首页 > 论文发表知识库 > 物理学报文章

物理学报文章

发布时间:

物理学报文章

你好,他的意思是2000年,第第49卷第8期,关于该文章的详细信息如下: 作者:邱华檀, 王友年文题:快速C60离子团在固体中的库仑爆炸过程Ⅱ——分子动力学模拟年份卷期:物理学报. 2000, 49 (8): 1534-1540 摘要:研究了快速C60离子团与固体材料的相互作用过程.借助于线性介电响应理论及等离子-极点近似介电函数,推导出作用在团簇中单个离子上的动力学相互作用力,并建立了一套描述离子团中单个离子运动的方程组.通过数值求解运动方程组,可以发现,对于高速C60离子团在固体中穿行时,由于动力学相互作用力的影响,使得库仑爆炸图形呈现出很强的非球对称性,即离子团中的导航离子群爆炸得较快,而尾随离子群则保持相对地稳定.

第49卷第8期

参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。下面,小编为大家分享《物理学报》参考文献格式,希望对大家有所帮助! 《物理学报》参考文献引用须知 (2013年10月) 1.尽量引用正浏览3827 回答85物理学报格式物理学报格式. 《物理学报》论文写作参考 1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致 ...浏览3827 回答85物理学报论文格式《物理学报》论文写作参考1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致,正文中的缩略词在首次出现时应给出中英文全称, 后 ...浏览3827 回答85物理学报论文格式《物理学报》论文写作参考 1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致,正文中的缩略词在首次出现时应给出中英文全称 ...浏览3827 回答85数学物理学报期刊《数学物理学报》(双月刊)创办于1981年4月,是由中国科学院主管、中国科学院武汉物理与数学研究所主办的综合性学术刊物。浏览3827 回答85《物理学报》参考文献格式参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。下面,小编为大家分享《物理学报》参考文献格式,希望对大家有所帮助! 《物理学报》参考文献引用须知 (2013年10月) 1.尽量引用正浏览3827 回答85物理学报格式物理学报格式. 《物理学报》论文写作参考 1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致 ...浏览3827 回答85物理学报论文格式《物理学报》论文写作参考1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致,正文中的缩略词在首次出现时应给出中英文全称, 后 ...浏览3827 回答85物理学报论文格式《物理学报》论文写作参考 1、使用本模板撰写文章时请按照蓝色提示,定稿后请删掉蓝色提示. 2、物理量单位用正体,物理量符号用斜体,矢量矩阵符号用黑斜体. 3、使用国际标准的缩略词、符号和法定计量单位.符号及计量单位使用时应全文 一致,正文中的缩略词在首次出现时应给出中英文全称 ...

49是指第9卷,8指第八期

地球物理学报文章网络预发表

顶,读完博士后,回头看,除了那些高档一些的EI\SCI可能有些难度,其他全都那样的,有些装得有些品味吧,其实垃圾,不过不赞成的是,创新难度大,不能要求全部社会的人都去搞创新,不现实,生活本就这样,平淡而已,真正的,上至所谓的伟人,下至黎民百姓,都要生活,不能太苛求,哈哈。

太阳系的八大行星中,金星、火星与地球的环境是最为相似的,因为这三颗天体都是类地行星,并且都处于太阳系的宜居带上,因此金星和火星在很大程度上是利于生命生存的,金星、火星也被称为地球的“姊妹星”。

但是经过科学家的探索,金星被淘汰出局了,虽然金星从体积、质量来看,与地球十分相似,但是由于金星的温室效应十分严重,大气压强又是地球的92倍,再加上金星时常下酸雨,所以金星的恶劣环境是不可能适宜生命生存的。

火星虽然是一颗沙漠行星,土地干旱又缺水,但是相比较金星的环境来说,火星的环境就要温和得多了,火星的宜居性也比金星要大得多。要想火星上能够适宜生命生存,首先最重要的一点就是水资源。

水是生命之源,只要有了水资源,生命才有可能生存。为了探索火星,早在上个世纪,美苏就向火星发射了探测器,但是当时人类掌握的技术比较有限,因此对于火星的探测大多数都以失败告终。

