首页 > 论文发表知识库 > 运筹学线性规划3000字论文

运筹学线性规划3000字论文

发布时间:

运筹学线性规划3000字论文

课程教学改革研究论文

一、运筹学学科特点

运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理其核心是研究优化的理论与方法。运筹学内容丰富、分支众多,已经形成了三个不同的发展领域:运筹学应用、运筹学科学和运筹学数学教育部1998年颁布的“本科专业目录和专业介绍”中,将运筹学课程列为经济、管理专业的主干课程。运筹学课程已逐渐成为应用数学、管理科学、工程管理、系统科学、信息管理、计算机、机械制造、交通运输等专业的基础课程之一。因此运筹学课程必须既能满足理工类专业的教学需要,又能兼顾经管类等专业的要求。

运筹学具有以下几个特点:

(1)定量分析。 运筹学使用各种数学工具和逻辑判断方法,对实际问题中提炼出来的模型进行定量分析, 为管理和决策提供定量化的决策支持。

(2)最优性。 所谓最优,包含两方面的含义:一是从空间上来讲,寻求整体最优;二是从时间上来讲,寻求全过程最优。

(3)实用性。 运筹学是一门实践性很强的学科。运筹学广泛应用于经济、管理、工程优化设计、工程优化控制、计算机和信息系统、城市规划和管理、资源综合利用, 环境治理等。

(4) 多分支性。 由于运筹学是面向实际问题的,因此运筹学形成了很多分支,而且还在不断的向前发展。运筹学的分支包括线性规划、整数规划、非线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测、搜索论、随机服务理论和可靠性理论等。

(5)以计算机为工具求解问题。 由于实际问题通常变量较多,运用运筹学理论手工解决实际问题时,计算工作量非常大,且常常容易出现错误, 因此应该借助于计算机工具求解。实际上,计算机技术的快速发展,为运筹学的进一步发展以及在实践中的应用都起到了促进作用。

二、教学现状分析

目前,本校的运筹学课程授课对象为理科专业(包括数学与应用数学、统计学专业)、管理学科专业(包括管理科学、工程管理、房地产经营管理、市场营销、物流管理、工商管理、金融管理专业)以及工科专业(信息管理与信息系统、金融工程专业)的本科大学生。理工科专业学生是理科生源,管理类专业中除部分专业为文科生源,其余专业又为文理生源兼有。相比而言,理科生源学生数学基础较好,文科生源的数学基础相对较差,如何做到在同一时空内,让学生们都能认识、理解、领会和掌握该门课程,并能实现理论和实践的结合,从而解决实际问题,真正达到这门课程的学习目的,需要在教学过程中做一些尝试与改革。目前,我校在运筹学课程教学过程中往往容易出现以下一些普遍存在的问题和不足:

1、学生学习的积极性不高,厌学现象较普遍。随着年龄的增长,大学生学习动机的功利性日益增强,只对他们认为有用的课程感兴趣,而对其它课程则仅仅追求达到学分要求。学习的主动参与性不够,课堂气氛不够活跃,很难主动和教师形成互动,整体学习效果一般。他们将学习重点放在对课本知识的死记硬背上,甚至连计算方法和步骤也采用死记的方法。

2、教学方法的科学性有待加强。运筹学是一门实用性课程,很多老师在授课时,采用传统的板书讲授法,教学手段不够灵活,信息量少,如讲解线性规划中的单纯形方法时,一节课画一张单纯形表,解一道迭代三次的题目时间可能就不够用了,教师只在黑板上孤立的画表格,学生在课堂上被动接受,师生互动性差,教与学信息反馈不及时,很难提高学生的兴趣和调动学生学习的积极性。

3、实验教学和案例分析重视不够。由于大部分教师是重点高校数学专业出身,在给本科生上运筹学课程时,过多注重定义的解释,定理的推导,手工演算的培训上,对应用运筹学的理论、方法分析问题、解决问题讲授不多,从而造成学生对运筹学的基本理论、模型求解方法多有较好的掌握,但当运用所学知识去分析和解决实际问题时,却都显得茫然无措。很少有运用运筹学解决实际问题的案例,不会用运筹学优化软件(如lingo、lindo、mathematic、matlab等)求解最基本的运筹优化问题,更难去解决实际问题。

