浅议遥感技术在环境污染监测中的应用论文
1概述
随着我国经济的高速发展,环境污染和生态破坏日益严重,突发性环境污染事故也时有发生。环境监测作为环境管理和污染控制的主要手段之一,正在发挥不可替代的作用。但是,由于我国面积辽阔,地面环境监测网点分散,仅依靠现有的监测台站和传统监测技术方法不能满足连续、动态、宏观、快速监测环境污染的要求,也满足不了及时、准确地做出环境质量报告和污染预报的要求。因此,日益恶化的环境迫切需要实时、快速、宏观、准确的监测技术,以便更加全面准确地反映环境污染对生态系统和人体健康的影响。近年来国内外大量实践表明,遥感技术是获取环境信息的强有力手段,是实现这一目的的极其有效的技术。运用遥感技术监测环境污染及生态环境状况,正确评价环境质量,寻求改善生态环境的途径和措施,具有重要的意义。
遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势,还能发现用常规方法往往难以揭示的污染源及其扩散的状态,因此遥感技术正广泛地应用于监测水污染、大气污染等环境问题。它不仅可以快速、实时、动态、省时省力地监测大范围的环境变化和环境污染,具有其它常规方法不可替代的优越性;也可实时、快速跟踪和监测突发环境污染事件的发生、发展,并及时制定处理措施,减少污染造成的损失。因此,发展我国的环境污染遥感监测技术,建立重大环境事故的预报、预警和应急响应系统,对保护我国环境及发展经济都具有重要作用,能产生巨大的社会、经济和环境效益。
2环境污染遥感监测技术
遥感技术是一种利用物体反射或辐射电磁波的固有特性,远距离不直接接触物体而识别、测量并分析目标物性质的技术。根据所利用的波段,遥感监测技术主要分为可见光、反射红外遥感技术,热红外遥感技术,微波遥感技术三种类型。当前,遥感的应用已深入到农业、林业、渔业、地理、地质、海洋、水文、气象、环境监测、地球资源勘探、城乡规划、土地管理、和军事侦察等诸多领域,从室内的工业测量到大范围的陆地、海洋、大气信息的采集以至全球范围的环境变化的监测。
遥感技术在环境污染监测中的应用发展很快,现在已可测出水体的叶绿素含量、泥沙含量、水温、水色;可测定大气气温、湿度、CO、NOx、CO2、O3、ClOx、CH4等主要污染物的浓度分布;可测定固体废弃物的堆放量、分布及其影响范围等,还可对环境污染事故进行遥感跟踪调查,预报事故发生点、污染面积、扩散程度及方向,估算污染造成的损失并提出相应的对策。近几年来,随着全球环境问题日益突出,具有全球覆盖、快速、多光谱、大信息量的遥感技术已成为全球环境变化监测中一种主要的技术手段。国际上相继提出了一系列的全球环境遥感监测计划,其中主要有美国宇航局(NASA)的对地观测计划(EOS)、欧空局的对地观测计划和日本的对地观测计划等。这些计划将极大地推动环境遥感技术的实用化和遥感技术的发展。
3遥感在环境监测中的应用
水环境污染遥感监测
对水体的遥感监测是以污染水与清洁水的反射光谱特征研究为基础的。总的看来,清洁水体反射率比较低,水体对光有较强的吸收性能,而较强的分子散射性仅存在于光谱区较短的谱段上。故在一般遥感影像上,水体表现为暗色色调,在红外谱段上尤其明显。为了进行水质监测,可以采用以水体光谱特性和水色为指标的遥感技术。
遥感监测视野开阔,对大面积范围里发生的水体扩散过程容易通览全貌,观察出污染物的排放源、扩散方向、影响范围及与清洁水混合稀释的特点。从而查明污染物的来龙去脉,为科学地布设地面水样监测提供依据。在江河湖海各种水体中,污染物种类繁多。为了便于遥感方法研究各种水污染,习惯上将其分为泥沙污染、石油污染、废水污染、热污染和水体富营养化等几种类型。
大气污染遥感监测
大气遥感是利用遥感器监测大气结构、状态及变化。大气遥感器除了测量气温、水蒸汽、大气中的微量成分气体、气溶胶等的三维分布以外,还用来进行风的测量及地球辐射收支的测量等。
影响大气环境质量的主要因素是气溶胶含量和各种有害气体。这些物理量通常不可能用遥感手段直接识别。水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱,所以,实际上是通过测量大气的散射、吸收及辐射的光谱而从其结果中推算出来的。通过对穿过大气层的太阳(月亮、星星)的直射光,来自大气和云的散射光,来自地表的反射光,以及来自大气和地表的热辐射进行吸收光谱分析或发射光谱分析,从而测量它们的光谱特性来求出大气气体分子的密度。测量中所利用的电磁波的光谱范围很宽,从紫外、可见、红外等光学领域一直扩展到微波、毫米波等无线电波的领域。大气遥感器分为主动式和被动式,主动方式中有代表性的遥感器是激光雷达,被动式遥感器有微波辐射计、热红外扫描仪等。
4国内发展现状
我国环境污染遥感监测技术发展和应用的主要问题有:①环境污染遥感监测系统和技术方法基本上处于起步阶段。虽然我国的遥感理论、技术和应用发展很快,但与国外相比差距甚大,在环境污染监测中的应用基本还没有开展起来,目前在全国范围内基本上没有建立起环境遥感的监测体系与系统。②对于环境监测而言,传感器的技术性能要求较高,不仅要求传感器能提供高分辨率的探测,而且要求具有全天候、全天时、大范围、多谱段和灵敏度高的特点,这样才能满足环境污染动态、实时、多样的监测需求。当前所用的高分辨率传感器基本上依靠进口,在地面和飞机上测量化学成分的遥感技术还处于实验室的摸索阶段,而在环境污染监测中的应用基本空白。③遥感信息源缺乏。目前我国尚未发射自己的环境污染监测遥感卫星,遥感信息源主要来自于国外的相关卫星资料。同时国际上用于环境监测的遥感商业卫星寥寥无几,从而客观上制约了我国环境遥感监测技术和应用水平的发展。④新型遥感技术在环境污染监测上应用的理论和方法有待探索和发展,缺少环境污染遥感监测体系与系统。
5结论与展望
目前,遥感技术正从单一遥感资料的分析,向多时相、多数据源(包括非遥感资料数据)的信息复合与综合分析过渡;从资源环境静态分布研究,向动态过程监测过渡;从动态监测,向预测、预报过渡;从定性调查、系列制图,向计算机辅助的.数字处理、定量自动制图过渡;从对各种事物的表面性的描述,向内在规律分析、定量化分析过渡。就环境污染遥感监测技术而言,有待于在以下几方面加强研究:
(1)利用环境污染遥感监测技术,建立突发性环境污染事故的实时监测和预警系统。通过集成多种遥感传感器,并结合地面环境监测网站的监测数据,进行多环境参数的自动监测,并实时监测各种指标的时空变化趋势,以便在某些指标刚刚接近警戒线时预报可能出现的危机,确定环境污染事故所在的空间位置,并提供其空间影响范围的模拟和模型方法,为突发性事故管理决策提供信息,实现连续、自动监测和总量控制。如利用环境污染遥感监测技术,通过建立城市大气环境质量预测预报系统,可以对城市大气环境质量状况进行预报,并对可能发生的大气污染事件提出预警。
(2)高性能传感器的研制。重点发展能够选择监测某种或某类优先污染物(如氯苯和硝基苯等)浓度的遥感器。
(3)研制环境污染物的定量遥感监测技术。如利用水面反射光谱测量与水质参数进行回归分析,建立某一谱段上光谱反射率与某些水质参数的函数关系式。一般来说,水质参数中的透明度、固体悬浮物浓度、叶绿素含量和水面混浊度与光谱反射率或卫星影像的密度值之间往往存在比较明显的对应关系。
(4)将环境污染遥感监测技术与GIS(地理信息系统)、GPS(全球定位系统)、ES(专家系统)技术集成。利用环境污染遥感监测集成系统,可以大大提高环境监测的科学性、合理性及智能化程度,从而大大扩展环境监测的应用范围。集成技术应用于环境污染遥感监测中的优越性具体体现如下:遥感监测技术为集成系统提供正确、迅速、宏观的环境污染监测数据,GIS可利用其强大的空间信息管理功能,建立各类有毒、有害、易燃、易爆物质的理化特性数据库,有关自然、经济、社会、生态环境数据库和图形库及模型库,同时可结合地面监测数据,经由GPS提供的精确位置信息,在ES技术支持下对监测数据进行有效的管理、分析和计算并将综合数据以直观、形象的图形化方式输出或显示出来,从而使环境管理者迅速了解和掌握各类突发事故的多发地带、发生频率、潜在事故发生源的时空分布、事故发生后污染物的影响范围及时空变化,更好地实现事故的预防、应急处置和灾后恢复。
当前,我国环境污染遥感监测技术应依托我国的对地观测技术和对地观测系统的发展计划,同时充分利用国际上资源环境卫星系统,开展广泛的国际合作和交流,大力发展我国的环境污染遥感监测技术,并充分利用现有的环境监测网点和常规监测方法,采用遥感技术与地面监测相结合的方法,建立我国的环境污染遥感监测系统。