不过后来通过科学家的探测,以及探测器传回的照片,人类终于在火星上有了重大突破。科学家发现数十亿年前火星表面的大部分地区曾经被广阔的海洋覆盖,并且该篇文章发表在《地球物理学报》上。

2008年美国的“凤凰号”探测器还在火星的土壤样本上发现了水蒸气,由于火星也是有四季变化的,因此有科学家表示,当气候变暖的时候,两极冰盖就会出现变化,夏季冰盖会缩小,冬天会扩大。

2015年美国航天局(NASA)就宣布,火星上是存在流动水的,这为生命的存在提供了重要的条件,对此有不少科学家都提出了大胆的猜想,认为火星上是存在生命的,或许在远古时期,火星与地球一样,孕育着各种各样的生命。

探测器在火星上探索多年,虽然并没有发现火星生命,但是好奇号在对火星岩石样本进行分析时,发现了样品中含有磷、氮、氢、氧、碳,这些都是支持生命存在的关键化学成分。另外科学家还在火星大气中发现存在微量甲烷,而甲烷是一种温室气体,一般甲烷的出现与生命活动有着密不可分的关系。

2013年“好奇号”经过调查,发现远古火星是个湿润环境,并且在火星上发现了存在古湖泊的证据,湖里的水可能是可以饮用的淡水,这表明当地曾经长期存在湿润环境,也是有简单生命出现的证据。

尹祥础

(中国地震局分析预报中心,北京100036)

王裕仓

(中国科学院力学研究所非线性连续介质力学开放实验室(LNM),北京100080)

摘要由于损伤过程的不可逆性,当孕震区介质受到损伤后,其对加载的响应将不同于卸载响应。加载响应与卸载响应的比Y(称之为加卸载响应比,英文为Load/Unload Response Ratio简称LURR)可以度量孕震区介质的损伤程度或接近失稳的程度,因而可以作为一种地震预测的新途径。对数百个地震震例的检验(震级从4级到级)表明:在主震发生前的一段时间里,Y值显著大于1。而对于7个稳定区(指在较长时期内未发生过强震,而小震资料又较丰富的地区),在长达20年的时间内,Y值始终在1附近作轻微的起伏。近年来,利用本方法对发生在中国大陆的十几次中强地震及美国北岭地震()与日本关东地区地震()作出了成功的中期预测。

关键词地震预报加卸载响应比理论

1引言

地震的物理实质是什么?从力学的观点看,它正是震源区介质(岩体)的损伤与快速破坏(失稳)过程,并伴随应力与应变能的快速释放。让我们研究孕震区(含断层或弱化区的岩体)在高温高压下的本构关系,如图1所示。图1中纵坐标为广义载荷P,而横坐标为对于载荷P的响应R。

我们首先定义如下两个参数:响应率X与加卸载响应比Y。

响应率X定义为:

第30届国际地质大会论文集第5卷现代岩石圈运动地震地质

式中:△P表示载荷增量,而△R表示相当于△P的响应增量。

加卸载响应比Y定义为:

第30届国际地质大会论文集第5卷现代岩石圈运动地震地质

式中:X+、X-分别表示在加载及卸载条件下的响应率。

众所周知,材料若处于弹性阶段(图1中的OA段),加载时(△P>0)的响应率X﹢,将等于卸载时(△P<0)的响应率,即Y=1。但是若应力超过弹性后,X+>X-,因而Y>1。当材料逐步趋向破裂时,Y值也随之逐渐增大。当趋近于图1中的顶点T时,X+趋于无限大;而X-仍保持为有限值,因而Y值也将趋于无穷。所以顶点T可以作为预测失稳的前兆点。

图1震源区的本构关系

从损伤力学的观点看,地震孕育过程就是孕震区介质的损伤过程。因此有希望采用损伤力学中的损伤参数D来定量地刻划地震的孕育进程。损伤D有多种方法定义。最直接的一种是用弹性模量(4阶张量)的变化来定义D。为简单起见,有时只用弹性模量张量的一个分量来定义D。例如Lamaitre[23]定义D为:

第30届国际地质大会论文集第5卷现代岩石圈运动地震地质

式中:Eo为未损伤材料的杨氏模量,E为已损伤材料的杨氏模量。如果卸载时的模量为Eo,则(3)式可表示为:

第30届国际地质大会论文集第5卷现代岩石圈运动地震地质

式(4)意味着D与Y之间存在着密切的内在关系。也就是说,Y也可以作为孕震区损伤程度的度量。

即使损伤D不按式(3)而另行定义,D与Y之间仍然会存在内在关系。这就明参数Y可以定量地刻划地震孕育进程,因而可以作为地震预报的定量前兆[11~18,24~27]。

要用加卸载响应比理论进行地震预报,必须首先解决几个主要问题。一是如何对地球进行加载与卸载,以及如何判别加载与卸载。其次是怎样选择合适的参数作为响应。以下分别讨论这几个问题。

(1)如何对地壳块体进行加卸载?

孕震区的线性尺度可以达到几百甚至上千千米。对其进行加卸载的方法之一是利用潮汐应力。潮汐力不断地周期性地变化。也就是说它对地球的各部分不停地进行加载与卸载。

(2)用什么准则判定加载与卸载?

加载与卸载问题,在塑性力学中有详细的讨论。对于不同的材料应选择不同的准则。对塑性较好的多种金属(如低中碳钢、铝等)Von Mesis准则比较适用;而对地质材料的破坏,则Coulumb准则[22]更适合。我们在文献[12,13,24,26]中对此作了详细的研究与论述。请参阅上述文献,本文不再赘述。

(3)选择什么参数作为计算Y值的响应

地壳形变、井水水位、地震活动性及其他震源参数以及许多其他地球物理参数都可以作为响应,用于计算Y值。从“八五”期间起,我们与国内外许多地球物理学家合作,开展了多学科的研究,国家科委、国家地震局的“八五”、“九五”攻关项目中,均安排了相应的项目,同时还得到了国家自然基金会及地震科学基金会的支持,取得了比较多的成果[1,4~6,10,19]。在本文中主要介绍以地震能量为响应的加卸载响应YE(在本文中很少涉及其他参数的加卸载响应比,所以仍以Y代替YE)。Y定义为:

第30届国际地质大会论文集第5卷现代岩石圈运动地震地质

式中:E为地震能量,符号“+”“-”分别表示加载与卸载,N+、N-分别表示在规定的时空范围内发生的加载地震及卸载地震(在加载时段内及卸载时段内发生的地震,在以往的文献中,有时也简称为正地震及负地震)的数目,m为常数,取为0、1/3、1/2、2/3及1。m=1时,Y为所有正地震能量之和与负地震能量之比;m=1/2,Em为贝尼奥夫应变;m=1/3及2/3时,Em分别表示震源的线尺度及面尺度;当m=0时,Y=N﹢/N﹣,即正、负地震数1之比。在本文中恒取m=1/2。

取一定的时、空范围(例如2°×2°,几个月至1年),按式(5),计算出一个Y值。利用该区域Y值随时间的变化,可能预测出该区域内未来发生地震的危险程度。

2震例检验

我们用国内外数百个已发生的地震,对LURR理论进行了广泛的震例检验,震级范围从Ms=4到Ms=。检验的结果是满意的[13,16,24,26]。以下是1970~1992年期间发生在中国大陆的10个大地震(Ms≥7)的孕震区LURR随时间的变化情况(图2)。

在这段时间内,中国大陆共发生Ms>7级以上地震13个,其中有3个地震(青海地震、通海地震及西藏亦基台错地震)因数据太少无法利用它们计算LURR之外,对其他10个大震全部进行了研究,地震前各孕震区Y随时间的变化示于图2,山图可知,10个震例中,有9个震例,在震前Y明显大于1,Y>1的时间大约持续1~3年。

