效率低。合成孔径声呐成像的缺点是算法效率低,方位分辨率低,载体运行速度慢。合成孔径声纳是一种新型高分辨水下成像声纳,是一种新型的二维成像声纳。
声纳是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。声波是人类迄今为止已知可以在海水中远程传播的能量形式。
未来声学检测技术的发展
01单波束探测器
在浅水达到了CM水平的准确性,并且各种频率和市场脉冲率的深化设备可以满足大多数用户。尽管新技术的不断发展,但仍然保留单波浪背部测试,并且这种传统仪器仍然用于世界深度测量。通过模拟记录作为数字记录开发了单波束深度深度,其精度和准确性大大提高,这可以满足大部分海频测量要求。数字监控,运动态度传感器,卫星定位系统(如GPS系统)和数据收集软件可以大大减少海洋测量师的数量,大大提高海洋测量效率。单波束测试,深度仪器将开发到系统高度集成,智能和小型化方向,双带单梁试验,提供水道空气深度的可能测量,以及端口的潜在功能和指导较大的疏浚区域测量具有实际意义。02侧扫地
在障碍物检测方面已经实现了高水平。目前,虽然使用横向扫描技术是有限的(最大5〜6),但在端口和通道检测中,横向扫描纳米技术被检测到水下导航障碍物和水下小目标。方面具有广泛的应用前景。未来侧网纳米技术将完美地对图像镶嵌技术,侧扫描数据的三维可视化,系统分辨率的提高,以及通过高空速条件的图像图像提取的可靠型核潜艇基板声学特性的可靠性。进一步改善。
03多光束深化技术
多光束深化技术实现了“点线”到“线面”测量的跨度,其技术进步非常突出,而且迅速发展,并已成为子集最有效的工具全面覆盖测量。如果使用合理的工作,并且系统在检测到导航障碍物中具有足够的分辨率,则该技术具有巨大的精度潜力和完全覆盖,以检测海底地形。虽然多光束测试更深的功能具有令人印象深刻的功能,但对于测量设计人员,操作员和测量检查器,多光束加深器械的操作原理尽可能多地用于插值数据。评估至关重要。通过改善数据密度,改善系统分辨率,增加的覆盖率,深度准确性的提高以及改善海洋元素和多功能集成的改进,将进一步升级和改进未来的多波长深化设备。
04合成光圈声
合成孔径声纳是一种新型的高分辨率水下二维成像,基本原理是使用小的孔径矩阵运动,通过将信号的相关处理接收到不同的位置(方向)。获得合成孔以获得取向方向上的高变形力。直观,距离越大,合成孔径越长,合成阵列的角度分辨率越高,因此偏移距离增加,保持分辨率。该技术仅在1992年被打破,并且已经发生了被动和有源工作模式的合成孔。 1995年,实验原型完成,效果距离达到400米,分裂率达到10厘米。
合成孔可用于检测和识别水下军事目标,最直接的应用是开展深度分辨率的检测和鉴定肾小水雷和埋葬雷声,也可用于水下目标检测,水下考古并搜索水丢失的物体等,特别是高分辨率海底,对数字地球研究具有重要意义。外来合成孔节电流发展趋势是进一步改善信号处理方法的改进,增加了目标识别图像分辨率的增强,以及延伸作用的作用进一步提高,这是海洋高 - 具有非常好的应用前景。
05水下定位技术
水下定位技术将在各种适用的范围内开发,更准确,更简单。激光声音传感技术具有柔韧,覆盖的水,特别是一些船舶难以实现的一些优点,但精度相对较低。水声定位系统开发了一种高精度的技术,因此是一种新的水下定位技术,可以在未来形成新的水下定位技术。可以预见的是,在不久的将来搜索在大范围内的水下目标时,将使用空气传播的激光声学遥感技术,并且船车道定位技术用于确定大致范围的水下目标。执行精确定位。
可预见到未来的声深化技术将与高度集成功能集成。海底中多个声学特性的综合检测无疑是未来发展的趋势,这不仅可以避免声学设备引起的数据融合。困难。此外,组合的集成检测为海洋调查提供了更可靠的数据支持。通过对各种数据的全面分析,可以提高数据解释判断的可靠性,并提高分析结论的科学性。
第一届水声测量国际会议(UAM)在希腊举行,中国科学院院士、声学所研究员李启虎应邀出席会议,并作了题为《海洋监测中的水声技术》的报告。报告中,李启虎阐述了水声测量技术在海洋监测中的重要作用,并介绍了我国“863”计划海洋领域在水声监测技术方面的研究成果,引起了各国专家学者的极大兴趣和关注。李启虎首先在报告中指出了水声测量技术在海洋监测中的重要性。李启虎说,海洋监测是海洋开发和利用中的重要任务之一。它包括海洋环境保护、海洋灾害预警、国家安全和海洋资源开发。海洋监测的主要手段建立在力学、电磁学、化学、声学、光学等研究领域的基础上,而由于声波是人类目前所知惟一能在海水中远距离传播的媒介,海洋里声波信号随距离的衰减比光波和电磁波要小得多,因而水声技术在海洋环境监测中,尤其是海体和海底的监测中起到了至关重要的作用。科技部自1996年开始,将海洋领域纳入“863”计划,积极推动海洋监测的高技术发展,其中,水声监测技术取得了巨大进展。报告中,李启虎向国际同行介绍了这些成果。一是多功能声学多普勒海流剖面仪(MADCP)技术。海流剖面是海洋开发活动中要考虑的一个重要参数。传统的声学多普勒海流剖面仪(ADCP)只能够给出几百米深度的海流剖面。而现在,有了MADCP,除了海流剖面,还能检测出悬浮物质。这种设备是非常“中国特色”的——中国的海水通常比较浑浊、泥沙多,悬浮物质的检测在海洋监测中非常必需,所以,MADCP的出现和应用意义重大。二是声相关海流剖面仪(ACCP)技术。工作深度是传统的ADCP的局限所在,它很难在460米以上的深度下工作。现在,运用ACCP测海流,比ADCP能达到的测量深度要深得多,测量深度可以超过3000米。ACCP仪器的体积较小,在军事上具有很好的应用前景。目前,掌握ACCP技术的只有中国和美国,中国已于两年前完成了ACCP的原型构建。三是合成孔径声呐(SAS)技术。它是海洋工程领域中的一大技术创新。SAS技术是一种高分辨率的海底图像声呐,可以用于海底地貌、地形的探测。目前,中国、美国和西欧的一些国家都在进行SAS的研究。李启虎在报告中还介绍了水声技术在军事海洋学方面的应用。包括水下目标识别、水下通讯、海洋监视和反潜艇作战等军事方面。事实上,上世纪50年代以来,由于出现了可以长期在水下潜航的核潜艇,特别是低噪声的隐形潜艇的投入使用,各海洋大国对声呐的研究都给予了特别的关注。而在美国“”事件后,水声技术在保护国家安全方面的作用更加被全世界重视,其军事作用主要表现在海港保卫、不明水下交通物监测、网络中心作战等方面。