杨武年朱章森
(成都理工大学遥感与GIS研究所,成都610059)
摘要遥感图像显现的地质构造形迹是地史以来地壳运动的综合结果,包含有历次构造变动和有关矿化的特征标识信息,因此,遥感信息场分层解析是无模型矿床预测中有效地进行成矿信息分离的重要手段。无模型矿床预测法的理论依据是,矿床的形成是多种地质因素发生变异的综合结果,特殊地质环境中多期次构造运动复合叠加区具备形成大型、超大型矿床的条件,巨大矿源体的存在势必导致其与周围环境(背景)在物质成分、结构构造等方面的显著差异,包括诸如成矿岩石组合、构造式样、矿化蚀变以及地球物理、地球化学场甚至由深部矿源异常体引起其上方地球生物圈、大气圈等发生变异的信息特征。因而该法不需要事先有已知有矿模型或已知无矿模型作为预测的基础,而以分解和提取上述致矿异常信息建立控矿地质体的自然源模型作为科学找矿的重要途径。由于此法不需要事先有已知有矿模型或已知无矿模型作为预测的基础,因此它不仅对研究程度较低的新区矿床预测,而且对研究程度较高的老区寻找新类型和大型、超大型矿床都具有重大理论意义和实用价值。
关键词遥感地质数学地质遥感信息场分层解析遥感图像分层解析法无模型矿床预测法
1引言
当前国内外成矿预测研究中,传统的基于相似类比理论的矿床模型预测法,通过数十年的实践日趋完善,在地质找矿中取得显著成效。然而这类方法的应用前提是必须有一定数量的已知有矿模型和无矿模型作为类比的基础,因此,它受资料水平、已知矿床模型及研究人员水平的限制,主要适用于地质研究程度较高、矿床模型易于建立的地区;而且因受相似类比理论限制,它只能找到与已知矿床类同的具相当规模的矿床,而难于发现新类型矿床或点状大型、超大型矿床。因此,在找矿难度日益增大的情况下,如何使多学科结合,应用新技术新方法和新思维开拓新区,寻找隐伏矿床和新类型矿床,特别是大型、超大型矿床,已成为现在和今后地质找矿工作中急需解决的重大理论和方法问题。为此,我们通过长期的找矿实践,提出了在求异理论和求同理论指导下的无模型矿床预测法的新思路[1,2],后进一步发展,提出了遥感信息场分层解析与无模型矿床预测的方法理论[3],经在云南、四川、新疆等地找矿实践,取得明显效果[1~~14]。
2理论依据
遥感图像显现的地质构造形迹是地史以来地壳运动的综合结果,包含有历次构造变动和有关矿化的特征标识信息,因此,遥感信息场分层解析是有效地进行成矿信息分离的重要手段[2~6]。无模型矿床预测法的理论依据是,矿床的形成是多种地质因素发生变异的综合结果,特殊地质环境中多期次构造运动复合叠加区具备形成大型、超大型矿床的条件,巨大矿源体的存在势必导致其与周围环境(背景)在物质成分、结构构造等方面的显著差异[15],包括诸如成矿岩石组合、构造式样、矿化蚀变以及地球物理、地球化学场甚至由深部矿源异常体引起其上方地球生物圈、大气圈等发生变异的信息特征。因此,应用无模型矿床预测法不需要事先有已知有矿模型或已知无矿模型作为预测的基础,而以分解和提取上述致矿异常信息、建立控矿地体的自然源模型作为科学找矿的重要途径。由于此法不需要事先有已知有矿模型或已知无矿模型作为预测的基础,所以它不仅对研究程度较低的新区矿床预测,而且对研究程度较高的老区寻找新类型和大型、超大型矿床都具重大理论意义和实用价值。
3方法技术
遥感图像处理和信息提取
遥感图像是地面景观物体按一定比例缩小了的立体模型,地质构造形迹及地质现象的总体和个体的地表几何形态(纹形图案)以及物理特征(电磁波辐射特征)被真实、客观、连续、全面地记录,具有高度的概括性;同时含有大量地下一定深度隐伏地质构造的信息特征。遥感图像上的这些信息特征(解译标志)反映的是地物在内外动力作用过程中,在一定地质、地理条件下物质成分、结构构造、物理性质等方面的差异。隐伏构造信息则通过地壳的机械变形以及地表的地球物理场和地球化学场改造乃至生物圈、大气圈发生异常等方式而显示出来。而且,多波段遥感图像信息特征中除可见光波谱部分外,许多波段的信息特征位于人的肉眼光敏区以外,如红外、微波图像信息等。这类图像揭示了大量肉眼看不见的地物信息特征,大大增加了鉴别地物属性特征的信息量。因此,采用遥感图像处理能有效地提取成矿信息,尤其是提取那些微弱的矿化信息,通过地质解译、分析构造形迹特征及空间分布规律和应力状态,不但真实、客观,而且克服了常规地质方法有时由于点线观测的局限性,大大开拓视野,获得连续、系统、大量的信息特征,有助于将破裂系统与区域构造变形乃至地质建造等有机地联系起来进行深入的分析研究,得出与客观实际相吻合的结论。
遥感构造信息场分“层”解析与致矿异常信息提取
遥感图像显现的地质构造形迹是地史以来地壳运动的综合结果,包含有历次构造变动和有关矿化的标识信息特征。因此,如何通过构造“分层”解析和应用数学方法去描述,实现线性体场的演译和分解,研究线性体场与其它地质异常的关系,找出其控岩控矿规律和提取矿化信息也就成了线性体场研究和成矿预测的主要内容。需要指出的是,以前大多数研究者注意到了线性构造的规模大小及空间尺度在构造解析和成矿预测中的重要性,但并未形成有效解决问题的方法。特别是在对线性构造量化处理时往往主次不分,把不同规模尺度和不同构造层次和期次的线性、环形构造混为一体进行处理,以致不仅使问题复杂化,而且很难确切找到线性、环形构造与相关地质体及有关矿产的内在联系,所得结论令人质疑。由控矿理论可知,特殊地质环境多期次构造复合叠加区具备形成大型、超大型矿床的条件,而这些地区线性体场的研究与分解,各期次构造变形场的建立及其构造应力场反演,在一定程度上是成矿预测的关键。因为构造应力场不仅控制着地壳岩石的机械变形、构造的成生演化及其组合形式,而且在一定程度上控制着沉积建造、岩浆活动及有关矿床的形成与分布。笔者经多年的科研攻关,根据遥感图像信息量大,对地质构造形迹显示的宏观性、信息连续性以及遥感大节理与宏观构造具有成生联系的性质;在理论上提出遥感大节理总是在野外构造小节理优势方位上发育发展的新论点,并提出了将宏观构造和相对微观构造(特别是遥感横张大节理)有机结合进行地质构造的“分层”解析,根据构造变形场特征反演应力场的新方法——“遥感图像分层解析法”及其相应理论[6,7]。该方法经在不同构造复合区试用,取得显著效果[5~7,10~13]。
例如,笔者在四川、贵州等地的构造复合变形区研究中,应用“遥感图像分层解析法”,通过遥感图像处理和褶皱断裂特别是横张大节理系统分层解析,结合野外调研,建立了研究区多期次构造变形场并反演了各时期构造应力场[10~12],获得了与众不同的新认识。
笔者在黔西郎岱地区构造解析和成矿预测中[12],应用航、卫片选择性地解译了该区主要褶皱及与其有关的横张大节理系统,结合野外调研,对该区构造变形特征进行了深入分析。根据该区宏观构造与横张大节理空间分布规律等特征建立了郎岱三角形构造格局的变形场,并据此反演得出该区燕山期在三角形边界条件(大断裂)控制下三边同时受力的联合应力场。其特点是应力和变形强度自三角形边部和顶点向三角形中心呈弧形递减,岩石变形严格按所得应力网络发生,在不同部位形成不同量级的褶皱并伴生相应的节理;三角形边部和顶点褶皱变形强烈,扩展到三角形中部褶皱趋于平缓。九条不同方位的褶皱相互嵌接,总体联系,局部复合,协调统一,控制着本区不同类型的矿床形成与分布。例如,在该三角形构造的北西和南西两个角点附近,集中分布了一系列铁矿床和铅锌矿床及矿化点(成因上与热液活动有关);而煤矿则相对集中分布在三角形构造的内部。这是因为三角形顶点处应力强度最大,断裂发育,为热液活动和矿化富集提供了有利的空间条件,从而形成了一系列金属矿床,但对煤和天然气富集起了破坏作用,未形成具工业价值的矿床。而在三角形构造内部,由于应力减弱,褶皱平缓,断裂不发育,缺乏导矿储矿构造,对金属矿化不利,但褶皱变形有利于煤矿富集。从区域含矿层分布分析,铁矿和铅锌矿的矿源层(泥盆系和石炭系)在区内广泛分布。根据本区三角形构造变形场和应力场特征及北西、南西两个角点处成矿富集规律,可以预测,在三角形构造东部顶点处有望找到相同类型的工业矿床。其次,区域上黔西古生界具备生油气的地质条件,测区南西侧盘县三角形构造内已有煤成气发现,本区地质和构造条件与之类似,因而有望在该三角形构造中部构造平缓处或穹窿构造中找到具工业价值的气田。
遥感线性体信息场的分“层”和相关信息组合量化解析与成矿预测