除了较系统地研究了中国大陆的震例(4≤Ms≤)外,根据我们所能得到的资料还研究了日本、美国和其他国家的若干震例。都取得了好的结果[13,18,26]。

此外,我们选择了中国大陆的7个区域作对比研究,这7个区域在历史上曾发生过强震,但近20多年来,地震活动性较低,没有发生过中强地震,处于低地震活动期。其LURR的变化情况(图3)与图2形成强烈的对比,在所有这7个区域里,在20多年(1970~1992)的时间里,其Y值均在1附近作轻微起伏。

图21970~1992年中国大陆所有7级以上大地震前Y随时间的变化曲线

a—四川炉霍地震(Ms=);b—云南永善地震(Ms=);c—新疆乌恰地震(Ms=);d—辽宁海城地震(Ms=);e—云南龙陵地震(Ms=);f—河北唐山地震(Ms=);g—四川松潘地震(Ms=);h—新疆乌恰地震(Ms=);i—云南澜沧地震(Ms=);j—青海共和地震(Ms=)

图31970~1992年间,7个平静区的Y-t曲线

a—郯庐断裂带南段(°N士1°,118°E±1°);b—陕北(°N±1°,119°E±1°);c—川东(°N±1°,118E士1°);d—鲁北(°N±1°,119°E±1°);e—鲁西(°N士1°,118°E±1°);f—豫北(°N±1°,113°E±1°);g—鲁南(°N士1°,117°E±1°)

3地震预报实践

近年来我们尝试用本方法进行地震预报,多次成功对发生在中国大陆的6级以上地震成功地作出了中期预报[5,7,15~18]。此外,还成功地预报了1994年1月17日的美国北岭地震[]及1996年9月11日的日本千叶地震[18]。部分被预测的地震震前的Y-t曲线示于图4。

以下对其中几个典型地震的预测情况略作说明。

1993年夏初,我们得到由USGS所属NEIC(美国国家地震信息中心)供给的加利福尼亚州地震目录,利用此目录研究了该州的加卸载响应比,发现其中有3个地区在较长的时间(长于一年)内Y值显著大于1。经研究后,于1993年10月28日写信给提供我们数据的那位科学家(ISOP项目的负责人),在信中提供了分区的加卸载响应比结果,并且预测:在其中3个区域或其附近,在一年内(~)可能发生中强地震(7>M≥6)。在预测后不到3个月,1994年1月17日发生北岭地震(图4e),发生在预测的一个地区的边缘。再后,1994年9月12日,在另两个地区的中间发生一个Ms=级地震。

图4用LURR理论成功地预测的某些中外地震的震前Y-t曲线

a—山西大同地震(Ms=);b—云南普洱地震(Ms=);c—青海共和地震(Ms=);d—青海共和地震(Ms=);e—美国北岭地震(Mw=);f—日本千叶地震(Ms=)

1996年春,应日本气象厅科学家的要求对日本的关东地区,和歌山地区及兵库地区的加卸载响应比进行了分析研究(资料由对方提供),研究后得到几点结果:①关东地区(按对方提供资料的范围为了35°~36°N,139°~141°E)在一年内发生Ms=6级地震可能性很大;②和歌山地区在近期内不会发生中强以上地震(对方原来预计此地区危险性很高);③神户地震前,加卸载响应比异常很显著。我们于1996年4月1日将有关结果传真给了对方科学家,同时写成论文[18]于1996年5月间投《中国地震》(季刊)。该文于《中国地震》中文版1996年第三期(1996年9月初出版)及英文版(由美国Allerton出版公司出版)第四期刊出。其后,在1996年9月11日发出了Ms=级千叶地震(°N,°E)。

关于国内的地震预测只讨论一个震例——1994年12月31日的广西北部湾地震(Ms=)。

1993年底我们在“1994年中国大陆地震趋势研究”的报道中将广西沿海地区列为地震危险区[15]。直至于1994年11月分析预报中心召开会商会时,该区未发生过任何中强地震,但当我们研究~时段中国大陆LURR的空间分布时,发现该区域的Y值异常仍非常突出[16],因此我们认为该区域仍可能在年内发生强烈地震,结果在1994年最后一天发生了北部湾Ms=级地震,并于1995年1月10日再次发生Ms=级地震。