4、课程考核方法比较单一。通常是以学生平时作业加期末考试成绩作为考核学生学习运筹学课程效果的考核方式,导致学生只会套用书上算法,机械的进行手工计算,忽视了运筹学课程培养学生解决实际问题的能力的目的,偏离了运筹学的本质。

三、教学改革建议

1、分专业教学,体现专业特色。

不同的专业,需要不同的运筹学知识,应根据专业培养目标和专业特点明确教学目的,分类设置教学内容,科学设计教学方法,并有所侧重,如应用数学专业更应强调运筹学数学和运筹学科学,在教学过程中应侧重算法的证明和原理推导,还应具有一定的编写计算机程序解决问题的能力,使他们掌握运筹学的基本优化理论和优化方法,掌握课程各主要分支的模型、基本概念与理论、主要算法及其应用;经管类专业运筹学更应强调运筹学应用和运筹学科学,教学目的重点应放在学生对基本概念的理解、基本原理的掌握以及基本方法的应用上,使学生通过运筹学课程的学习,能够运用运筹学的思想、原理、方法分析和解决问题同时加强实践教学,采取多种灵活多变的实践方式,解决实际应用领域中的某些实际问题,为学生进一步从事该方向的学习与研究工作打下坚实的基础。

2、对教学手段、方式进行改革。

(1)采用启发式教学。

学生的学习态度直接影响教学质量,因此在教学过程应积极发挥学生的主体作用,如采用启发式教学,充分发挥学生的聪明才智,激发他们的学习热情。例如在讲解整数规划的分支定界法时,对于举例求解约束条件只有两个的例子时,可以选两个层次不同的同学当堂练习,启发学生用图解法求解,从而鼓励学生举一反三,畅所欲言,充分发表自己的观点与想法。

(2)改革教学手段,运用最新科技成果,突出应用性。

传统教学模式的板书时间,对学生来说也是一段休息、思考准备的时间,但有时显得单调和低效、课堂信息量少,而且可观性差。对于运筹学这类内容丰富、信息量大、推理和运算复杂的综合性学科的教学活动,还应该充分应用现代化教学手段,通过与现代化教育技术的组合应用,实现运筹学课程教学的优化须借助多媒体、互联网等最新现代教育技术手段,并充分利用网络教学资源加强对学生进行交互式教育,使学生及时了解运筹学发展动态,领悟新思路、掌握新方法,增强运筹学课程的前瞻性和应用性。应用这些最新科技成果辅助教学可以大大提高教学效率,增加学生接触实际问题的机会,提高解决实际问题的能力,使教学更好地为实际应用服务。

(3)改进教学方式。

变传统单一的课堂讲授为课堂讲授、专题讲座、计算机实验、参与社会实践等多种形式相结合。举办专题讲座能较好地开阔学生的视野,使学生了解运筹学的发展方向与前沿动态,为培养具有全球化视野的国际性人才打下基础;开展计算机实验可培养学生创新能力,这主要是通过创建计算机能识别的运筹学模型、编写运筹学算法程序和运用计算软件去求解模型这三个环节去实现;参与社会实践则能增强学生的实践能力,让学生运用所学运筹学知识去解决实际问题,在社会生产实践的活动中接受检验,使学生亲身感受学习本课程的实践需要和社会价值,在实践中增长见识和才干、获得成就感。

(4)建立多种联系方式和学习的平台。

建立基于校园网的交互式网络平台以学校的校园网络为基础,建立起师生交互式的网络交流平台,教师将电子教案和其他教学资源放在网络系统里,供学生查阅、复习或下载。充分利用现代科技技术,给学生任课教师的联系方式,通过qq,e—mail等现代科技技术加强联系,及时解答学生在学习中遇到的问题,激发学生的兴趣。