合成孔径声纳是一种新型高分辨水下成像声纳。其原理是利用小孔径基阵的移动来获得移动方向(方位方向)上大的合成孔径,从而得到方位方向的高分辨力。获得这种高分辨力的代价是复杂的成像算法和对声纳基阵平台运动的严格要求。目前国际上只有少数国家和地区研制出了合成孔径声纳原型机并进行了海上试验。我国于1997年7月正式将合成孔径声纳列入了国家“863”计划项目。 合成孔径声纳可以用于水下军事目标的探测和识别,最直接的应用就是进行沉底水雷和掩埋水雷的高分辨探测和识别。在国民经济方面,可以用于海底测量、水下考古和搜寻水下失落物体等,尤其可以进行高分辨海底测绘,对数字地球研究具有重要意义,标志着我国在合成孔径声纳研究方面进入了与国际同步发展的水平。
1、dmso是什么溶剂。 2、dmso是什么化学物质。 3、dmso是什么意思。 4、dmso是什么药物。 5、dmso是什么试剂。 6、dmso是什么化学物质结构式。1.是二甲基亚砜,一种含硫有机化合物,常温下为无色无臭的透明液体,是一种吸湿性的可燃液体。 2.具有高极性、高沸点、热稳定性好、非质子、和水混溶的特性,能溶于乙醇、丙醇、苯和氯仿等大多数有机物,被誉为万能溶剂”。 3.在酸存在时加热会产生少量甲基硫醇、甲醛、二甲基硫、甲磺酸等化合物。 4.在高温下有分解现象,遇氯能发生剧烈反应,在空气中燃烧发出淡蓝色火焰。 5.可作有机溶剂、反应介质和有机合成中间体。 6.也可用作合成纤维的染色溶剂、去染剂、染色载体,以及回收乙炔、二氧化硫的吸收剂。 7.物理性质无色粘稠液体。 8.可燃,几乎无臭,带有苦味,有吸湿性。 9.除石油醚外,可溶解一般有机溶剂。 10.能和水、乙醇、丙酮、乙醛、吡啶、乙酸乙酯、苯二甲酸二丁酯、二恶烷和芳烃化合物等任意互溶,不溶于乙炔以外的脂肪烃类化合物。 11.有强烈吸湿性,在20℃,当相对湿度为60%时,可从空气吸收相当于自身重量70%的水分。 12.该品是弱氧化剂,不含水的二甲基亚砜对金属无腐蚀性。 13.含水时对铁。 14.铜等金属有腐蚀性,但对铝不腐蚀。 15.对碱稳定。 16.在酸存在时加热会产生少量的甲基硫醇。 17.甲醛。 18.二甲基硫。 19.甲磺酸等化合物。 20.在高温下有分解现象,遇氯能发生激烈反应,在空气中燃烧发出淡蓝色火焰。 21.化学性质二甲亚砜还原生成甲硫醚。 22.受强氧化剂作用氧化成二甲砜。 、二甲基亚砜和酰氯类物质如氰尿酰氯、苯酰氯、乙酰氯、苯碘酰氯、亚硫酰氯、硫酰氯、三氯化磷等接触时,发生激烈的放热分解反应。 24.和硝酸结合,生成(CH3)2SO·NHO3。 25.和碳酸钡作用可使二甲基亚砜再生。 26.和浓氢碘酸作用,生成二甲硫磺化合物。 、二甲基亚砜有吸水性,用前需要进行干燥处理。
苯分子等芳香烃化合物里的氢原子被硫酸分子里的磺酸基所取代的反应。 磺化反应过程 一种向有机分子中引入磺酸基或磺酰氯基的反应过程。磺化过程中磺酸基取代碳原子上的氢称为直接磺化;磺酸基取代碳原子上的卤素或硝基,称为间接磺化。 磺化剂 通常用浓硫酸或发烟硫酸作为磺化剂,有时也用三氧化硫、氯磺酸、二氧化硫加氯气、二氧化硫加氧以及亚硫酸钠等作为磺化剂。
砜的读音:fēng
基础释义:硫酰基与烃基结合而成的有机化合物。用作制塑料的原料。[英sulfone]
详细释义:〈名〉 以有磺酰基并通常借助硫与两个碳原子连结(如与两个烃基或一个简单的二价基)为特征的一类有机化合物,一般是结晶状稳定化合物,可由有机硫化物的氧化或其他方法制得
砜、亚砜类化合物
砜是指由硫酰基与烃基结合而成的化合物的总称。通式是R-SO2-R。两个烃基或相同或不相同。例如二甲砜CH3·SO2·CH3、苯乙砜 C6H5·SO2·C2H5、二乙基砜、二苯基砜、环丁砜、双酚S等。砜类化合物中的硫是高价硫,是一种稳定性晶体有机化合物,还原也不生成R2S。
工业上最重要者为环丁砜、双酚S及二甲基砜。一般是无色无臭的稳定的固体。低碳数烃衍生物可溶于水与多数有机溶剂,砜类化合物一般可通过硫醚氧化,亚磺酸盐烷基化,二氧化硫对共轭双烯加成以及芳烃与氯化亚砜反应等方法制备。砜广泛应用于医药、塑料与基本有机合成等工业。例如,苯丙砜、氨苯砜是治疗麻疯病药物;双酚A型聚砜是性能优良的塑料;环丁砜是优良溶剂。后者可用以净化工业气体,如除去气体中二氧化碳、硫化氢等气体;从石油馏分中萃取分离芳烃; 也可用作丙烯腈聚合的溶剂。
有些具有镇静和催眠作用,但副作用较大。双酚S由于磺酰基具有很强的吸电子性,故其羟基呈较强的酸性。此外,还具耐热、耐氧化及光稳定性。主要用途是作固定剂。此外,还用作皮革鞣剂、染料、交联剂和工程塑料(耐热)的原料。
亚砜是指由亚硫酰基与烃基R结合而成的化合物的总称。如二甲基亚砜、二乙基亚砜、苄苯亚砜等。亚砜中的氧原子呈负离子状态,且不受两个基的,有很强的极性。强氧化性。亚砜类化合物可能有光学活性。在低温下为固体,一般溶于水、乙醇、乙醚。
能被还原剂还原成硫醚,被氧化剂氧化成砜,还能与硝酸成盐。可由硫醚氧化或以芳烃与氯化亚砜经傅特尔-克拉符兹反应制得。亚砜有许多重要的反应,主要有以下三种: ①亚硫酰基的α位阴碳离子反应性强,易与卤代烷基化合物、羰基化合物以及烯烃等反应;②和酸酐反应可引起Pummerer转位; ③β位上含有氢的亚砜,通过加热分解可生成烯烃和亚磺酸。
ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......