以上震例是成功的例子,但也有些Y值较高的区域,在预测的时段内并未发生强烈地震。这些区域在一定时段内加卸载响应比升高,说明该区域的地震孕育过程正在进行,但随后却可能发生了卸载使地震孕育过程推迟甚至中断,对于这种情况,如何判别是以后要着力研究的课题。

4加卸载响应比的时空演化特征

大量的震例研究表明,LURR的空间分布图像是很复杂的。当一个地区未来要发生强烈地震前,将出现一系列高Y值区,这些高Y值区往往连成一个环状,形成面包圈图像[7],大部分未来的地震将会在发生面包圈内或其邻域。图5是云南普洱Ms=级地震震前一年间该区域内Y值的空间分布。由图可见,高Y值区围绕着未来的震中形成一个面积约为5°×5°的面包圈。将LURR的空间分布作成立体图,每一个高Y值区形成一个高峰,很多个高Y值区就形成群峰突起的图像。形成鲜明对比的是,在地震活动性低(指未发生强震)的区域内,Y值在1°上下轻微起伏,所以LURR的空间分布立体图就像平原地区的地形,我们形象地称这种图像为“一马平川”。

图云南普洱Ms=级地震震前一年时段内,Y=的等值线图图中符号代表未来的震中

对于同一地区,在地震孕育过程中,不同时段的LURR空间分布图像是不同的,也就是说,空间分布图像随时间发生变化。我们发现一个非常有趣的现象:即强震前多个高Y区向未来的震中迁移,称之为高Y值区的会聚现象[8]。

研究了1970年后中国大陆的12个Ms≥大震[8]。12个震例中,有11个发现了会聚现象,且未来的震中处于面包圈内,只有中缅边界上的Ms=级地震,未来的震中处于面包圈外,距圈的外边界约50km。这可能与该地震发生在两国边境地区,缅甸一侧的数据不好收集有关。

进一步,我们还发现:强震发生前,高Y值区迁移速度在同一地区,近似不变,大致为100km/a的量级。但不同地区的迁移速度有所差异[8]。

Scholz曾经撰文说,华北地区的形变锋(deformation front)传播速度约为150km/a,Press和Allen则观测到美国南加州地区的形变波(deformotion wave)速度为100km/a。这三者在物理上是有关系的,而且其数值在数量级上也是彼此相符的。

5展望

前已述及,除了地震能量外,其他许多有关的地球物理参数(如地下水位、地壳体应变、地倾斜、地磁参数、尾波Q…)均可选择为响应,进行加卸载响应比的研究[1,2,4,10]。图6为取尾波Q值的例数作为响应,计算LURR—YQ的例子。图6所示为美国加利福尼亚州南部北岭地震()前该区YQ随时间的变化情况,将它与图4e作比较后可以看出,二者在定性上是一致的。

图6美国加利福尼亚州南部北岭地震的YQ变化图

对同一时空域用众多的参数可以计算出众多的LURR值,然后进行综合预报,必然会提高用加卸载响应比理论进行地震预报的精度。

简而言之,加卸载响应比理论可能为地震预报开辟了一条新途径。现在国内地震界有不少人在研究,应用与改善它[5]。

近来通过研究,表明北京地区的有感地震(指6>M≥4)前[9]甚至北京地区的矿震(M>2)前,Y值也有较明显的升高。这说明,除天然地震外,对于诱发地震(矿震、水库地震[4]…)以及某些其他地震灾害(如岩爆、滑坡、火山喷发…),也可能用LURR理论进行预测。

致谢谨向傅承义、Keiti Aki、秦馨菱、王仁、陈章立、何永年、葛治州、陈鑫连、梅世蓉、罗灼礼、张国民、李宣瑚、张伯民教授及、、博士致以诚挚的谢意,感谢他们多方面的支持与帮助。

本项目得到国家自然基金会(批准号19732006)、国家科委及国家地震局“八五”及“九五”攻关项目、地震学基金会以及中国科学院LNM开放实验室(Lab of Nonlinear Mechanics of Continuous Media,Institute of Mechanics)的资助。

参考文献

[1]陈建民,张昭栋,杨林章,石荣会,张继红.地下水位固体潮响应比的地震异常.地震,1994,10(1):73~78.