3、加大案例分析和建模培训力度。

单纯的讲解教材中的基本理论和例题,会给学生造成一种错觉:运筹学在理论上很完美,但不能解决实际问题。因此, 在教学的过程中需加强案例教学。案例教学具有以下鲜明特点:第一,目的性。第二,真实性。第三,结果的优化性。加强案例教学,可以加深学生对运筹学概念的理解与应用;加强案例教学有利于学生创造性能力的培养;通过案例教学,可以提高学生们动用所学知识和方法分析问题的能力、合作共事的能力和沟通交流的能力。

一年一度的全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,而数学建模的主要方法都来自于运筹学的内容。目前来说,建模竞赛几乎受到了所有高校的高度重视,我校从组队参加全国大学生数学建模竞赛以来,虽然取得了不错的`成绩,但是和兄弟院校相比还有一定的差距。因此教师可以结合本校实际,将数学建模带入课堂,适当介绍建模竞赛的历年考题,鼓励学生积极参加各级竞赛,通过竞赛来带动运筹学的教学。

4、改变考核方式。

考试是检测教学效果和促进教学的一种有力手段,但是传统考试方式考核的只是理论知识与解题技巧,而运筹学的考核重点应该是学生的优化意识和解决实际问题的能力。所以,与其他课程相比,运筹学的考核方式应该是开放的、多样化的。课程的考核方式应当既要体现学生对基本知识的掌握能力,还要突出学生的实践能力与创新意识,因此在成绩考核方面应当包括基础知识考核、实践能力考核、创新能力考核等方面。基础知识考核用来加强学生对基本理论、算法的理解及应用,主要是通过学生对每堂课的课后习题作业的完成情况来考察;实践能力考核主要考核学生初步的数学建模、应用运筹学理论解决简单实际问题的能力,要求学生做几道应用型的题目,并且只建模不必非求出解;创新能力考核主要是通过布置几道优化方面的数学建模案例,引导学生用学过的优化方法求解,不仅要建立数学模型,还要能运用相关优化软件求解出精确的结果。

5、适当介绍分支由来和现今理论前沿。

不同的运筹学分支有各自的特点和经典方法,如线性规划的单纯形法、非线性规划的kuhn—tucker条件,对策论的划线法,这些经典方法都有着各自的创始人和来龙去脉,通过对各分支名人和历史的介绍有助于学生把握运筹学的发展史,从宏观上对运筹学各个分支有整体的认识。同时,通过名人的介绍还有助于开阔学生视野,提高学习兴趣,活跃课堂气氛,提高教学效果。

四、结束语

运筹学的主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。随着我国高等教育改革的不断深化,要求在教学中提高学生运用运筹学解决具体问题的实践能力。我们相信通过对运筹学课程教学做一系列的改革,针对不同专业的学生,设置不同的教学目的和教学内容,采用不同的教学方法和教学手段,将教师的主导作用、学生的主体作用以及现代教学技术的辅助作用紧密结合起来,使学生能既掌握基本的理论与方法, 又具有较强的实际应用能力,取得令人较满意的教学效果。