人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件。
你看下这个撰写方法 ,参考下,对你有好处的。文献综述的撰写方法文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。写文献综述一般经过以下几个阶段:即选题,搜集阅读文献资料、拟定提纲(包括归纳、整理、分析)和成文。一、选题和搜集阅读文献撰写文献综述通常出于某种需要,如为某学术会议的专题、从事某项科研、为某方面积累文献资料等等,所以,文献综述的选题,作者一般是明确的,不象科研课题选题那么困难。文献综述选题范围广,题目可大可小,大到一个领域、一个学科,小到一种疾病、一个方法、一个理论,可根据自己的需要而定,初次撰写文献综述,特别是实习同学所选题目宜小些,这样查阅文献的数量相对较小,撰写时易于归纳整理,否则,题目选得过大,查阅文献花费的时间太多,影响实习,而且归纳整理困难,最后写出的综述大题小作或是文不对题。选定题目后,则要围绕题目进行搜集与文题有关的文献。关于搜集文献的有关方法,前面的有关章节已经介绍,如看专著、年鉴法、浏览法、滚雪球法、检索法等等,在此不再重复。搜集文献要求越全越好,因而最常用的方法是用检索法。搜集好与文题有关的参考文献后,就要对这些参考文献进行阅读、归纳、整理,如何从这些文献中选出具有代表性、科学性和可靠性大的单篇研究文献十分重要,从某种意义上讲,所阅读和选择的文献的质量高低,直接影响文献综述的水平。因此在阅读文献时,要写好“读书笔记”、“读书心得”和做好“文献摘录卡片”。有自己的语言写下阅读时得到的启示、体会和想法,将文献的精髓摘录下来,不仅为撰写综述时提供有用的资料,而且对于训练自己的表达能力,阅读水平都有好处,特别是将文献整理成文献摘录卡片,对撰写综述极为有利。二、格式与写法文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。三、注意事项由于文献综述的特点,致使它的写作既不同于“读书笔记”“读书报告”,也不同于一般的科研论文。因此,在撰写文献综述时应注意以下几个问题:⒈搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好多综述的,甚至写出的文章根本不成为综述。⒉注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。⒊引用文献要忠实文献内容。由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。⒋参考文献不能省略。有的科研论文可以将参考文献省略,但文献综述绝对不能省略,而且应是文中引用过的,能反映主题全貌的并且是作者直接阅读过的文献资料。总之,一篇好的文献综述,应有较完整的文献资料,有评论分析,并能准确地反映主题内容。
给你个网站:学科网你可以上那去找哦!!!!!!!!!!!!!
二氧化碳与钠在440℃和800个大气压的条件下反应生成碳和氧化钠.该反应的化学方程式为:CO 2 +4Na 800个大气压 . . 440℃ C+2Na 2 O.该反应由一种单质和一种化合物反应生成另一种单质和另一种化合物,符合置换反应的概念,因此该反应属于置换反应.故选CO 2 +4Na 800个大气压 . . 440℃ C+2Na 2 O;置换.
张道标
作者简介:张道标,中宝协人工宝石专业委员会第一、二届副主任委员,第三届高级顾问,原中国科学院上海硅酸盐研究所晶体研究室主任,研究员。
一、人工宝石研究和发展历程
人工宝石的研究,自15世纪埃及制作含铅玻璃宝石开始,至今已有六七百年的历史了。开始阶段,由于科学技术还没有充分发展(直到19世纪末),它的进展是比较缓慢的,还是以无色的和彩色玻璃制品为主。从1902年法国 Auguste Verneuil首先用焰熔法合成红宝石和蓝宝石起,人工宝石的发展进入了一个新阶段,到1907年焰熔法合成红宝石每年可生产500万克拉,发生了里程碑性的转折,接着研究成功的合成宝石一个接着一个展现出来,人工宝石的研制进入了一个突飞猛进阶段。
1908年首次合成单晶水晶,到1920年已为电子工业大规模生产无双晶的单晶水晶。同时也生长了一些彩色水晶并产业化。
1920年合成了无色、红色和蓝色的尖晶石。
1948年合成了金红石单晶。
1955年合成了钛酸锶单晶。同年美国通用电气公司首次合成了细粒()状的钻石晶体。往后他们不断致力于研究大颗粒钻石。1970年首次成功合成了宝石级钻石。
1960年研制成功人造无色的和绿色的钇铝榴石(YAG)。随后又研制出人造的钆镓榴石晶体(GGG)和合成金绿宝石。
1960年后的几年里,发展了助熔剂法和水热法,合成了大颗粒的祖母绿晶体和红宝石晶体。
1976年苏联合成了大块立方氧化锆宝石,是一种较好的钻石代用宝石,研制成功之后迅速投产,并飞速发展,已形成一个产业。
20世纪80年代后期,玻璃仿金绿宝石猫眼由美国Calhag公司研发成功。随后在我国快速发展,并形成了玻璃猫眼产业,年产近1200t。