线性体场的分“层”量化即在前述线性构造分层解析结果基础上,采用网格法等方法分别对各期次各层次线性构造(成矿分析时结合环形构造等组合)进行量化处理和统计分析,以找出各层次各期次线性、环形构造的统计规律性及其与成矿作用的内在联系,定量、半定量地提取有用信息。不同的研究目的采用不同的量化处理方法。笔者在西昌地区有利含油气构造遥感解析和油气远景预测中[13],在全区线性构造和环形构造系统解译基础上,首先对区域性断裂系统进行量化处理,建立了该区区域线性体场(断裂系统)的二维和三维彩色量化解析模式,结合其它资料,在构造活动区中确定了有利于油气生成环境的相对稳定的构造区块(小相岭—米市断块中的二级构造单元——米市断陷);然后再对所选定区进行专题图像处理,提取有关信息,在此基础上,采用环形构造及与其密切相关的环状、放射状大节理有机结合的组合量化处理方法(环形构造采用自环心向环外缘反距离测度加权),结合物探地震、航磁重力及野外调研资料选定有关参数,通过图像图形处理并结合GIS建立了重要构造区块局部构造的二维和三维彩色定量解析自然模型。通过信息场的特征分析和求异,确定了局部构造隆起(异常)和背景的界线,定量提取了地腹隐伏构造的有关信息,作为评价局部构造和油气远景预测的依据。最后,通过综合分析,进行了油气远景预测。
遥感线性体场的背景与异常数学解析
遥感线性体场中包含有许多非地质信息及其它无关的信息。数学分析的目的在于采用数学地质的方法确定线性体场的背景,提取和增强微弱的有用信息,压抑噪声干扰,找出具有地质找矿指示意义的(异常)标志。
异常是针对背景而言的。所谓背景是指研究区空间变量在其分布区域内的空间趋势,它代表了该变量在研究区内的总体分布特征。对线性体场来说,线性构造的区域变化趋势就是背景,反映局部构造存在的环形、线性体是异常,如环状、放射状大节理密集区。确定背景的方法很多,如常用的滑动平均法、趋势分析法、克里格法等。趋势分析将观测值分解为趋势和剩余两部分,前者即为背景,后者代表局部变化的异常特征。也可用矿化标志变量与多个其它变量的自相关分析研究背景场,然后分解不同背景场中的异常。
背景条件按地质总体的多少可以分为单一背景和多背景两种,前者指那些只经历了一次地质作用的地区,各种因素的取值来自于一个总体;后者指经历了多次地质作用的地区,各种因素取值来自于多个总体。多背景的确定方法复杂,但对于多期次构造运动造成的线性体场而言,若采用前述分层解析的方法,先将多期次线性体按“层”分解,那么确定每个层次的线性体场的背景及其求异就可按单背景处理,然后,对各层次(期次)的背景进行综合分析,这样可使问题大大简化,且能有效提高分析精度。
遥感信息场的空域和频域滤波处理是分解和提取线性构造的有效方法。一般而言,低通滤波得出的低频信息能反映遥感信息场中的深部(隐伏地质构造)的信息特征,高通滤波得到的高频信息则能反映地表及浅部有关地质构造的特征信息。不同方位的线性体场可以分别采用不同的定向滤波模板进行处理分解[8]。经滤波处理的图像再经锐化和二值处理,经统计分析或采用特殊的表达方式,如线性体的空间频数图和密度图、中心对称度图、优益度图、变异系数图、空间距离测度图以及各种参数类型的直方图等[9],能减少人为干扰因素,有效地反映、提取地质构造和成矿异常具指示意义的特征参数。
信息熵是复杂程度和非均一化的数学度量,用它来查明或定量表征遥感信息场中的某种控矿因素的地质变异特征和统一性。以相对熵研究线性体场特征,若地质变量取线性体的长度或频数(或长度/频数),则所得空间密度熵能表征线性体密度场在空间内分布上的差异,若变量为线性体的方位,则所得方位熵可以揭示线性体场在方位分布上的非均匀变化程度。线性体的熵异常可以反映构造的多期次活动性和空间叠加等特征。
其次,分形理论等方法也是研究遥感信息场的有用工具。用分形理论研究线性构造和环形构造的空间特征,有助于查明构造活动性及与成矿作用关系,定量描述有关的自然地质指示标志空间变化的规律性。
三“S”支持下的多源信息综合与复合图像处理和找矿靶区快速评价优选
在大区域范围的成矿预测研究中,对于大量地、物、化、遥资料,采用多源信息综合与复合图像处理技术,能快速提取有用信息并得到形象直观的成果图像表达,已在地质找矿中取得较好效果。然而,这一方法存在的问题是,目前一般应用的遥感图像系粗纠正产品,地物点在空间上存在一定畸变(像点位移);而且,物化探信息本身存在一定的空间漂移。如果将这种变了形的图像和移了位的信息异场叠合在一起,将产生虚假的综合异常,有时会致人误入歧途。解决的办法是,采用三“S”支持下的多源信息综合与复合图像处理技术,先在GIS和GPS控制点控制下对遥感图像进行精纠正(尤其是投影差改正),制做正射投影遥感影像图,尔后通过区域化变量的结构分析,找出各种地学信息在不同尺度与水平的结构关联性,建立统一的随机场概念模型,并通过GIS实现各类信息在空间上精确匹配,充分利用计算机的可视化技术建立矿源体的自然信息源模型,定量提取综合找矿信息,达到找矿靶区快速评价优选的目的。笔者利用这一方法在南江区调成矿(金)预测中取得显著效果[14]。
南江地区地处特殊的地质构造环境,成矿地质条件较好,矿种较多,矿点星罗棋布。但相对而言,对金矿床的研究,前人研究程度很低,只在西部万金山和坪河发现沙金矿化点两处。本次研究中利用所研制的遥感正射影像,通过信息提取及金、银、铜等14个化探数据的数据处理、地、物、化、遥多源信息综合、复合图像处理有所新发现,并圈定了找矿远景区,经野外调研发现沿图像处理中识别出的构造带河谷中沙金矿化现象普遍,在金化探异常与遥感图像复合信息图上的较高异常地段采样化验分析,金矿化现象明显,已有数个样品达到金的工业品位,将来通过进一步工作,有望取得较大的进展。
参考文献
[1]朱章森,温世明,杨龙.来利山锡矿盲矿统计预测.地质科学,1987,(2):131~147.
[2]朱章森.无模型预测法刍议.物化探计算技术,1987,14(1):60~62.
[3]杨武年,朱章森.遥感构造信息场“分层”解析与无模型矿产预测的理论、方法及其意义.中国数学地质(6),北京:地质出版社,1995,63~67.
[4]杨武年,朱章森.遥感信息场分层解析与构造应力场定量研究.地质学报,1997,71(1):87~96.
[5]Yang Wunian,Zhu theory and method of Phase-separation analysis of remote sensing information field of metallogenetic environment and nonmodel ore-deposit of the 30th International Geological Science Publishers,The .
[6]Yang analysis of remote sensing images,a new method for determining regional tectonic stress of the 30th International Geological Science Publishers,The .
[7]杨武年,乐光禹等.恢复区域构造应力场的新方法.科学通报,1991,36(12):391~934.
[8]杨武年.遥感图像线性特征检测——匹配滤波模板最佳参数选择的定量公式.成都地质学院学报,1985,1(总34):101~108.
[9]王润生,杨为久.遥感线性体的数量化分析.国土资源遥感,1992,3(总13):49~54.
[10]杨武年,乐光禹等.金佛山菱形构造格局区域变形场和应力场遥感图像解析.成都理工学院学报,1994,21(1):102~109.
[11]杨武年,乐光禹.贵州西部六枝地区复合褶皱及其构造应力场遥感图像解析.见:第八届全国遥感技术学术会议论文集,1993,南宁,441~443.
[12]杨武年,黔西六枝—郎岱地区的构造格局及其构造应力场遥感图像解析.国土资源遥感,1996,2(总28):21~28.
[13]杨武年,李永颐,易显志等.遥感信息量化技术在西昌地区含油气构造地质研究及远景预测中的应用.国土资源遥感,1994,3(总21):63~70.
[14]杨武年,丁纯勤,王大可等.TM遥感正射影像地图在四川南江地区区调研究及成矿预测中的应用,地球科学(数学地质专刊),1997.
[15]赵鹏大,池顺都.初论地质异常.地球科学,1991,16(3):241~248.