数学是所有科学的基础,军事科学也不例外。 综 述 从人类早期的战争开始,数学就无所不在,不论是发射弩箭还是挖掘地道,数学就像冥冥之中的命运之神一样在起作用。虽然战争是个令人讨厌的话题,但战争却是人类不可避免的。 提起数学与军事,人们可能更多地想到数学可以用来帮助设计新式武器,比如阿基米德的传闻故事:阿基米德所住的 Syracuse 王国遭到罗马人的攻击,国王 Heron 请其好友阿基米德帮忙设计了各式各样的弩炮、军用器械,利用抛物镜面聚太阳光线,焚毁敌人船舰等。当然,这样的军事应用并没有用到较高层次的数学。其实,古时数学用于军事只到这种层次。《五曹算经》中的兵曹,其所含的计算,仅止于乘除;再进一步,也不过是测量与航海。一直到二十世纪,科学发展促使武器进步,数学才真的可能与战事有密切的关系,例如数学的研究工作可能与空气动力学、流体动力学、弹道学、雷达及声纳、原子弹、密码与情报、空照地图、气象学、计算器等等有关,而直接或间接影响到武器或战术。 事例一 一支高智商的反法西斯队伍 二战迫使美国政府将数学与科学技术、军事目标空前紧密地结合起来,开辟了美国数学发展的新时代。1941至1945年,政府提供的研究与发展经费占全国同类经费总额的比重骤增至86%。美国的“科学研究和发展局”(OSRD)于1940年成立了“国家防卫科学委员会(NDRC),为军方提供科学服务。1942年,NDRC又成立了应用数学组(AMP),它的任务是帮助解决战争中日益增多的数学问题。AMP和全美11所著名大学订有合同,全美最有才华的数学家都投入了遏制法西斯武力的神圣工作。AMP的大量研究涉及“改进设计以提高设备的理论精确度”以及“现有设备的最佳运用”,特别是空战方面的成果,到战争结束时共完成了200项重大研究。 在纽约州立大学,柯朗和弗里德里希领导的小组研究空气动力学、水下爆破和喷气火箭理论。超音速飞机带来的激波和声爆问题,利用“柯朗——弗里德里希——勒维的有限差分法”求出了这些课题的双曲型偏微分方程的解。布朗大学以普拉格为首的应用数学小组集中研究经典动力学和畸变介质力学,以提高军备的使用寿命。哈佛大学的G·伯克霍夫为海军研究水下弹道问题。哥伦比亚大学重点研究空对空射击学。例如,空中发射炮弹弹道学;偏射理论;追踪曲线理论;追踪过程中自己速度的观测和刻画;中心火力系统的基本理论;空中发射装备测试程序的分析;雷达。 普林斯顿大学和新墨西哥大学为空军确定“应用B-29飞机的最佳战术”。冯·诺伊曼和乌拉姆研究原子弹和计算机。维纳和柯尔莫戈洛夫研究火炮自动瞄准仪。由丹泽西为首的运筹学家发明了解线性规划的单纯形算法,使美军在战略部署中直接受益。 事例二 破译密码的解剖刀——数学 英国数学家图灵出生于一个富有家庭,1935年在剑桥大学获博士学位后去了美国的普林斯顿,他为设计理想的通用计算机提供了理论基础。1939年图灵回到英国,立即受聘于外交部通讯处。当时德国法西斯用于绝密通讯的电报机叫“Enigma”(谜),图灵把拍电报的过程看成在一张纸带上穿孔,运用图灵的可计算理论,英国设计了一架破译机“Ultra”(超越)专门对付“Enigma”,破译了大批德军密码。 1941年5月21日,英国情报机关终于截获并破译了希特勒给海军上将雷德尔的一份密电。从而使号称当时世界上最厉害的一艘巨型战列舰,希特勒的“德国海军的骄傲”——“俾斯麦”号在首次出航中即葬身鱼腹。 1943年4月,日本海军最高司令部发出的绝密电波越过太平洋,到达驻南太平洋和日本占领的中国海港的各日本舰队,各舰队司令接到命令:日本联合舰队总司令长官山本五十六大将,将于4月18日上午9时45分,由6架零式战斗机保护,乘两架轰炸机飞抵卡西里湾,山本的全部属员与他同行。 这份电报当即被美国海军的由数学家组成的专家破译小组破译,通过海军部长弗兰克·诺克斯之手,马上被送到美国总统罗斯福的案头。于是,美国闪电式战斗机群在卡西里湾上空将山本的座机截住,座机在离山本的目的地卡西里只有几英里的荆棘丛中爆炸。 中途岛海战也是由于美国破译了日本密码,使日本4艘航空母舰,1艘巡洋舰被炸沉,330架飞机被击落;几百名经验丰富的飞行员和机务人员阵亡。而美国只损失了1艘航空母舰,1艘驱逐舰和147架飞机。 从此,日本丧失了在太平洋战场上的制空权和制海权。 事例三 巴顿的战舰与浪高 军事边缘参数是军事信息的一个重要分支,它是以概率论、统计学和模拟试验为基础,通过对地形、气候、波浪、水文等自然情况和作战双方兵力兵器的测试计算,在一般人都认为无法克服、甚至容易处于劣势的险恶环境中,发现实际上可以通过计算运筹,利用各种自然条件的基本战术参数的最高极限或最低极限,如通过计算山地的坡度、河水的深度、雨雪风暴等来驾驭战争险象,提供战争胜利的一种科学依据。 1942年10月,巴顿将军率领4万多美军,乘100艘战舰,直奔距离美国4000公里的摩洛哥,计划在11月8日凌晨登陆。11月4日,海面上突然刮起西北大风,惊涛骇浪使舰艇倾斜达42°。直到11月6日天气仍无好转。华盛顿总部担心舰队会因大风而全军覆没,电令巴顿的舰队改在地中海沿海的任何其他港口登陆。巴顿回电:不管天气如何,我将按原计划行动。 11月7日午夜,海面突然风平浪静,巴顿军团按计划登陆成功。事后人们说这是侥幸取胜,这位“血胆将军”拿将士的生命作赌注