截至20世纪80年代,世界上重要的名贵宝石都可以人工合成。这些人工宝石晶体的原料制造、晶体生长的方法和工艺,都相继建立了配套的生产条件,特别与科技、经济和国防有关的合成宝石都有一定量的生产规模。如合成钻石、合成蓝宝石、合成水晶、合成立方氧化锆、人造仿水晶玻璃及其产品都形成了不同规模的产业化,推动了国家的科技进步和经济的发展。
人造YAG、人造GGG、人造钛酸锶和合成铌酸锂、钽酸锂及金红石等宝石晶体主要用于电子技术和激光技术;在装饰方面,自从合成立方氧化锆大量面市后,它们作为仿钻石的作用逐渐降低,因为这些宝石晶体相对于合成立方氧化锆的性价比低了很多,所以已经淡出宝石市场。但它们在电子技术和光电子技术方面的应用仍在飞速发展,并且人们还在不断探索和合成出许多新的晶体。
虽然许多名贵宝石都已合成出来,但按宝石的质量指标来说还是不尽如人意的,因为它与天然宝石的岩相结构、生长条纹、气泡及包裹体等的差距还比较大,很容易区分出它是人工制品,还不具足够的天然宝石的品味。
二、近十几年来人工宝石研究进展
近十几年来人工宝石的研究工作基本分为两大类:一类是装饰用的;另一类是用于科技工程系列的。装饰用人工宝石方面的研究,基本上是围绕着提高各种合成宝石质量,着重仿真和逼近天然宝石来进行;用于科技工程系列的宝石研究,着重于提高纯度、晶体结构完整性和大尺寸的单晶体,强调宝石的功能特性。这两类研究从研究内容和目标,技术路线和设备方面都有很大的不同。本文主要讨论装饰用人工宝石的研究进展。
1.合成钻石取得了很大进展
大颗粒合成钻石在1970年由美国通用电气公司首次成功合成,后来英国、俄罗斯、南非和瑞士等国也相继宣布合成了宝石级大颗粒钻石,但都因生产效率低,成本过高,未能进入市场,仅是实验产品而已。经过了20多年进行设备改进和提高生长技术后,目前美国Gemesis公司已成功研发出能稳定生产出1~2克拉大的黄色钻石和蓝色钻石(图1)的设备和技术,并以每月生产600克拉的产量投放市场,每颗钻石腰部都用激光刻上Gemesis制造及编号,用以保障消费者权益。南非和俄罗斯等也相继宣布能生产大颗粒1~4克拉黄色和蓝色钻石(图2),并推向市场。这种稳定量产的宝石级钻石合成工艺的研发成功,标志着合成宝石级钻石有了突破性的进展,打破了过去合成宝石级钻石成本高不能进入市场的老观念。今后人工合成大颗宝石级钻石将会以更大数量面市。
图1 Gemesis公司合成大颗粒黄色钻石和合成彩色钻石
图2 南非德拜尔公司合成的大钻石
在合成工业级金刚石方面各国都做了很大努力来提高质量和产量,常话说“没有金刚钻,不揽瓷器活。”各种刀具、切割研磨工具和地质钻探工具等都要大量使用工业级金刚石,人工合成工业级金刚石的产量已经成为衡量一个国家工业水平高低的标志之一。现在我国合成的工业级金刚石,虽然其质量还有待提高,但产量居世界第一,年产12亿多克拉。
CVD化学气相沉积法生长钻石和钻石薄膜
近十几年来,CVD化学气相沉积法生长钻石非常活跃,美国Apollo公司用CVD同质外延技术不仅能生长钻石单晶厚膜,也能生长单晶钻石,并已打磨出克拉的钻石(图3,图4)。随着厚膜的沉积厚度增加,在不久的将来,大单晶钻石块将成为现实,这是很诱人的新技术。
图3 Apollo公司CVD法合成钻石的炉子
图4 Apollo公司CVD法合成的克拉钻石
2.大颗粒合成碳硅石(莫桑石 Moissanite)
十几年来,合成碳化硅大单晶发展很快,它是宽禁带第三代半导体基片的重要材料,是生产耐高电压、耐高温、低功率损耗、大功率器件必备的基片材料,受到国家的重视和支持。目前批量生产出(75~80)mm×50mm的晶锭,主要用于半导体工业,其中有些晶锭不符合IT级要求的,必然流向宝石业中。它可以打磨出很美的合成碳硅石仿钻石,比合成立方氧化锆更接近于钻石,更受人们欢迎。这是1996年以来合成宝石的新成员,是合成宝石的重大新进展,不过由于晶体生长技术要求高和单炉产量小,在仿钻的性价比方面远不如合成立方氧化锆,在近期内不会改变合成立方氧化锆用于仿钻石的主导地位。
3.水热法合成红宝石、合成星光宝石和合成祖母绿宝石
十几年来在实验室开展水热法合成红宝石、合成星光宝石和合成祖母绿宝石的工作是很多的,断断续续从未停止过。首先为了更仿真,克服焰熔法和提拉法合成的红宝石有明显的弧状生长条纹,和串状气泡而开展了高温高压水热法的生长研究。水热法主要模拟天然宝石成矿的条件,以天然宝石晶片作为晶种(这点与助熔剂法生长红宝石的自发成核是不同的)。所生长出的红宝石大块晶体,既有六角形的生长条纹,又有天然宝石岩相结构的假象,这些晶体可打磨出5~8克拉,甚至更大的红宝石戒面。许多国家,如俄罗斯、美国、印度、瑞士,都不断有水热法红宝石、黄色蓝宝石等上市,现在有些公司筹建70~100mm的耐腐蚀高压斧,拟生长50~60mm的红宝石,逐渐开拓出更仿真、更逼近于天然红宝石、蓝色和黄色蓝宝石,星光宝石等,创造批量生产的能力,前景是乐观的。
同样,用水热法生长合成祖母绿宝石也很成功。在美国、瑞士、俄罗斯和中国都能生长出大块祖母绿宝石,目前只是市场需求不旺,拉动有难度,所以水热法生长祖母绿晶体进展缓慢,没有投入大批量生产。
4.用熔体提拉法、熔体泡生法和熔体热交换法研发无色蓝宝石
