连续与一致连续的关系,文献[8]简单给出了二元函数一致连续的几个充分条件,然而对二元函数一致连 续性的四则运算以及复合函数的一致连续性的条件以及一致连续性与偏导数有界、方向导数有界以及可 微之间的关系、二元函数的区域可加性等重要内容还没有文献介绍.本论文针对上述问题,对二元函数的 一致连续性做出详细的论述,也对现有的数学分析教材起着重要的补充作用.1 一致连续的定义定义 [1]设f是定义在点集DR 2 上的二元函数,对任意的0,总存在只依赖于的正数, 使得对一切点P, QD,只要(P,Q),就有f(P)f(Q),则称函数f在D上一致连续. 定义:设f(x,y)是定义在点集D R2上的二元函数,对任意的0,总存在()0,使得 对一切点(x1,y1),(x2,y2)D,只要x1x2 ,y1y2 ,就有 f(x1,y1)f(x2,y2),则称函 数f(x,y)在D 上一致连续.注1. 1 设f(x,y)是定义在点集D R 2 上的二元函数,若函数f(x,y)在D 上一致连续,则函数f(x,y) 在 D 上一定连续.0,总存在点(x1,y1),(x2,y2)D,虽然有x1x2 , y1y2 ,却有f(x1,y1)f(x2,y2)0, 则称函数f(x,y)在D 上不一致连续.引理 [1] 设f(x,y)是有界闭区域D上连续,则函数f(x,y)在D上一定有界.引理 [1][8] 设f(x,y)是有界闭区域D上连续,则函数f(x,y)在D上一致连续.引理 [8]设f(x,y)是有界开区域D 上一致连续的充要条件是函数f(x,y)在D 上连续且对任意的 (x0,y0)D,都有 lim f(x,y) 都存在.
土豆豆的焦糖
大致可以这样来理解(不严格),对于一致连续函数,在一段区间内,每一点的倾斜程度(斜率的绝对值)不会超过某个数值,对于一般的连续则没有这个要求。 y=x,y=√x,在定义域内都是一致连续的。 对于y=x^k,在容易有限区间内(上)都是一致连续的。 一般说来,在闭区间上的连续函数总是一致连续的。教科书上有很多一致连续函数的例子,上面也有证明。 很多连续函数并非一致连续。 对于函数f(x)=1/x (x∈(0, 1))它就不是一直连续,在x接近0时,非常陡峭,其切线的斜率没有一个限度;y=tan x(x∈(-π/2, π/2))在±π/2附近,斜率也是没有一个限度。一般说来,在有限区间取值可以到正(负)无穷的函数,肯定不是一致连续函数。但是非一致连续函数并不仅限于此,如函数y=arcsin(x)亦不是一致连续(在x接近1时,斜率越来越大,没有一个限度),但是他在定义域内取值范围有限。
这位几星期后的校友 自己写吧。。。 没办法啊。。。 不过可以看一下参考书 上面有一些内容应该能用的上。。。。。。。再次表示同情以及无奈。。。。。
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内
打开Word文档后,点击【引用】选项卡点击【插入题注】在弹出的对话框中,点击【自动插入题注】在自动插入题注对话框中,找到【Microsoft Word 表格】,
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
设置页脚。。。