随心所欲的写咯
《遥感学报》是中国科学院遥感应用研究所、中国地理学会遥感分会主办的专业学术性期刊,《中文核心期刊要目总览》(2011版)收录,《中国科学引文数据库》(CSCD)(2013-2014)收录。属于高层次的核心期刊。
《工业水处理》《环境工作通讯》《环境化学》《陕西环境》《重庆环境科学》《轻工环保》《农业环境保护》《海洋环境科学》《环境工程》《劳动保护科学技术》《中国环境管理》《四川环境》《上海环境科学》《电力环境保护》《河南环境》《上海劳动保护技术》《再生资源研究》《环境技术》《环境科学与技术》《辽宁城乡环境科技》《废钢铁》《世界环境》《福建环境》《农村生态环境》《中国锅炉压力容器安全》《环境导报》《农业环境与发展》《中国环境监测》《中国物资再生》《环境遥感》《遥感信息》《自然资源学报》《灾害学》《劳动安全》《劳动安全与健康》《生命与灾祸》《城市环境与城市生态》《云南地理环境研究》《吉林劳动保护》《中国安全科学学报》《林业劳动安全》《干旱环境监测》《干旱区资源与环境》《产业与环境》《环境监测管理与技术》《资源生态环境网络研究动态》《甘肃环境研究与监测》《粉煤灰综合利用》《污染防治技术》《山东环境》《中国人口资源与环境》《江苏劳动保护》《自然灾害学报》《石油化工环境保护》《减灾与发展》《橡胶节能与环保》《中国地质灾害与防治学报》《环保科技情报》《长江流域资源与环境》《青海环境》《中国减灾》《资源节约和综合利用》《火灾科学》《地质灾害与环境保护》《建材环保与节能》《江苏环境科技》《中国劳动防护用品》《人类环境杂志》《浙江劳动保护》《广东劳动保护》《应用与环境生物学报》《中国环保产业》《林业与社会》《环境教育》《世界安全卫生信息》《云南环境科学》《黑龙江环境通报》《内蒙古环境保护》《广州环境科学》《环境科技动态》《生态环境与保护》《环境科学》《工业安全与防尘》《环境》《新疆环境保护》《国外环境科学技术》《环境污染与防治》《环境科学进展》《环境科学动态》《安全》《环境保护科学》《冶金环境保护》《化工环保》《环境与开发》《交通环保》《北方环境》《贵州环保科技》《环境科学学报》《中国环境科学》《环境保护》《劳动保护》《冶金环保情报》《环境科学研究》《锅炉压力容器安全技术》《上海环境报》《生活环境报》《环境报》《中国市容报》《环境保护导报》《中国减灾报》《上海劳动保护报》《劳动导报》《中国环境报》《安全生产报》《环境保护报》《市容建设报》
肯定是了, 中文核心没问题了。学报级别的都比较牛啦 。
太多了,列一部分主要的供你参考 顶级刊物GeoInformatica(国际地理信息系统计算机科学进展杂志)美国International Journal of Geographical Information Science(国际地理信息科学)英国国际期刊ISPRS Journal of Photogrammetry and Remote Sensing(国际摄影测量与遥感协会,国际摄影测量遥感杂志)Computers, Environment and Urban Systems(计算机、环境与城市系统)(英国)Cartography and Geographic Information System (制图学和地理信息系统)The Cartographic Journal(制图学杂志), UKCartographica(加拿大地图学国际期刊), CanadaCartography,Australia(澳大利亚地图学国际期刊)《Journal of Spatial Science》Computers & Geosciences(计算机与地学)Spatial Cognition and Computation(空间认知和计算)IEEE Transactions on Geoscience & Remote Sensing(IEEE地球科学与遥感汇刊)Remote Sensing of Environment (环境遥感)International Journal of Remote Sensing (国际遥感杂志)顶级会议COSIT(Conference on Spatial Information Theory)(空间信息理论会议)
森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全、保密及技术服务标准以及元数据标准等;(3)地球空间信息的时空变化理论,包括时空变化发现的方法和对时空变化特征的和规律的研究;(4)地球空间信息的认知,主要通过各目标各要素的位置、结构形态、相互关联等从静态上的形态分析、发生上的成因分析、动态上的过程分析、演化上的力学分析以及时态上的演化分析达到对地球空间的客观认知;(5)地球空间信息的不确定性,包括类型的不确定性、空间位置的不确定性、空间关系的不确定性、逻辑的不一致性和信息的不完备性;(6)地球空间信息的解译与反演,包括定性解译和定量反演,贯穿在信息获取、信息处理和认知过程中;(7)地球空间信息的表达与可视化,涉及到空间数据库多分辨率表示、数字地图自动综合、图形可视化、动态仿真和虚拟现实等。目前,这些方面的研究对建立完备的理论尚嫌不足,需要在今后加强这方面的基础研究。 关于遥感与GIS的集成,涉及到GPS和通信技术的集成,本文未作具体讨论,其具体内容可参见文献[4—6]。 3 结语 遥感与GIS在20世纪出现,在21世纪不仅将形成自身的理论体系和技术体系,而且将形成天地一体化的空间信息服务产业,为国民经济建设、国家安全、社会可持续发展和提高人民生活质量做出愈来愈大的贡献。 参考文献: [1] Li D R, Sui H G. Automatic Change Detection of Geospatial Data from Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34(II):245—251 [2] 龚健雅. 地理信息系统基础. 北京:科学出版社,2001 [3] 邸凯昌. 空间数据发掘与知识发现(第一版). 武汉:武汉大学出版社,2000. 182 [4] 李德仁,关泽群. 空间信息系统的集成与实现(第一版). 武汉:武汉测绘科技大学出版社,2000. 244 [5] 李德仁,李清泉. 论地球空间信息技术与通信技术的集成. 武汉大学学报(信息科学版),2001,26(1):1—7 [6] 李德
森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全
森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要:目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing前言卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。1.SPOT5卫星遥感数据特点SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程SPOT5数据处理工作流程: 遥感数据的订购订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。几何正射校正正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。3. 结果和讨论 几何精度利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。参考文献1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,.赵英时.《遥感应用分析原理与方法》,科学出版社,北京,.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 7921世纪遥感与GIS的发展李德仁(武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。关键词:发展趋势;航空航天遥感;地理信息系统;对地观测中图法分类号:P208;随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用“数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。“数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2]GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全
遥感原理与应用第一章 电磁波及遥感物理基础名词解释:1、 遥感 2、遥感技术 3、电磁波 4、电磁波谱 5、绝对黑体 6、绝对白体7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口12、发射率 13、热惯量 14、热容量 15、光谱反射率 16、光谱反射特性曲线 填空题:1、电磁波谱按频率由高到低排列主要由 、 、 、 、 、 、 等组成。2、绝对黑体辐射通量密度是 和 的函数。3、一般物体的总辐射通量密度与 和 成正比关系。4、维恩位移定律表明绝对黑体的 乘 是常数。当绝对黑体的温度增高时,它的辐射峰值波长向 方向移动。5、大气层顶上太阳的辐射峰值波长为 μm选择题:(单项或多项选择)1、 绝对黑体的 ①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。2、 物体的总辐射功率与以下那几项成正比关系 ①反射率 ②发射率 ③物体温度一次方 ④物体温度二次方 ⑤物体温度三次方 ⑥物体温度四次方。3、 大气窗口是指 ①没有云的天空区域 ②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段 ④没有障碍物阻挡的天空区域。4、 大气瑞利散射①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长的二次方成正比关系 ④与波长的二次方成反比关系 ⑤与波长的四次方成正比关系 ⑥与波长的四次方成反比关系 ⑦与波长无关。5、 大气米氏散射 ①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长无关。问答题:1、 电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性?2、 物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?3、 叙述沙土、植物和水的光谱反射率随波长变化的一般规律。