目前,各国研发无色蓝宝石更是突飞猛进,由于它具有红外透过率高、强度高和耐高温的特性,在国防工业上有很好的应用空间,可用作窗口材料和导弹头罩子等;在光电子技术上作氮化镓(GaN)镀膜基片,是半导体照明工程的重要材料,质量要求达到IT级水平,需求量很大,许多国家有关公司正在努力开发。目前用提拉法可生长直径120~200mm的无色蓝宝石大单晶;用泡生法可生长直径200~250mm重25~30kg的无色蓝宝石(图5);用热交换法已生长出世界上最大的蓝宝石直径34cm重68kg(图6)。我国虽有多家公司积极研发大直径蓝宝石晶体,也大有进展,但还没有量产的规模,LED用的基片基本上还是靠进口。
5.合成长余辉人造夜光宝石
长余辉人造夜光宝石是我国北京华隆亚阳公司在1996年研发成功的,命名为“庆隆夜光宝石”,已获得中国、美国、韩国等国的发明专利。它的性能优异,无放射性,余辉亮度高,时效长,优于天然“夜明珠”。已研制出颜色有绿色、蓝绿色、乳白色、红色和紫色等人造夜光玉,大块人造夜光玉可供雕刻大型工艺品。目前已大量生产,供不应求,有望形成产业化。
图5 熔体泡生法生长蓝宝石大晶体
直径95mm和110mm,高150mm
图6 热交换法生长直径34cm的蓝宝石
6.合成绿松石和孔雀石
美国和俄罗斯对合成绿松石和孔雀石的研发工作,一直没有间断过。目前合成的大块孔雀石可达8~10kg,做雕刻摆设件,有一定市场。
7.玻璃仿宝石
玻璃仿宝石虽然很古老,但它也是不断与时俱进、不断发展的一类仿宝石。虽然它是中低档的仿宝石,但今天的玻璃饰品和工艺品比十多年前的产品要优美得多。玻璃仿钻石的“水钻”,其质量品味有较大的提高,它的市场占有率也不小。特别是在人们的装饰理念发生改变的今天,要求时尚,物美价廉,对饰品更换频繁,新颖的玻璃制品便成为首选了,例如奥地利施华洛世奇(Swarovski)铅玻璃仿水晶和仿钻石装饰系列产品,彩色玻璃和稀土玻璃的仿宝石饰品,仿猫眼石饰品,铅玻璃工艺品、奖品、纪念品和摆设件都很时尚,很受欢迎。玻璃仿宝石已经取得了人们的认可,几年来发展得很快。
近几年研发玻璃仿钻石的“水钻”自动化生产线取得了突破性进展,它不但推进了铅玻璃仿钻石的工业化生产,还将对其他人工宝石的加工业发生重大推动作用。
由于重金属铅对人体有毒害,高铅玻璃饰品将会受到严格限制,人们正在开展研究廉价的无铅高折射率的仿水晶玻璃和降低稀土玻璃的成本,都是取代含铅玻璃的重大举措,应予重视。
三、产业化人工宝石的深化研发问题
合成钻石、合成水晶、合成碳硅石和合成大尺寸无色蓝宝石,主要用于科技工程技术上,与宝石行业的要求不同,在这里不予讨论。
1.焰熔法合成红宝石、蓝宝石
当前焰熔法生长红宝石、蓝宝石已经达到相当大的规模,世界年产量达1000多吨,中国的产量为300多吨,占世界产量的1/3左右。但是晶体质量有待提高,而且生产成本仍然很高,要想把产业再向前推进,必须解决充分利用有关化工厂富余的氢、氧气体能源和努力提高单炉的日产量。
利用化工厂富余氢气,是直接改变高电耗的问题;按过去电解水获取氢,生产1kg红宝石要用1100kW·h电,由于电价的提高,使生产成本很高。改用化工厂富余的氢,节电很可观。但氢气的纯化必须提高,否则影响宝石的质量和成品率。
提高单炉日产量的研发内容是指,改变设备结构和生产工艺。在目前单炉日产6个70~80g的红宝石产量的基础上把晶体的直径稍为加大,晶体的长度加长,如炉膛加大,提高炉子的保温能力,适当扩大气体喷嘴口径和供气的稳定性,改善火焰温度分布,提高原料纯度和细度等措施,这是研发工作的重要内容,是一个系统工程的研发,创新有空间,有望提高晶体质量和提高单炉日产量2倍左右,可见潜力很大,值得重视,特别是产品要与市场要求密切结合。
2.合成立方氧化锆的深化研发
合成立方氧化锆在我国已形成一个产业,当前产量居世界首位。由于市场价格比较低,厂家承受压力较大。
当前应该重视研发附加值大的新品种,减少一些低值产品的生产。产品的颜色很重要,祖母绿色的、伦敦蓝色的、海蓝色的和胭脂红色的合成立方氧化锆都是很受欢迎的,而且它们的价格也高些,所以研发人们喜爱的新色调的立方氧化锆是引导合成立方氧化锆生产不断发展的课题,因为立方氧化锆的折射率高、色散大、硬度高,且易于规模生产,特别是性价比高,远非其他人工宝石所能比拟的,在这个基础上引入人们喜爱的颜色,必然会长盛不衰。
图7 祖母绿色的YZrO2
合成立方氧化锆生产是用电大户,用电问题一直困扰着生产厂家,把生产厂搬到有低价电的偏远山区,是暂时可行的办法,但终不是长久之计。研究降低单产电耗是不容忽视的问题,早期生产的电耗约200kW·h/kg晶体,近期电耗降至约80kW·h/kg晶体。现在有望降到低于60 kW·h/kg晶体,降低电耗是许多因素的综合结果,设备的改革,特别是采用晶体管高频发生器有重要作用。
参考文献
何雪梅,沈才卿.2005.宝石人工合成技术 .北京:化学工业出版社.
Chandra of wourd’s largest sapphire of crys-tal ~579.
Geology,198B,Lesson 9:Synthetics and simulants.