[2]陈学忠,尹祥础.水库地震主震前加卸载响应比的变化特征.中国地震,1994,10(4):361~367.

[3]陈学忠,尹祥础,K Ake,H Ouyang,宋志平,王裕仓.以介质参数波Q1作为响应的加卸载响应比研究.中国地震,1996,12(3):243~249.

[4]国家地震局分析预报中心.关于1994年我国地震趋势的研究报告.见:国家地震局分析预报中心编.中国地震趋势预测研究(1994年度).北京:地震出版社,1994,43.

[5]李宜瑚.“八五”地震预报理论及方法攻关新进展之一:加卸载响应比理论预测洛杉矶地震获得成功.国际地震动态,1994,10(4):24~25.

[6]刘桂萍,马丽,尹祥础.首都圈地区中等地震前响应比特征的研究.地震,1994,(6):34~39.

[7]宋志平,尹祥础,陈学忠.加卸载响应比的时空演变特征及其对地震三要素的预测意义.地震学报,1996,18(2):179~186.

[8]施行觉,许和明,万永中,卢振刚,陈学忠.模拟引潮力作用下的岩石破裂特征:加卸载响应比理论的实验研究之一。地球物理学报,1994,37(5):633~637.

[9]王丹文.加卸载响应比理论在以磁报震中的应用探索.地震地磁观测与研究,1995,(16):26~29.

[10]杨林章,何世海,郗钦文,黎凯武,李松阳.用体应变潮汐加卸载响应比确定岩石弹性的变化.中国地震,1994(增刊):90~94.

[11]尹祥础.地震预测新途径的探索.中国地震,1995,3(1):1~7.

[12]尹祥础,尹灿.非线性系统的失稳前兆与地震预报.中国科学,1991,(5):512~518.

[13]尹祥础,陈学忠,宋治平,尹灿.加卸载响应比理论(LURR):一种新的地震预报方法.地球物理学报,(6):767~775.

[14]尹祥础,陈学忠.加卸载响应比理论及其地震预测中的应用研究进展.地球物理学报,1994,37(增刊):223.

[15]尹祥础,陈学忠,宋志平.加卸载响应比理论的新进展及其在地震趋势研究中的应用.见:国家地震局分析预报中心编.中国地震趋势预测研究(1994年度).北京:地震出版社.1993.

[16]尹祥础,陈学忠,宋志平.从加卸载响应比的时空分布,研究中国大陆未来的地震大形势.国家地震局分析预报中心编:中国地震趋势预测研究(1995年).北京:地震出版社,1994.

[17]尹祥础,陈学忠,宋志平,王裕仓.由加卸载响应比的时空变化预测中国大陆地震趋势.见:国家地震局分析预报中心编.中国地震趋势预测研究(1996年).北京:地震出版社.1995,75~178.

[18]尹祥础,陈学忠,宋治平,王裕仓.关东地区加载响应比的时间变化及其预测意义.中国地震,1996,12(3):331~335.

[19]张继红.响应比法的地磁异常分析.地震地磁观测与研究,1995,16:61~63.

[20] Theory of Subcritical Crack Growth with Application to Minerals and Mechamics of Rock(),Academic Press,London,1987.

[21]Ding Zhongyi et al..Seismic triggering effect of tidal ~335.

[22] of Rock and Hall,London,1976,78~99.

[23] to Use Damage Eng.&.Design,1984,80:233~245.

[24]Yin Xiangchu,Chen Xuezhong,Song Zhiping and Yin Load-Unload Response Ratio Theory and its Application to Earthquake of Earthquake Prediction Research,1994,3:325~333.

[25]Yin Xiangchu,Yin Can and Chen Precursor of Instability for Nonlinear Systen and Its Application to Earthquake Prediction——the load-Unload Response Ratio dynamics and predictability of geophysical phenomena( and eds.).AGU Geophysical Monograph,1994,83:55~60.