4、 地物光谱反射率受哪些主要的因素影响?5、 何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。6、 传感器从大气层外探测地面物体时,接收到哪些电磁波能量?第二章 遥感平台及运行特点名词解释:1、 遥感平台 2、遥感传感器 3、卫星轨道参数 4、升交点赤经 5、轨道倾角6、近地点角距 7、地心直角坐标系 8、大地地心直角坐标系 9、卫星姿态角10、开普勒第三定理 11、重复周期 12、近圆形轨道 13、与太阳同步轨道14、近极地轨道 15、偏移系数 16、GPS 17、ERTS_1 18、LANDSAT_1 19、SPOT 20、IRS 21、CBERS 22、ZY_1 23、Space Shuttle 24、MODIS 25、IKONOS 26、Quick Bird 27、Radarsat 28、ERS 29、小卫星填空题:1、遥感卫星轨道的四大特点 。2、卫星轨道参数有 。3、卫星姿态角是 。4、遥感平台的种类可分为 、 、 三类。5、卫星姿态角可用 、 、 等 方法测定。6、与太阳同步轨道有利于 。7、LANDSAT系列卫星带有TM探测器的是 ;带有TM探测器的是 。8、SPOT系列卫星可产生异轨立体影像的是 ;可产生同轨立体影像的是 。9、ZY-1卫星空间分辨率为 。10、美国高分辨率民用卫星有 。11、小卫星主要特点包括 。12、可构成相干雷达影像的欧空局卫星是 。选择题:(单项或多项选择)1、 卫星轨道的升交点和降交点是卫星轨道与地球①黄道面的交点②地球赤道面的交点③地球子午面的交点。2、 卫星与太阳同步轨道指①卫星运行周期等于地球的公转周期②卫星运行周期等于地球的自转周期③卫星轨道面朝向太阳的角度保持不变。3、 卫星重复周期是卫星①获取同一地区影像的时间间隔②经过地面同一地点上空的间隔时间③卫星绕地球一周的时间。4、 以下哪种仪器可用作遥感卫星的姿态测量仪①AMS②TM③HRV④GPS⑤星相机。5、 问答题:1、 根据Landsat-1的运行周期,求该卫星的轨道高度。2、 根据Landsat-4/5的运行周期、重复周期和偏移系数,通过计算排出其轨道(赤道处)的分布图。3、 以Landsat-1为例,说明遥感卫星轨道的四大特点及其在遥感中的作用。4、 叙述地心直角坐标系与地心大地直角坐标系的差别和联系。5、 获得传感器姿态的方法有哪些?简述其原理。6、 简述遥感平台的发展趋势。7、 LANDSAT系列卫星、SPOT系列卫星、RADARSAT系列卫星传感器各有何特点?第三章 遥感传感器及其成像原理名词解释:1、遥感传感器 2、探测器 3、致冷器 4、红外扫描仪 5、多光谱扫描仪6、推扫式成像仪 7、成像光谱仪 8、瞬时视场 9、MSS 10、TM 11、HRV 12、SAR 14、INSAR 15、CCD 16、真实孔径侧视雷达17、合成孔径侧视雷达18、全景畸变 19、动态全景畸变 20、 静态全景畸变 21、距离分辨率22、方位分辨率23、雷达盲区24、角隅反射 25、粗加工产品 26、精加工产品27、多中心投影 28、多中心斜距投影填空题:1、MODIS影像含有 个波段,其中250米分辨率的包括 波段。2、RADARSAT-1卫星空间分辨率最高可达 ,共有 种工作模式。3、多极化的卫星为 。4、目前遥感中使用的传感器大体上可分为 等几种。5、遥感传感器大体上包括 几部份。6、MSS成像板上有 个探测单元;TM有 个探测单元。7、LANDSAT系列卫星具有全色波段的是 ,其空间分辨率为 。8、利用合成孔径技术能堤高侧视雷达的 分辨率。9、扫描仪产生的全景畸变,使影像分辨率发生变化,x方向以 变化,y方向以 变化。10、实现扫描线衔接应满足 。选择题:(单项或多项选择)1、 全景畸变引起的影像比例尺变化在X方向①与COSθ成正比②在X方向与COSθ成反比③在X方向与COS²θ成正比④在X方向与COS²θ成反比。2、 全景畸变引起的影像比例尺变化在Y方向①与COSθ成正比②与COSθ成反比③与COS²θ成正比④与COS²θ成反比。3、 TM专题制图仪有① 4个波段②6个波段③7个波段④9个波段。4、 TM专题制图仪每次同时扫描①6条扫描线②12条扫描线③16条扫描线④20条扫描线。5、 HRV成像仪获得的影像①有全景畸变②没有全景畸变。6、 SPOT卫星获取邻轨立体影像时,HRV中的平面镜最大可侧旋①10º②16º③27º④32º。7、真实孔径侧视雷达的距离分辨率与①天线孔径有关②脉冲宽度有关③发射的频率有关。7、 径侧视雷达的方位分辨率与①天线孔径有关②天线孔径无关③斜距有关④斜距无关。问答题:1、叙述侧视雷达图像的影像特征2、MSS、TM、ETM+影像各有何特点?3、有哪几种方法可以获得多光谱摄影影像?4、对物面扫描的成像仪为什么会产生全景畸变?扫描角为θ时的影像的畸变多大?5、叙述Landsat-1上的MSS多光谱扫描仪获取全球(南北纬度81°之间)表面影像的过程。6、TM专题制图仪与MSS多光谱扫描仪有何不同?7、SPOT卫星上的HRV推扫式扫描仪与TM专题制图仪有何不同?8、侧视雷达影像的分辨力、比例尺、投影性质和投影差与中心投影航空或航天像片影像有何不同?9、侧视雷达为什么要往飞机侧方发射脉冲并接收其回波成像?如果向飞机或卫星正下方发射脉冲并接收回波成像会是什么情景?10、简述INSAR测量高程的基本原理。第四章 遥感图像数字处理的基础知识名词解释:1、光学影像 2、数字影像 3、空间域图像 4、频率域图像 5、图像采样6、灰度量化7、BSQ 8、BIL 9、BMP 10、TIFF 11、ERDAS 12、PCI 13、3S集成填空题:1、光学图像是一个 函数。2、数字图像是一个 函数。3、光学图像转换成数字影像的过程包括 等步骤。4、图像数字化中采样间隔取决于图像的 ,应满足 (公式)。5、一般图像都由不同的 、 、 、 的周期性函数构成。6、3S集成一般指 、 和 的集成。选择题:(单项或多项选择)1、 数字图像的①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的③两者都是连续的④两者都是离散的。2、 采样是对图像①取地类的样本②空间坐标离散化③灰度离散化。3、 量化是对图像①空间坐标离散化②灰度离散化③以上两者。4、 图像数字化时最佳采样间隔的大小①任意确定②取决于图像频谱的截止频率③依据成图比例尺而定。5、 图像灰度量化用6比特编码时,量化等级为①32个②64个③128个④256个。6、 BSQ是数字图像的①连续记录格式②行、波段交叉记录格式③象元、波段交叉记录格式。问答题:1、 叙述光学影像与数字影像的关系和不同点。2、 怎样才能将光学影像变成数字影像。3、 叙述空间域图像与频率域图像的关系和不同点。4、 叙述储存遥感图像有哪几种方法,列举2—3种数字图像存储格式,并说明其特点。5、叙述3S集成的形式和作用。第五章 遥感图像几何处理名词解释:1、 共线方程2、外方位元3、像点位移4、几何变形5、几何校正6、粗加工处理7、精加工处理8、多项式纠正9、间接法纠正10、直接法纠正11、灰度重采样12、最邻近像元重采样13、双线性内插14、双三次卷积15、图像配准16、数字镶嵌17、数字地面模型18、正射影像19、地理编码图象 20、DEM填空题:1、 分别写出中心投影,推扫式传感器(旁向,航向倾斜),扫描式传感器的共线方程表达式 , , , 。2、 遥感图像的变形误差可以分为 和 ,又可以分为 和 。3、 外部误差是指在 处于正常的工作状态下,由 所引起的误差。包括 , , , 等因素引起的变形误差。4、 传感器的六个外方位元素中 的变化对图像的综合影响使图像产生线性变化,而 使图像产生非线性变形。 5、 地球自转对于多中心投影影像产生像点位移在 方向上,位移量bb’= 。6、 TM卫星图像的粗纠正使用的参数有 , , , 纠正的变形有 , 。7、 遥感图像几何纠正的常用方法有 , , 。8、 多项式拟合法纠正中,项数N与其阶数n的关系 。9、 多项式拟合法纠正中,一次项纠正 ,二次项纠正 ,三次项纠正 。10、项式拟合法纠正中控制点的要求是 , , 。11、多项式拟合法纠正中控制点的数量要求,一次项最少需要 个控制点,二次项最少项需要 个控制点,三次项最少需要 个控制点。12、SPOT图像采用共线方程纠正时需要 ,有 未知参数,最少需要 个控制点。13、常用的灰度采样方法有 , , 。14、数字图象配准的方式有 , 。15、数字图像镶嵌的关键 , , 。16、在姿态角都为0的情况下,中心投影像片的投影差为 ,推扫式影像(HRV)的投影差为 ,扫描仪影像(MSS)的投影差 ,侧视雷达影像(SAR)的投影差 。17、灰度采样中,双线性内插的权矩阵采用 函数求取, 双三卷积的权矩阵采用 函数求取。选择题:(单项或多项选择)1、 垂直航线方向距离越远比例尺越小的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。2、 垂直航线方向距离越远比例尺越大的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。3、 真实孔径天线侧视雷达影像上高出地面的物点其象点位移(投影差)①向底点方向位移②背向底点方向位移③不位移。4、 逐点扫描式影像(如TM影像)上高差引起的像点位移(投影差)发生在①像底点的辐射方向②扫描方向。5、 多项式纠正用一次项时必须有①1个控制点②2个控制点③3个控制点④4个控制点。6、 多项式纠正用二次项时必须有①3个控制点②4个控制点③5个控制点④6个控制点。7、 多项式纠正用一次项可以改正图像的①线性变形误差②非线性变形误差③前两者。8、 共线方程的几何意义是在任何情况下①像主点、像底点和等角点在一直线上②像点、物点和投影中心在一直线上③ 主点、灭点和像点在一直线上。问答题:1. 叙述中心投影的航空像片,MSS多光谱扫描仪影像,SPOT的HRV推扫式影像和真实孔径侧视雷达图像的几何特征。2. 列出中心投影影像、推扫式影像(旁向和航向)、逐点扫描影像和侧视雷达影像的构像方程和共线方程表达式。3. 列出中心投影影像、推扫式影像、逐点扫描影像和侧视雷达影像的投影差公式,并说明投影差产生的像点位移各自不同点。4. 已知中心投影影像姿态产生的变形误差公式为推导出推扫式影像、逐点扫描影像和侧视雷达影像的像点位移公式。5. 叙述最邻近法、双线性内插、双三次卷积重采样原理(可作图说明)和优缺点。6. 两幅影像进行数字镶嵌应解决哪些关键问题?解决的基本方法是什么?7. 叙述多项式拟合法纠正卫星图像的原理和步骤。8. 多项式拟合法选用一次项、二次项和三次项,各纠正遥感图像中的哪些变形误差?9. 