9/DE
Synthetic and Simulant,
2017年,糖尿病人数量已增加至亿,全球18岁以上成人的患病率为。而糖尿病人,最熟悉的口服药物便是 神药二甲双胍 ,它在糖尿病治疗领域有着无可撼动的地位。
不过,神药并不是这么好当的。毒草出身的二甲双胍,命途最为坎坷。从发现到成为降糖的一线药物,它就整整蛰伏了70多年,如果拍成电视剧都要好几集。
二甲双胍的最初来源,其实是一种草药 山羊豆 (Galega officinalis)。它们是原产于欧洲的豆科植物,也被称为法国丁香。
早在中世纪,人们就发现这种植物有缓解尿频,减少尿糖的作用。而尿频和尿糖正是糖尿病的典型症状。所以说山羊豆很早就在民间偏方中被用于治疗糖尿病了,即便那时候人类还未真正认识糖尿病及其病理。
山羊豆,图源维基百科
此外,山羊豆在欧洲也被广泛地认为是一种动物催乳剂,而Galega正是希腊语中“牛奶刺激剂”的意思。而在1891年,山羊豆便被当做牧草引入了美国。 不幸由此开始。
美国的牧民很快就发现,这种新引进的牧草,竟会造成牲畜的死亡。 吃过山羊豆的牛羊,会出现肺水肿、胸腔积液、低血压、麻痹等各种症状,严重可致死。又因为这种植物来自欧洲,如临大敌的美国人很快便将山羊豆列入有害杂草的名单。
其实,山羊豆之所以能毒害牲畜,正是因为其富含胍类化合物。1918年,科学家在分析了这种牧草的化学成分后就发现,这些胍类物质有着降糖作用。其中, 山羊豆碱 (galegine,异戊烯胍)效果是最为惊人,有望用于治疗糖尿病的。但碍于其同样惊人毒性,这种药物是无法在临床中被使用,实验小鼠纷纷被毒死。 这是二甲双胍的第一劫。
山羊豆碱
二甲双胍
不过,山羊豆碱的毒性大不要紧,科学家还有其他办法——那就是调整山羊豆碱的化学结构,或许能找到一种既保有药效,但副作用又没有那么大的化学物质。
纵观医学史,一步到位就被找到的“神药”并不多,很多药物都是循着一定思路,经过各种分子改造而得到的。就像镇痛药阿司匹林乙酰水杨酸的前身便是水杨酸,它有很强的副作用,对胃伤害极大。但经过改造后副作用不但减轻,镇痛效果反而还更好了。
就在有机化学家的一番分子改造下,一系列胍类衍生物诞生。我们的主角二甲双胍,就是在这一大背景下于1922年首次被合成出来的。当时,包括二甲双胍在内的一系列双胍类物质,在动物实验中也都取得了较好的效果。 这其中,二甲双胍的毒副作用也是最低的,眼看着就要投入糖尿病的治疗了。
但不要忘了,在同一时期另一种用于治疗糖尿病的药物—— 胰岛素 横空出世。这让二甲双胍陷入极其尴尬的局面。
天下苦糖尿病久矣。早在3500年前,古埃及就已经留下对糖尿病的简单描述。2000多年前古希腊医生也给出了“Diabetes”的正式名称,主要症状为尿多且甜。
但转瞬数千年,人类对这种奇怪的疾病还是知之甚少。 二十世纪之前,人类一旦患上了糖尿病就等于被判处死刑,他们无药可医,只能等死。
而二十世纪初,唯一有效的治疗方法,则是艾伦医生发明的 饥饿疗法 了。但这种粗暴极端的饮食限制,也只是能延长患者短暂的寿命罢了。
例如对于1型糖尿病人,他们的胰岛细胞还有部分分泌胰岛素的能力,能通过少吃让血糖暂时变得正常。但这也是治标不治本的,长期的饥饿让人无法忍受,很多人会因“偷吃”而陷入危机。曾经有一位患糖尿病的小女孩,就因为太饿偷吃了鸟笼里的小鸟,引发代谢紊乱而一命呜呼。
接受饥饿治疗的糖尿病患儿Teddy Ryder
另外,靠饥饿疗法维持的生命,也是没有生活质量可言的。除了难坚持以外,长期饥饿还容易造成营养不良,引起器官的功能障碍。不少患者最后没有死于糖尿病,反倒是死于残忍的饥饿。
没有抗糖药物的年代,充满了绝望。而糖尿病的高发,也让所有人都盼着“神药”的诞生。
20世纪初,科学家就已发现胰脏与糖尿病的千丝万缕关系,胰岛素是呼之欲出。但因为胰蛋白酶的存在,胰岛素很难被提取成功。直到1922年,加拿大科学家 班 廷另辟蹊径地先把狗的胰脏导管用手术结扎,等消化腺萎缩后才顺利提取到了胰岛素。
班廷(右)与其助手贝斯特(左)
很快,万众期待的 胰岛素就在1923年作为商品上市了,糖尿病患终于有药可医。 而在同一年,诺贝尔生理学或医学奖也颁给胰岛素这一伟大的发现。那时,距离胰岛素发现才短短1年,而班廷也成了史上花最短时间就获得诺奖的科学家。
由此可见,人们对胰岛素是多么欣喜和狂热。一下子,关于糖尿病治疗的所有风头都被胰岛素抢走了。 生不逢时的二甲双胍,又遇一劫。
接受胰岛素治疗的糖尿病患儿Teddy Ryder,与前面瘦骨嶙峋的模样形成鲜明对比
胰岛素是人体内唯一的一种降糖激素,它就像钥匙一样打开身体的细胞,使血液中的葡萄糖进入细胞,并在细胞中燃烧为身体供能。
注射胰岛素的效果,是立竿见影的,血糖能快速降低。对比之前的饥饿疗法,胰岛素简直是有“起死人肉白骨”的奇效。而在胰岛素被发现的十多年来,人们也一度认为糖尿病问题从此完美解决。 二甲双胍等极具潜力的胍类化合物,直接被忽视。这样一晃就是20几年。
大量牛胰脏被用于提取胰岛素
时间是检验真理的唯一标准。其实随着时间的流逝,胰岛素的缺点也慢慢暴露。
第一,胰岛素无法口服只能通过注射器给药,频繁的皮下注射必然让患者增加皮肉之苦。而长期用胰岛素后,如果不能科学饮食很容易导致体重增加,还可能诱发低血糖。此外,不是所有类型的糖尿病都能靠胰岛素完美解决的。例如,2型糖尿病常伴随着胰岛素抵抗,会对胰岛素不敏感,用正常量的胰岛素很难达到理想效果。