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

运筹学线性规划问题论文

好好看看类型题就可以,下面不是还有人发的

(1)线性规划中的凸集,是指它的可行域(所有可行解的集合)是一个凸集(在2元线性规划中为凸平面多边形),即设X1和X2为可行域中任意2个可行解,则X=1/2(X1+X2)仍为可行解,仍落在可行域内X1和X2;(2)线性的基本可行解,是一组特殊的可行解:它将变量分为2类,1类为基本变量(变量个数为约束条件中独立方程个数),另1类为非基本变量(变量个数为决策变量个数与基本变量个数之差),令全体非基本变量取值为0,若基本变量对应唯一一组解且满足变量约束,则全体决策变量对应的这组解,称为该问题关于这个基本变量组的基本可行解;(3)基本可行解,在几何上对应可行域的顶点,又称角顶可行解。(4)求解线性规划问题时,求得的第一个基本可行解对应的基本变量组,称为初始基本变量组。

最小的时候,你取负号,就是最大的意思了赛~~你可以吧目标函数看成一个值嘛。约束条件中,没有等式左右两边乘(-1)。所以不需要变相反数。有时候变相反数是因为右边B值 为负数,化为标准形势的时候B>=0 的。(标准形势里面的要求里面有赛)。

先还是看一下高等代数相关的解线性方程组的知识

运筹学线性规划模型论文

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

线性规划问题在经济生活中的应用详见线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法_在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料;二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是在一定条件下,合理安排人力物力等资源,使经济效果达到最优一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题文章根据线性规划问题在现实生活中的意义进行相关讨论与探究,介绍了线性规划问题产生的背景、特点和实际运用情况,以及线性规划问题在经济生活中运用的意义.

那么某一个顶点其实就是某组超平面的交点,这一组超平面对应的约束就是在某一个顶点取到“=”号的约束(也就是基)。顶点对应到代数意义就是一组方程(取到等号的约束)的解 线性规划里面的约束(等式或不等式可以看作是超平面Hyperplane或者半空间Half space)。可行域可以看作是被这组约束,或者超平面和半空间定义(围起来)的区域。 那么某一个顶点其实就是某组超平面的交点,这一组超平面对应的约束就是在某一个顶点取到“=”号的约束(也就是基)。顶点对应到代数意义就是一组方程(取到等号的约束)的解。 用矩阵去理解运筹学线性规划 (Linear Programming)-- 最简单和基础的优化问题,如上图, 目标函数 (max)和 约束条件 (.)都是线性的,自变量x是实数变量,P问题(多项式时间可解);或许有些读者没有学过线性代数,更简单的例子: min x1+x2  . 3x1-4x2> 5,  x1,x2>=0。特点: (1) 目标函数求最大值(有时求最小值)(2) 约束条件都为等式方程,且右端常数项bi都大于或等于零. 约束条件都为等式方程,需要解除松弛变量和剩余 变量(3) 决策变量xj为非负。 对于无约束的变量,如(X3 无约束)可以用类似 X3=X4-X5替换,且 X4>=0,X5>=0即每一个线性规划问题(称为原始问题)有一个与它对应的对偶线性规划问题 对偶问题与原始问题之间存在着下列关系: ①目标函数对原始问题是极大化,对对偶问题则是极小化。 ②原始问题目标函数中的收益系数是对偶问题约束不等式中的右端常数,而原始问题约束不等式中的右端常数则是对偶问题中目标函数的收益系数。 ③原始问题和对偶问题的约束不等式的符号方向相反。 ④原始问题约束不等式系数矩阵转置后即为对偶问题的约束不等式的系数矩阵。 ⑤原始问题的约束方程数对应于对偶问题的变量数,而原始问题的变量数对应于对偶问题的约束方程数。 ⑥对偶问题的对偶问题是原始问题,这一性质被称为原始和对偶问题的对称性。 1 若原问题及其对偶问题都具有可行解,则两者都具有最优解。且他们的最优解的目标函数值相等 2对于线性规划的原问题和对偶问题,若其中有一个有最优解,则另一个也一定有最优解 3如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解 线性规划中的唯一最优解是指最优表中非基检验数全部为0 其变量均具有非负约束,其约束条件当目标函数求极大值时均取《号,当目标函数求极小值时均取>=号