多项式拟合法平差后精度应控制在什么范围内?超限了怎么办?10.叙述共线方程法纠正SPOT卫星图像的原理和步骤。11.在几何纠正的重采样中,内插像元4*4图像亮度值矩阵为:在间接法纠正过程中,某地面点反算到原始像点的坐标值为( ,),利用最邻近法和双线性内插法求像点的亮度值。12.叙述数字图像镶嵌的过程。13.画出各个外方位元素变化引起的图形变化情况第六章 遥感图像辐射处理名词解释:1、辐射误差2、辐射定标3、大气校正4、图像增强 5、图像直方图 6、假彩色合成 7、密度分割 8、真彩色合成 9、假彩色合成 10、伪彩色图像 11、图像平滑 12、图像锐化 13、边缘检测 14、低通滤波 15、高通滤波 17、图像融合 18、直方图正态化 19、梯度算子 20、线性拉伸 21、拉氏算子 22、直方图均衡 23、邻域法处理 填空题:1、辐射传输方程可以知道,辐射误差主要有 , , 。2、常用的图像增强处理技术有 , 。3、增强的常用方法有 , , , , , , 等。子4、直方图均衡效果 , , 。5、3*3的拉普拉斯算子 。6、图像平滑和锐化的关系 。 7、NDVI= 。8、图像融合的层次 , , 。9、HIS中的H指 ,I指 , S指 。 图像融合的常用算法 , , , , 等。选择题:(单项或多项选择)1、 图像增强的目的① 增加信息量②改善目视判读效果。2、 图像增强①只能在空间域中进行②只能在频率域中进行③可在两者中进行。3、 从图面上看直方图均衡后的效果是①增强了占图面面积小的灰度(地物)与周围地物的反差②减弱甚至于淹没了占图面面积小的灰度(地物)与周围地物的反差③增强了占图面面积大的灰度(地物)与周围地物的反差④减弱占图面面积大的灰度(地物)与周围地物的反差。4、 标准假彩色合成(如TM4、3、2合成)的卫星影像上大多数植被的颜色是①绿色②红色③蓝色。5、 图像边缘增强采用①低通滤波②高通滤波。6、 消弱图像噪声采用①低通滤波②高通滤波。7、 图像融合前必须先进行①图像配准②图像增强③图像分类。8、 图像融合①必须在相同分辨率图像间进行②只能在同一传感器的图像间进行③可在不同分辨率图像间进行④可在不同传感器的图像间进行⑤只限于遥感图像间进行⑥可在遥感图像和非遥感图像间进行。 问答题:10、 根据辐射传输方程,指出传感器接收的能量包含哪几方面,辐射误差及辐射误差纠正内容是什么,11、 简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理和步骤。12、 什么是遥感图像大气校正?为什么要进行遥感图像大气校正?请以多光谱扫描仪(MSS)资料为例,说明大气校正的原理和方法。13、 以美国陆地卫星TM图像的波段为例,分别说明遥感图像的真彩色合成与假彩色合成方案。与真彩色合成图像相比,假彩色合成图像在地物识别上有何优越性?14、 叙述美国陆地卫星ETM图像分辨率30米的5、4、3波段影像与分辨率15米的全色影像进行融合的步骤和方法。15、 说明以下直方图的影像特征。第七章 遥感图像判读名词解释:1、遥感图像判读 2、景物特征 3、判读标志 4、几何分辨率 5、辐射分辨率6、光谱分辨率 7、时间分辨率 8、波谱响应曲线 9、热阴影 10、冷阴影11、雷达盲区 12、角隅反射 13、体散射 14、影像几何特性 15、影像辐射特性16、 地物光谱特征 17、地物空间特征 18、地物时间特征填空题:1、遥感图像信息提取中使用的景物特征有 。2、遥感图像空间特征的判读标志主要有 等。3、传感器特性对判读标志影响最大的是 等。4、光谱分辨率根据 三项指标来判定。5、热红外图像上的亮度与地物的 和 有关, 比 影响更大。6、 侧视雷达图像上的亮度变化与 等有关。选择题:(单项或多项选择) 1、 遥感图像的几何分辨率指 ①象元相应地面的宽度 ②传感器瞬时视场内观察到地面的宽度 ③能根据光谱特征判读出地物性质的最小单元的地面宽度。2、 热红外图像是 ①接收地物反射的红外光成的像 ②接收地物发射的红外光成的像。3、 热红外图像上的亮度与地物的 ①反射率大小有关 ②发射率大小有关 ③反射太阳光中的红外光强度有关 ④温度高低有关。4、 侧视雷达图像垂直飞行方向的比例尺 ①离底点近的比例尺大 ②离底点远的比例尺大 ③比例尺不变。问答题:1、 遥感图像判读主要应用景物的哪些特征?2、 何为传感器的空间分辨率、辐射分辨率、光谱分辨率?3、 叙述TM多光谱图像的几何特征和辐射特征。4、 叙述地物光谱特性曲线与波谱响应曲线之间的关系和不同点?(可作图说明)5、 举例说明为什么多光谱图像比单波段图像能判读出更多的信息?6、 叙述热红外图像的几何特征和辐射特征。7、 叙述侧视雷达图像的几何特征和辐射特征。第八章 遥感图像自动识别分类名词解释:1、模式识别 2、遥感图像自动分类了 3、统计模式识别 4、结构模式识别5、光谱特征向量 6、特征空间 7、特征变换 8、特征选择 9、主分量变换10、哈达玛变换 11、穗帽变换 12、生物量指标变换 13、标准化距离14、类间离散度15、类间离散度16、类内离散度17、判别函数18、判别边界19、监督法分类20、非监督法分类21、条件概率22、先验概率23、后验概率24、贝叶斯判别规则25、马氏距离26、欧氏距离27、计程距离28、错分概率29、训练样区 30、最大似然法分类 31、最小距离法分类32、ISODATA法分类33、混淆矩阵填空题:1、遥感图像上的地物在特征空间聚类的一般特点是 等。2、特征变换在遥感图像分类中的作用是 。3、遥感图像特征变换的主要方法有 等。4、特征选择的目的是 。5、标准化距离的公式 。6、马氏距离公式 ,欧氏距离公式 ,计程距离公式 。7、最大似然法分类判别函数 。8、分类后处理主要包括 , 。选择题:(单项或多项选择)1、 同类地物在特征空间聚在①同一点上②同一个区域③不同区域。2、 同类地物在特征空间聚类呈①随机分布②近似正态分布③均匀分布。3、 标准化距离大可以说明①类间离散度大,类内离散度也大②类间离散度小,类内离散度大③类间离散度大,和/或类内离散度小④类间离散度小,类内离散度也小。4、 监督分类方法是①先分类后识别的方法②边学习边分类的方法③人工干预和监督下的分类方法。5、 两类地物的最大似然法分类判别边界在①两类地物分布概率相等处②两类地物均值的中值位置③其中一类地物分布概率的最大处。6、 ISODATA法分类的样区①尽量选在同一类别中②尽量包含所需识别的类别③类别是已知的④类别是未知的。问答题:1、 什么叫特征空间?地物在特征空间聚类有哪些特性?2、 作图并说明遥感影像主分量变换的原理和它在遥感中的主要作用。3、 叙述生物量指标变换的原理及其作用。4、 为什么要进行特征选择?列举几种特征选择的主要方法和原理。5、 叙述监督分类与非监督分类的区别。6、 叙述最大似然法分类原理及存在的缺点。7、 叙述最小距离法分类的原理和步骤。8、 叙述ISODATA法非监督分类的原理和步骤。9、 叙述图像增强中的平滑处理与分类后的平滑处理的异同点。10、述改善仅用光谱特征的统计模式识别自动分类的主要方法和基本原理。11、评价以下的混淆矩阵,并求出平均可信度和加权可信度。类 别 1 2 3 4 5 12345其它类 象元数 135 276 463 178 30512、根据下图中两类地物在一维特征空间中的分布,画出最大似然法、最小距离法的判别边界并分析和比较它们的错分概率。第九章 遥感技术的应用名词解释:1、卫星影像地图 2、DRG 3、DLG 4、GIS 5、同轨立体影像 6、邻轨立体影像 7、沙尘暴 8、海洋赤潮 9、地质构造 10、植被指数 11、森林立地条件12、臭氧空洞 13、土壤侵蚀 14、遥感考古 15、蓝冰填空题:1、 利用遥感图像修测地形图,修测的主要内容有 等。2、遥感图像制作影像图时控制点来源有 等。3、森林立地因子包括 等。4、多时遥感影像监测冰川流速的步骤是 等。选择题:(单项或多项选择) 1、 分辨率30米的TM影像,按规范要求的平面精度(图上),适合制作哪种比例尺的影像图 ①1:10000 ②1:100000 ③1:500000。2、 按规范要求的平面精度制作卫星影像图,选控制点用的地形图比例尺,应比影像图的比例尺 ①大一个等级 ②小一个等级。问答题:1、 举例说明制作不同比例尺卫星影像地图时怎样选择遥感图像?2、 叙述遥感监测南极冰川流速和流量的基本方法。3、 中国南方草场三级分类的内容是什么?TM影像可能提取出哪些信息?4、 叙述遥感调查中国南方草场资源的基本方法。5、 叙
中文核心:遥感学报科技核心:遥感技术与应用,遥感信息,国土资源遥感
要求中文核心还是科技核心?
比较容易发表论文的测绘类期刊有《测绘科学技术学报》、《遥感学报》、《地理科学进展》创、《地理与地理信息科学》。
1、《测绘科学技术学报》创于1984年,是由中国人民解放军信息工程大学主管、信息工程大学测绘学院主办的测绘科学学术期刊。本刊在国内外有广泛的覆盖面,题材新颖,信息量大、时效性强的特点,其中主要栏目有:学科进展、学术研究、应用工程等。
办刊宗旨:本刊以马列主义、毛泽东思想、邓小平理论为指针,贯彻执行江主席“三个代表“重要思想,坚持以建设有中国特色社会主义理论为指导,积极报道和反映测绘科学最新研究成就,传播和积累军事测绘科学知识。
2、《遥感学报》创刊于1997年,由中国科学院遥感应用研究所,中国环境遥感学会主办。致力于报道遥感领域及其相关学科具有国际、国内先进水平的研究报告和阶段性研究简报以及高水平的述评。着重反映本领域的新概念、新成果、新进展。
内容涉及遥感基础理论,遥感技术发展及遥感在农业、林业、水文、地矿、海洋、测绘等资源环境领域和灾害监测中的应用,地理信息系统研究,遥感与GIS及空间定位系统(GPS)的结合及其应用等方面。
3、《地理科学进展》创刊于1982年,是由中国科学院地理科学与资源研究所主办、科学出版社出版的综合性学术刊物。获奖情况:全国中文核心期刊。
主要刊登地理学及其分支学科的研究成果,反映国内外地理学研究动态。发表论文的领域为资源与环境、全球变化、可持续发展、区域研究及地理信息系统等方面的成果与新技术。
4、《地理与地理信息科学》创刊于1985年,由河北省地理科学研究所主办。包括地理学和地理信息科学两大部分,具体栏目有:3S研究与应用、数字城市与数字国土、区域经济、环境与生态、旅游开发、可持续发展研究等。
基本涵盖了地理学、地理信息科学的前沿与热点,侧重报道国家自然科学基金、国家重点实验室基金项目、国家科技攻关项目和国际合作项目的新研究成果。
海洋环境科学、中国安全科学学报、生态毒理学报、化工环保、中国环境科学、安全与环境学报、中国环境监测、环境科学、环境工程等,可以根据自己的需求决定!还有很多的核心期刊,可以去有家书院看看!