正是这种种局限,糖尿病药物的开发才进入新的阶段。 二甲双胍的降糖研究, 也终于被提上日程。 而法国糖尿病专家 让.斯特恩 (Jean Sterne),正是二甲双胍最大的贵人。
让.斯特恩(Jean Sterne)
在第二次世界大战期间,二甲双胍就被认为具有对抗疟疾、治流感的潜在作用。于是在1949年,一名菲律宾医生就尝试性地用Flumamine(双胍物质)治疗疟疾病人。
但患者在接受治疗时,却被发现血糖降低了。这是一个契机,让·斯特恩就是看了这份报告才想起了被遗忘数十年的胍类降糖药物。
1957年,让·斯特恩便发表了关于二甲双胍的研究论文,在这之前二甲双胍的降糖论文已经断更了近30年。因为疗效显著,二甲双胍很快通过了人体研究,并顺利应用于临床。
至此,人类与糖尿病抗争的 历史 才翻开了这陈旧而又崭新的一页。当时的二甲双胍被命名为格华止(Glucophage),意为 “葡萄糖的吞噬者” 。
不过,你也别认为二甲双胍就此平步青云,它还有 最后一劫 ,那就是“猪队友”的拖累。
几乎在同一时期,二甲双胍的其他“胍类”兄弟也纷纷上市。二甲双胍、苯乙双胍和丁双胍这三兄弟开始了抢夺市场的竞争。其实就降糖效果而言,二甲双胍是比不上苯乙双胍的,所以苯乙双胍也比二甲双胍卖得更好,出尽了风头 。而问题,就出在苯乙双胍身上。
人们开始发现,苯乙双胍这“胍”有毒,虽然效果好但却会引起严重的乳酸性酸中毒。风光没多久,苯乙双胍就全面退出了市场,大众对双胍家族也大失所望。尽管二甲双胍不会引起这么严重的副作用,但因为同属双胍家族,二甲双胍也惨遭连坐,在大众的误解下苟延残喘着。
苯乙双胍(左),二甲双胍(右),丁双胍(下)
但真金不怕烘炉炼。 当时循证医学的观念已深入人心,后面开展的许多大型的临床试验,都验证了二甲双胍的显著疗效和良好的药物安全性。
例如1976年,牛津大学教授罗伯特·特纳等人领衔,开始了史上最大型的糖尿病临床研究(UKPDS,英国糖尿病前瞻性研究)。耗时20年,直到1998年给出的正式报告,才将二甲双胍推到了一线。而在1994年,二甲双胍也正式获得FDA批准,进入美国这个全球最大医药市场。
至此,二甲双胍才真正渡劫成功。而这时,距离二甲双胍的合成与发现,已经过去了整整70多年。
二甲双胍的发展历程与时间线
2型糖尿病主要以胰岛素抵抗为主,属于非胰岛素依赖型。而二甲双胍抑制胰岛素抵抗效果显著,因此也成了2型糖尿病的金标准。另外,二甲双胍除了能降糖以外,还不会导致体重增加,价格也更便宜是平价药物的再加上不用注射给药,病患只需按时服药、保持 健康 饮食,就能大大的提高生活质量了。目前,在全球所有的医学指南和建议中,二甲双胍都是治疗2型糖尿病的一线药物。
International Diabetes Federation (2017). IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation.
Galega
Lee A. blooming of the French lilac[J].J Clin ,108(8):1105-1107
Clifford J. : historical overview[J].,60(9):1566-1576
Elizabeth Sanchez-Rangel,Silvio E. : clinical use in type 2 diabetes[J].,60(9):1586-1593
付 炎,王于方,吴一兵,张嫚丽,霍长虹,李力更,史清文. 天然药物化学史话:二甲双胍60年——山羊豆开启的经典降糖药物 [J]. 中草药, 2017, 48(22):4591-4600.
二甲双胍应用于临床已有60年的 历史 ,凭借着卓越的控糖疗效和良好的药物安全性,是目前全球控制糖尿病的核心药物。近年来,针对二甲双胍涌现出了一些新的研究发现,那么具体有哪些新的热点发现呢? 1. 调节肠道菌群 研究发现二甲双胍能通过调控肠道菌群达到降糖的作用,当糖尿病患者使用二甲双胍治疗时,机体肠道中的微生物组成和功能就会发生有利的改变,从而增强细菌产生特殊类型的短链脂肪酸起到降糖作用。该研究也很好解释了二甲双胍的胃肠道副作用如胃胀气可能是治疗后机体肠道中存在较多的大肠杆菌所引起的。 2. 心血管保护作用 二甲双胍能减少新诊断及已发生心血管疾病的2型糖尿病患者心血管疾病发生风险,甚至被认为是唯一具有明确心血管获益的降糖药物。心血管疾病的风险因素包括血脂异常、胰岛素抵抗、肥胖等,其中二甲双胍主要通过控制以上风险因素起到直接或间接的心血管保护作用。 3. 降低青春期前肥胖儿童的BMI 二甲双胍已被证实在2型糖尿病成年人中有治疗肥胖的作用,对于肥胖儿童,现也有研究发现二甲双胍能显著降低青春期前肥胖儿童的BMI及肥胖相关的心血管功能指标。但在青春期儿童中则未观测到显著益处,可能是青春期生理及激素的变化影响了二甲双胍的效用。 4. 抗肿瘤作用 二甲双胍的抗肿瘤效应受到人们的广泛关注,无论是临床调查,还是体外研究、动物实验,对于二甲双胍的抗肿瘤作用,有大量的令人振奋的结果,多项荟萃分析结果显示,二甲双胍治疗与乳腺癌、前列腺癌、胰腺癌、直结肠癌等癌症风险降低相关。二甲双胍的抗肿瘤机制十分复杂,其具体机制尚未完全阐明,另外,其抗肿瘤的作用尚需要设计严谨的前瞻性研究以进一步明确。 5. 抗感染作用 近年来已有二甲双胍作为“抗生素”使用的临床和基础实验证据,如可以显著改善肺结核患者的临床预后;提高枯氏锥体虫病感染小鼠的存活率;有效抑制金黄色葡萄球菌、绿脓杆菌、乙型肝炎病毒等的活性等。