[26]Yin Xiangchu,Chen Xuezhong,Song Zhiping and Yin New Approach to Earthquake Prediction——The Load/Unload Response Ratio(LURR)(3/4):701~715.

[27]Иин Ксянчу(Yin Xiangchu).Новыйнодходк Ирогногу Землетрясеннй.НРИРОД А,1993,(1):21~27.

物理教学探讨文章

随着新 教育 改革的进行,高中物理教学迎来新一轮的 反思 。下面是我为大家整理的高中物理教学反思,希望对大家有所帮助。

高中物理教学反思篇一

新课程改革从去年新学期开始到现在已将近一个学年,在教学工作中,我通读教材,查资料,听课,请教,精心编写教案,落实教学目标,上好每一节课,倾注了大量的时间和精力。可是新课上下来,常感觉效率比较低,很是困惑。如今再回过头教高一,翻开以前的教案,反思当初的教育教学方式,感触颇深。

1对高一新生引导的反思

高中的物理是一门很重要的学科,同时高校要求选考物理学科的专业占的比例相对较多固然是个有力条件,但是“物理难学”的印象可能会使不少学生望而却步。客观地分析,教学的起点过高,“一步到位”的教学思路是导致学生“物理难学”印象形成的重要原因之一。高一年级的物理教学首先是要正确的引导,让学生顺利跨上由初中物理到高中物理这个大的台阶,其次是要让学生建立一个良好的物理知识基础,然后根据学生的具体情况选择提高。

例如,关于“力的正交分解”这一基本 方法 的教学就是通过分期渗透,逐步提高的。这不仅是一个遵循认知规律的需要,其意义还在于不要因为抽象的模型、繁琐的数学运算冲淡物理学科的主题,通过降低台阶,减少障碍,真正能够把学生吸引过来,而不是把学生吓跑了,或者教师一味的强调物理如何如何重要,学生就硬着头皮学,学生处于被动学习的状态甚至变成了物理学习的“奴隶”。如果我们老师有意识地降低门槛,一旦学生顺利的跨上的这个台阶,形成了对物理学科的兴趣再提高并不晚。可是,一般新老师并没有很快领会这种意图,因而在实际教学中不注意充分利用图文并茂的课本,不注意加强实验教学,不注意知识的形成过程,只靠生硬的讲解,只重视告诉结论,讲解题目,这怎么能怪学生对物理产生畏难情绪呢?学生如果对物理失去兴趣,对基本概念搞不清楚、对知识掌握不牢也就不足为怪了!我们不妨再举一个例子,有的老师在教完“力的分解”后,马山就去讲解大量的静力学问题,甚至去讲动态平衡问题,试想这时学生对合力的几个效果尚难以完全理解,对平行四边形法则的应用还不够熟练,学生解决这类问题的困难就可想而知了,这种由于教师的引导方法不当,导致学生一开始就觉得物理如此之难,怎么能怪学生认为物理难学呢?我们教师不应该把教学目标选择不当的责任推向学校的考试,推向市场上的参考书,这实际上是站不住脚的,应该多从自身的教学思想以及从对教材的把握上找原因。

如果我们作为引路者有意识的降低高中物理学习的门槛,先将学生引进门,哪怕先是让学生感觉到“物理好学”的假象,我们都是成功的。

2对教学目标的反思

首先,知识、能力、情意三类教学目标的全面落实。对基础知识的讲解要透彻,分析要细腻,否则直接导致学生的基础知识不扎实,并为以后的继续学习埋下祸根。譬如,教师在讲解“滑动摩擦力的方向与相对滑动的方向相反”时,如果对“相对”讲解的不透彻,例题训练不到位,学生在后来的学习中就经常出现滑动摩擦力的方向判断错误的现象;对学生能力的训练意识要加强,为了增加课堂容量,教师往往注重自己一个人总是在滔滔不绝的讲,留给学生思考的时间太少,学生的思维能力没有得到有效的引导训练,导致学生分析问题和解决问题能力的下降;还有一个就是要善于创设物理情景,做好各种演示实验和学生分组实验,发挥想象地空间。如果仅仅局限与对物理概念的生硬讲解,一方面让学生感觉到物理离生活很远,另一方面导致学生对物理学习能力的下降。课堂上要也给学生创设暴露思维过程的情境,使他们大胆地想、充分的问、多方位的交流,教师要在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。所以教师要科学地、系统地、合理地组织物理教学,正确认识学生地内部条件,采用良好地 教学方法 ,重视学生地观察,实验,思维等实践活动,实现知识与技能、过程和方法、情感态度与价值观的三维一体的课堂教学。