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。
目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。
Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。
SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。
SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:
用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。
用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。
设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:
下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。
图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。
未完待续
参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)
作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位
|声明:遵循CC BY-SA版权协议 建立在YOLOv1的基础上,经过Joseph Redmon等的改进,YOLOv2和YOLO9000算法在2017年CVPR上被提出,并获得最佳论文提名,重点解决YOLOv1召回率和定位精度方面的误差。在提出时,YOLOv2在多种监测数据集中都要快过其他检测系统,并可以在速度与精确度上进行权衡。 YOLOv2采用Darknet-19作为特征提取网络,增加了批量标准化(Batch Normalization)的预处理,并使用224×224和448×448两阶段训练ImageNet,得到预训练模型后fine-tuning。 相比于YOLOv1是利用FC层直接预测Bounding Box的坐标,YOLOv2借鉴了FSR-CNN的思想,引入Anchor机制,利用K-Means聚类的方式在训练集中聚类计算出更好的Anchor模板,在卷积层使用Anchor Boxes操作,增加Region Proposal的预测,同时采用较强约束的定位方法,大大提高算法召回率。同时结合图像细粒度特征,将浅层特征与深层特征相连,有助于对小尺寸目标的检测。 下图所示是YOLOv2采取的各项改进带了的检测性能上的提升: YOLO9000 的主要检测网络也是YOLO v2,同时使用WordTree来混合来自不同的资源的训练数据,并使用联合优化技术同时在ImageNet和COCO数据集上进行训练,目的是利用数量较大的分类数据集来帮助训练检测模型,因此,YOLO 9000的网络结构允许实时地检测超过9000种物体分类,进一步缩小了检测数据集与分类数据集之间的大小代沟。 下面将具体分析YOLOv2的各个创新点: BN概述: 对数据进行预处理(统一格式、均衡化、去噪等)能够大大提高训练速度,提升训练效果。BN正是基于这个假设的实践,对每一层输入的数据进行加工。 BN是2015年Google研究员在论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》一文中提出的,同时也将BN应用到了2014年的GoogLeNet上,也就是Inception-v2。 BN层简单讲就是对网络的每一层的输入都做了归一化,这样网络就不需要每层都去学数据的分布,收敛会更快。YOLOv1算法(采用的是GoogleNet网络提取特征)是没有BN层的,而在YOLOv2中作者为每个卷积层都添加了BN层。 使用BN对网络进行优化,让网络提高了收敛性,同时还消除了对其他形式的正则化(regularization)的依赖,因此使用BN后可以从模型中去掉Dropout,而不会产生过拟合。 BN优点: 神经网络每层输入的分布总是发生变化,加入BN,通过标准化上层输出,均衡输入数据分布,加快训练速度,因此可以设置较大的学习率(Learning Rate)和衰减(Decay); 通过标准化输入,降低激活函数(Activation Function)在特定输入区间达到饱和状态的概率,避免梯度弥散(Gradient Vanishing)问题; 输入标准化对应样本正则化,BN在一定程度上可以替代 Dropout解决过拟合问题。 BN算法: 在卷积或池化之后,激活函数之前,对每个数据输出进行标准化,方式如下图所示: 公式很简单,前三行是 Batch内数据归一化(假设一个Batch中有每个数据),同一Batch内数据近似代表了整体训练数据。第四行引入了附加参数 γ 和 β,此二者的取值算法可以参考BN论文,在此不再赘述。 fine-tuning:用已经训练好的模型,加上自己的数据集,来训练新的模型。即使用别人的模型的前几层,来提取浅层特征,而非完全重新训练模型,从而提高效率。一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine-tuning能够让我们在比较少的迭代次数之后得到一个比较好的效果。 YOLO模型分为两部分,分类模型和检测模型,前者使用在ImageNet上预训练好的模型,后者在检测数据集上fine-tuning。 YOLOv1在预训练时采用的是224*224的输入(在ImageNet数据集上进行),然后在检测的时候采用448*448的输入,这会导致从分类模型切换到检测模型的时候,模型还要适应图像分辨率的改变。 YOLOv2则将预训练分成两步:先用224*224的输入在ImageNet数据集训练分类网络,大概160个epoch(将所有训练数据循环跑160次)后将输入调整到448*448,再训练10个epoch(这两步都是在ImageNet数据集上操作)。然后利用预训练得到的模型在检测数据集上fine-tuning。这样训练得到的模型,在检测时用448*448的图像作为输入可以顺利检测。 YOLOv1将输入图像分成7*7的网格,每个网格预测2个Bounding Box,因此一共有98个Box,同时YOLOv1包含有全连接层,从而能直接预测Bounding Boxes的坐标值,但也导致丢失较多的空间信息,定位不准。 YOLOv2首先将YOLOv1网络的FC层和最后一个Pooling层去掉,使得最后的卷积层可以有更高分辨率的特征,然后缩减网络,用416*416大小的输入代替原来的448*448,使得网络输出的特征图有奇数大小的宽和高,进而使得每个特征图在划分单元格(Cell)的时候只有一个中心单元格(Center Cell)。 为什么希望只有一个中心单元格呢?由于图片中的物体都倾向于出现在图片的中心位置,特别是比较大的物体,所以有一个单元格单独位于物体中心的位置用于预测这些物体。 YOLOv2通过引入Anchor Boxes,通过预测Anchor Box的偏移值与置信度,而不是直接预测坐标值。YOLOv2的卷积层采用32这个值来下采样图片,所以通过选择416*416用作输入尺寸最终能输出一个13*13的特征图。若采用FSRCNN中的方式,每个Cell可预测出9个Anchor Box,共13*13*9=1521个(YOLOv2确定Anchor Boxes的方法见是维度聚类,每个Cell选择5个Anchor Box)。 在FSRCNN中,以一个51*39大小的特征图为例,其可以看做一个尺度为51*39的图像,对于该图像的每一个位置,考虑9个可能的候选窗口:3种面积3种比例。这些候选窗口称为Anchor Boxes。下图示出的是51*39个Anchor Box中心,以及9种Anchor Box示例。 YOLOv1和YOLOv2特征图数据结构: YOLOv1:S*S* (B*5 + C) => 7*7(2*5+20) 其中B对应Box数量,5对应边界框的定位信息(w,y,w,h)和边界框置信度(Confidience)。分辨率是7*7,每个Cell预测2个Box,这2个Box共用1套条件类别概率(1*20)。 YOLOv2:S*S*K* (5 + C) => 13*13*9(5+20) 分辨率提升至13*13,对小目标适应性更好,借鉴了FSRCNN的思想,每个Cell对应K个Anchor box(YOLOv2中K=5),每个Anchor box对应1组条件类别概率(1*20)。 聚类:聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。即在没有划分类别的情况下,根据数据相似度进行样本分组。 在FSR-CNN中Anchor Box的大小和比例是按经验设定的,然后网络会在训练过程中调整Anchor Box的尺寸,最终得到准确的Anchor Boxes。若一开始就选择了更好的、更有代表性的先验Anchor Boxes,那么网络就更容易学到准确的预测位置。 YOLOv2使用K-means聚类方法类训练Bounding Boxes,可以自动找到更好的宽高维度的值用于一开始的初始化。传统的K-means聚类方法使用的是欧氏距离函数,意味着较大的Anchor Boxes会比较小的Anchor Boxes产生更多的错误,聚类结果可能会偏离。由于聚类目的是确定更精准的初始Anchor Box参数,即提高IOU值,这应与Box大小无关,因此YOLOv2采用IOU值为评判标准,即K-means 采用的距离函数(度量标准) 为: d(box,centroid) = 1 - IOU(box,centroid) 如下图,左边是聚类的簇个数和IOU的关系,两条曲线分别代表两个不同的数据集。分析聚类结果并权衡模型复杂度与IOU值后,YOLOv2选择K=5,即选择了5种大小的Box 维度来进行定位预测。 其中紫色和灰色也是分别表示两个不同的数据集,可以看出其基本形状是类似的。更重要的是,可以看出聚类的结果和手动设置的Anchor Box位置和大小差别显著——结果中扁长的框较少,而瘦高的框更多(更符合行人的特征)。 YOLOv2采用的5种Anchor的Avg IOU是61,而采用9种Anchor Boxes的Faster RCNN的Avg IOU是,也就是说本文仅选取5种box就能达到Faster RCNN的9中box的效果。选择值为9的时候,AVG IOU更有显著提高。