同时,其在脓毒血症方面的特殊价值受到广泛关注,但目前对于严重感染和外伤等仍需禁用。 6. 防止腹主动脉瘤的进展 一些研究意外发现,二甲双胍可以防止腹主动脉瘤的进展、减缓瘤体扩张速度,甚至可预防破裂,其机制可能与二甲双胍抗炎、降脂的血管内皮保护作用相关,但目前缺乏足够证据等级的随机对照研究结果来明确二甲双胍的这一独特医学价值。 7. 延长寿命 有研究指出,定期服用小剂量二甲双胍可延长小鼠的寿命;二甲双胍处理过的秀丽隐杆线虫机体衰老速度明显下降;二甲双胍长期治疗可显著延长II型糖尿病患者的寿命,使其可能比非糖尿病患者活得更久。可见其能通过控制衰老和降低特定疾病死亡率,使糖尿病患者的全因死亡减少和预期寿命增加。 8. 降低胆结石发病率 中国台湾历时12年的一项随访研究发现,二甲双胍使用人群相对比未使用者,随着剂量在一定范围内的增加,胆结石的发病率逐渐降低,而且长期的使用与更低的胆结石发病率相关,至于相关的机制仍需要进一步研究。 9. 治疗脆性X综合征 脆性X综合征 (FXS) 的主要临床表现为自闭症,语言及社交能力低下,多动易怒, 社会 反应能力差等。研究发现二甲双胍可以恢复 FXS 小鼠模型的主要异常表型和使FXS患者易怒性、 社会 反应性、好动性等方面均有所改善。但由于研究证据等级太低,仍需要更多更严格的随机对照临床试验来验证二甲双胍在 FXS的治疗价值。 10. 抗炎作用 二甲双胍对炎症反应性疾病也有一定益处。可通过抑制NF-κB表达对抗血管炎性反应起到心血管保护作用;明显降低了血中炎症因子水平,减轻了肾脏炎症参数而起到肾脏保护作用;对于Ⅱ型胶原诱导的类风湿关节炎大鼠模型有显著的抗炎及关节保护的作用等。 由此可见,二甲双胍能通过一系列机制发挥了降糖外作用,对各种疾病有一定的治疗作用,具有着广泛的应用前景。 (本答案由中山大学孙逸仙纪念医院 郭翀翀提供) 也谈二甲双胍的一些研究成果 1、二甲双胍不能改善儿童糖尿病的病程。最近有论文指出,服用二甲双胍的儿童虽然可能控制好血糖,但是没有阻止和延缓一型糖尿病的初发时的病程。一型儿童糖尿病,仍然会随着时间加剧。 2、与昔洛舍平联用的抗癌作用。2017年,欧洲一实验室人体血液体外试验表明,二甲双胍抗癌作用很微弱,需要剂量很大,但是与降血压药昔洛舍平联用,很小的剂量抗癌效果极佳。 3、二甲双胍可能存在一些风险。最主要的风险,本人认为是中国糖尿病防治指南中的提醒,即可能呼吸睡眠低通气综合征变得越来越复杂,医生叫欧杀斯soars,在晚上睡觉后,血红蛋白可能携带氧气量不足。从而导致睡眠时缺氧,这个也属于统计数据,即百分之七十糖尿病人有呼吸睡眠低通气综合征。轻症呼吸不中断,重症偶尔呼吸中断,从而导致心率加快到100以上苏醒。这个严重问题会导致糖尿病人睡眠时大脑轻中度缺氧,并且夜间多次苏醒。我认为时间长的话可能引起大脑中枢和神经系统缓慢性不可逆的改变。这个缺氧综合症与二甲双胍的关系仍然在研究中。当然二甲双胍仍然属于安全性能较好的药物,一般认为可以使用二十年以上。不存在肝脏和肾脏毒性,可以用于怀孕哺乳期妇女,可以用于十岁以上的儿童。当肾小球过滤率小于30的严重肾衰患者和肝癌晚期患者,应慎用减少使用量。 目前二甲双胍的作用机理仍不清楚,它主要通过抑制肝脏糖元释放速度降糖和抗癌,最新的研究表明,二甲双胍改变人体内多种活性酶(人体的新陈代谢多种蛋白质酶)的活性,对人体产生多种影响,主要是抑制新陈代谢速度,从而产生良性作用。 我见过国外研究2甲的结果说明。大家可以网上查询证实。毕竟它确实有功效,患者的不同感受很正常。同一种病也是因人而异的,比如感冒也不是人人都服一种药物治愈。目前降糖是主要目的,患者需要选择适应自己的降糖药。医生有介绍的权利,选择是自己的权利。还是应当感谢宣传的朋友。 二甲双胍是中国糖尿病治疗指南中推荐的首选药物,被称为金双胍,即经济实用又卓有有效,如没有肝肾并发症,可终身服用。二甲双胍可以使糖化血红蛋白平均降低一点左右。二甲双胍的作用不是治疗糖尿病,而是控制血糖。 我以前曾翻译过一篇英国科学家有关二甲双胍最新研究成果的文章,文章中主要内容是说二甲双胍可有效延缓人体生理机能衰老。英国科学家认为,长期服用二甲双胍人的寿命理论上可以达到120岁,并将其列为主要研究课目,其目的是将其研制成预防衰老的药物。英国科学家在其它动物身上进行过试验,并证实了这一事实。 一般认为糖尿病人的预期寿命比正常人要少十年左右,而现实中却有很多长寿的糖尿病人,该研究认为二甲双胍在延长糖尿病人的寿命方面具有重要作用。 我说的都是有正确依据的,请大家不要相信某些人的胡说。要查证落实很简单,只需在网上查一下《中国糖尿病治疗指南》即可。 如有错误,敬请专家达人指正。
本发明涉及一种盐酸二甲双胍的合成方法,属于有机合成技术领域。
背景技术:
盐酸二甲双胍是双胍类降糖药,使用历史悠久,有着良好的降糖效果和安全性。用于单纯饮食控制不满意的ⅱ型糖尿病人,尤其是肥胖和伴高胰岛素血症者,用盐酸二甲双胍不但有降血糖的作用,还可能有减轻体重和高胰岛素血症的效果。对某些磺酰脲类疗效差的患者可奏效,如与磺酰脲类、小肠糖苷酶抑制剂或噻唑烷二酮类降糖药合用,较分别单用的效果更好。亦可用于胰岛素治疗的患者,减少胰岛素用量。
专利文献cn105968032b中在高压密闭环境下以二甲胺、双氰胺、盐酸溶液以及催化剂有机酸为起始原料进行合成,由于本身盐酸二甲双胍为水溶性物质,产品基本全部溶于水中,虽然后来经过精制得到产品,但是仍会有部分损失。