运筹学3000字论文范文

谈关于运筹学教学的几点思考 [论文关键词]运筹学 教学研究 课程建设[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。 运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。 一、注重其发展背景及现实意义的讲授 运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。 二、注重其“学科交叉、多分支”的特点 应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。 三、注重“案例教学、实验教学”的`综合运用 案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。 四、注重教学方式的运用 随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。 五、注重对考核方式的研究 考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。 总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。 [参考文献] [1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110 [2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95 [3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10 论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。

我讨论一个可能大家都听说过的问题:就是你在家里看电视,这时熟睡的的孩子醒了在哭,接着厨房烧的水也开了,家里的电话也在响,不巧这时有人登门拜访也正在敲门,更糟糕的是天也要下雨了而你晾着的衣服也没有收……这时你该怎么做?我看过一些经典的做法:就是去哄着孩子,再抱着孩子去厨房把燃气灶关了,喊着“来了,来了”的同时可以去接电话再给客人开门,最后可以让客人帮你抱着孩子然后你去收衣服,完了,很顺理成章。当然这里有几个问题值得推敲,首先,水开了是不是会把燃气灶弄熄了,那么是不是会中毒?那家里的电话是不是有什么急事?其次,来拜访的人是不是你认识或熟悉的,如果是坏人你把孩子交给他会怎么样?那我们是不是可以这样改一下:衣服我可以先不要管它,客人也可以让他稍等一下,那孩子在哭我们也可以暂时不管。电话响了你可以先接起来说“有事,稍等一下。”再到厨房把燃气灶关了,然后去给拜访的人开门,如果是你的好朋友当然可以让她帮你照看一下孩子再回电话,如果是你不认识的人那么你自然应该先去抱你的孩子,然后再和拜访的人交谈,弄清楚是怎么回事了那么你再去回电话,最后去收衣服也不迟。这样一来如果下雨了,湿的只是衣服。但是没有人可以给出最佳方案,因为在你的取舍关系不能得到平衡的时候,多数人只会跟着自己的第一直觉走。如果平常爱打电话的只会先去接电话,爱孩子的人也只会去抱孩子,而有心计的人会去关燃气灶,但却很少人会首先去开门或收衣服。那么是不要说他们做的不对呢,没有,只是他们在同时遇见很多事情的时候已经没有时间去考虑孰轻孰重,在考虑不可以平等处理的同时,他们抓住的往往是自己内心渴望的映射,同时也会反映出一个人的心理态度和价值观念。(不知道有没有四百,也不知道是不是合意,说不对也不要笑,也可以指教一下。)

运筹学动态规划毕业论文

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

去看看这本(运筹与模糊学 )里的内容吧

论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。

现在和将来的角度,结合你所学 我可以写,比较多

  • 索引序列
  • 运筹学线性规划3000字论文
  • 运筹学线性规划问题论文
  • 运筹学线性规划模型论文
  • 运筹学3000字论文范文
  • 运筹学动态规划毕业论文
  • 返回顶部