说明K-means方法的生成的boxes更具有代表性。 直接对Bounding Boxes求回归会导致模型不稳定,其中心点可能会出现在图像任何位置,有可能导致回归过程震荡,甚至无法收敛,尤其是在最开始的几次迭代的时候。大多数不稳定因素产生自预测Bounding Box的中心坐标(x,y)位置的时候。 YOLOv2的网络在特征图(13*13)的每一个单元格中预测出5个Bounding Boxes(对应5个Anchor Boxes),每个Bounding Box预测出5个值(tx,ty,tw,th,t0),其中前4个是坐标偏移值,t0是置信度结果(类似YOLOv1中的边界框置信度Confidence)。YOLOv2借鉴了如下的预测方式,即当Anchor Box的中心坐标和宽高分别是(xa,ya)和(wa,wh)时,Bounding Box坐标的预测偏移值(tx,ty,tw,th)与其坐标宽高(x,y,w,h)的关系如下: tx = (x-xa)/wa ty= (y-ya)/ha tw = log(w/wa) th = log(h/ha) 基于这种思想,YOLOv2在预测Bounding Box的位置参数时采用了如下强约束方法: 上图中,黑色虚线框是Anchor Box,蓝色矩形框就是预测的Bounding Box结果,预测出的Bounding Box的坐标和宽高为(bx,by)和(bw,bh),计算方式如图中所示,其中:对每个Bounding Box预测出5个值(tx,ty,tw,th,t0),Cell与图像左上角的横纵坐标距离为(cx,cy),σ定义为sigmoid激活函数(将函数值约束到[0,1]),该Cell对应的Anchor Box对应的宽高为(pw,ph)。 简而言之,(bx,by)就是(cx,cy)这个Cell附近的Anchor Box针对预测值(tx,ty)得到的Bounding Box的坐标预测结果,同时可以发现这种方式对于较远距离的Bounding Box预测值(tx,ty)能够得到很大的限制。 YOLOv2通过添加一个转移层,把高分辨率的浅层特征连接到低分辨率的深层特征(把特征堆积在不同Channel中)而后进行融合和检测。具体操作是先获取前层的26*26的特征图,将其同最后输出的13*13的特征图进行连接,而后输入检测器进行检测(检测器的FC层起到了全局特征融合的作用),以此来提高对小目标的检测能力。 为了适应不同尺度下的检测任务,YOLOv2在训练网络时,其在检测数据集上fine-tuning时候采用的输入图像的size是动态变化的。具体来讲,每训练10个Batch,网络就会随机选择另一种size的输入图像。因为YOLOv2用到了参数是32的下采样,因此也采用32的倍数作为输入的size,即采用{320,352,…,608}的输入尺寸(网络会自动改变尺寸,并继续训练的过程)。 这一策略让网络在不同的输入尺寸上都能达到较好的预测效果,使同一网络能在不同分辨率上进行检测。输入图片较大时,检测速度较慢,输入图片较小时,检测速度较快,总体上提高了准确率,因此多尺度训练算是在准确率和速度上达到一个平衡。 上表反映的是在检测时,不同大小的输入图片情况下的YOLOv2和其他目标检测算法的对比。可以看出通过多尺度训练的检测模型,在测试的时候,输入图像在尺寸变化范围较大的情况下也能取得mAP和FPS的平衡。 YOLOv1采用的训练网络是GoogleNet,YOLOv2采用了新的分类网络Darknet-19作为基础网络,它使用了较多的3*3卷积核,并把1*1的卷积核置于3*3的卷积核之间,用来压缩特征,同时在每一次池化操作后把通道(Channels)数翻倍(借鉴VGG网络)。 YOLOv1采用的GooleNet包含24个卷积层和2个全连接层,而Darknet-19包含19个卷积层和5个最大池化层(Max Pooling Layers),后面添加Average Pooling层(代替v1中FC层),而Softmax分类器作为激活被用在网络最后一层,用来进行分类和归一化。 在ImageNet数据集上进行预训练,主要分两步(采用随机梯度下降法): 输入图像大小是224*224,初始学习率(Learning Rate)为,训练160个epoch,权值衰减(Weight Decay)为,动量(Momentum)为,同时在训练时采用标准的数据增强(Data Augmentation)方式如随机裁剪、旋转以及色度、亮度的调整。 fine-tuning:第1步结束后,改用448*448输入(高分辨率模型),学习率改为,训练10个epoch,其他参数不变。结果表明:fine-tuning后的top-1准确率为,top-5准确率为,若按照原来的训练方式,Darknet-19的top-1准确率是,top-5准确率为。可以看出,两步分别从网络结构和训练方式方面入手提高了网络分类准确率。 预训练之后,开始基于检测的数据集再进行fine-tuning。 首先,先把最后一个卷积层去掉,然后添加3个3*3的卷积层,每个卷积层有1024个卷积核,并且后面都连接一个1*1的卷积层,卷积核个数(特征维度)根据需要检测的类数量决定。(比如对VOC数据,每个Cell需要预测5个Boungding Box,每个Bounding Box有4个坐标值、1个置信度值和20个条件类别概率值,所以每个单元格对应125个数据,此时卷积核个数应该取125。) 然后,将最后一个3*3*512的卷积层和倒数第2个卷积层相连(提取细粒度特征),最后在检测数据集上fine-tuning预训练模型160个epoch,学习率采用,并且在第60和90个epoch的时候将学习率除以10,权值衰减、动量和数据增强方法与预训练相同。 YOLO9000通过结合分类和检测数据集,使得训练得到的模型可以检测约9000类物体,利用带标注的分类数据集量比较大的特点,解决了带标注的检测数据集量比较少的问题。具体方法是:一方面采用WordTree融合数据集,另一方面联合训练分类数据集和检测数据集。 分类数据集和检测数据集存在较大差别:检测数据集只有粗粒度的标记信息,如“猫”、“狗”,而分类数据集的标签信息则更细粒度,更丰富。比如“狗”就包括“哈士奇”、“金毛狗”等等。所以如果想同时在检测数据集与分类数据集上进行训练,那么就要用一种一致性的方法融合这些标签信息。 用于分类的方法,常用Softmax(比如v2),Softmax意味着分类的类别之间要互相独立的,而ImageNet和COCO这两种数据集之间的分类信息不相互独立(ImageNet对应分类有9000种,而COCO仅提供80种目标检测),所以使用一种多标签模型来混合数据集,即假定一张图片可以有多个标签,并且不要求标签之间独立,而后进行Softmax分类。 由于ImageNet的类别是从WordNet选取的,作者采用以下策略重建了一个树形结构(称为WordTree): 遍历ImageNet的标签,然后在WordNet中寻找该标签到根节点(所有的根节点为实体对象)的路径; 如果路径只有一条,将该路径直接加入到WordTree结构中; 否则,从可选路径中选择一条最短路径,加入到WordTree结构中。 WordTree的作用就在于将两种数据集按照层级进行结合。 如此,在WordTree的某个节点上就可以计算该节点的一些条件概率值,比如在terrier这个节点,可以得到如下条件概率值: 进而,如果要预测此节点的概率(即图片中目标是Norfolk terrier的概率),可以根据WordTree将该节点到根节点的条件概率依次相乘得到,如下式: 其中: YOLO9000在WordTree1k(用有1000类别的ImageNet1k创建)上训练了Darknet-19模型。为了创建WordTree1k作者添加了很多中间节点(中间词汇),把标签由1000扩展到1369。 训练过程中GroundTruth标签要顺着向根节点的路径传播:为了计算条件概率,模型预测了一个包含1369个元素的向量,而且基于所有“同义词集”计算Softmax,其中“同义词集”是同一概念下的所属词。 现在一张图片是多标记的,标记之间不需要相互独立。在训练过程中,如果有一个图片的标签是“Norfolk terrier”,那么这个图片还会获得“狗”以及“哺乳动物”等标签。 如上图所示,之前的ImageNet分类是使用一个大Softmax进行分类,而现在WordTree只需要对同一概念下的同义词进行Softmax分类。然后作者分别两个数据集上用相同训练方法训练Darknet-19模型,最后在ImageNet数据集上的top-1准确率为,top-5准确率为;在WordTree数据集上的top-1准确率为,top-5准确率为。 这种方法的好处是有“退而求其次”的余地:在对未知或者新的物体进行分类时,性能损失更低,比如看到一个狗的照片,但不知道是哪种种类的狗,那么就预测其为“狗”。 以上是构造WordTree的原理,下图是融合COCO数据集和ImageNet数据集以及生成它们的WordTree的示意图(用颜色区分了COCO数据集和ImageNet数据集的标签节点), 混合后的数据集对应的WordTree有9418个类。另一方面,由于ImageNet数据集太大,YOLO9000为了平衡两个数据集之间的数据量,通过过采样(Oversampling)COCO数据集中的数据,使COCO数据集与ImageNet数据集之间的数据量比例达到1:4。 对YOLO9000进行评估,发现其mAP比DPM高,而且YOLO有更多先进的特征,YOLO9000是用部分监督的方式在不同训练集上进行训练,同时还能检测9000个物体类别,并保证实时运行。虽然YOLO9000对动物的识别性能很好,但是对衣服或者装备的识别性能不是很好(这跟数据集的数据组成有关)。 YOLO9000的网络结构和YOLOv2类似,区别是每个单元格只采用3个Anchor Boxes。 YOLO9000提出了一种在分类数据集和检测数据集上联合训练的机制,即使用检测数据集(COCO)的图片去学习检测相关的信息即查找对象(例如预测边界框坐标、边界框是否包含目标及目标属于各个类别的概率),使用仅有类别标签的分类数据集(ImageNet)中的图片去扩展检测到的对象的可识别种类。 具体方法是:当网络遇到一个来自检测数据集的图片与标记信息,就把这些数据用完整的损失函数(v2和9000均沿用了v1网络的损失函数)反向传播,而当网络遇到一个来自分类数据集的图片和分类标记信息,只用代表分类误差部分的损失函数反向传播这个图片。 YOLO v2 在大尺寸图片上能够实现高精度,在小尺寸图片上运行更快,可以说在速度和精度上达到了平衡,具体性能表现如下所示。 coco数据集 voc2012数据集