3对物理教学前概念教学的反思

前概念是学生在接触科学知识前,对现实生活现象所形成的 经验 型概念.而由于中学生的知识经验有限,辩证思维还不发达,思维的独立性和批判性还不成熟,考虑问题容易产生表面性,且往往会被表面现象所迷惑,而看不到事物本质.所以易形成一些错误的前概念.这些错误概念对物理概念的正确形成极为不利,它排斥了科学概念的建立,是物理教学低效率的重要原因之一.

在伽利略和牛顿以前,人们对生活经验缺乏科学分析,认为力是维持物体运动所不可缺少的.由此古希腊哲学家亚里士多德提出了一个错误命题:必须有力作用在物体上物体才运动,没有力作用,物体就会停下来.这个错误一直延续了2000多年,由此可见前概念对人们认识影响是巨大的.

在物理教学中,不能忽视学生大脑中形成的前概念,对正确的应加以利用,对错误的要认真引导消除,否则正确概念难以形成.

一、加强实物演示,丰富感性认识,有利于消除错误前概念,确立正确概念

中学生的 抽象思维 在很大程度上属经验型,需要感性经验支持.因此教学中应了解学生的实际,通过实物演示消除错误概念.

太阳曝晒下的木块和金属块的温度如何?学生最容易根据自己的感觉,认为金属块温度高,形成错误认识.所以只有通过实验测定后,使学生认识到自己感觉的错误,才能消除错误前概念,否则任何讲授都是苍白无力的.

由于学生思维带有一定的片面性和表面性,他们往往以物质外部的非本质的属性作为依据,形成错误认识.如学生认为马拉车前进是马拉车的力大于车拉马的力,从而对牛顿第三定律产生怀疑.所以教学中针对这种问题设计一个实验:2个滑块,2个轻质弹簧秤,使一个弹簧秤两端分别固定在两滑块上,用另一弹簧秤拉动连在一起的木块,去演示使一物块前进时,另一物块同时前进,通过弹簧秤显示两物块之间相互作用力,这样就可以排除学生形成的错误认识,进一步理解牛顿第三定律.

在“自由落体”一节教学中,学生对任何物体做自由落体运动从同一高度竖直落下时,不同的物体将同时落地很难想象.因此教学中应强调“自由落体运动”是指在只受重力作用下的竖直下落运动,但在实验中,不可避免地受到空气等阻力影响,结果当然不会完美.当然,更重要的是做好演示实验也就是要重复“伽利略斜塔实验”,使学生建立密度和重力都不相同的物体在空气中,从同一高度落下,快慢几乎一样的事实,然后对自由落体运动加以分析、研究.

所以,抓住中学生学习物理的思维特点,充分利用实物演示及创造条件进行实物演示,积极消除学生的错误前概念,对提高物理学习效果是重要的.

二、重视物理模型的运用,培养学生 逻辑思维 能力,消除学生思维障碍

物理模型是物理学中对实际问题忽略次要因素、突出主要因素经过科学抽象而建立的新的物理形象.

通过运用物理模型可以突出重点,抓住本质特征和属性,可以消除学生思维方面的片面性和表面性,提高学生思维的独立性、批判性和创造性,从而使学生能够对自己从生活中形成的朴素物理概念分析区别,抛弃错误概念,形成科学概念.如:伽利略在研究运动的原因并指出,亚里士多德观点的错误时,设想的“理想实验”就是建立了一个没有摩擦的光滑轨道的物理模型.在建立物理模型后,问题便简洁多了。

这是我在新教材教学工作中对以上三点的一点教学反思。在以后的教学工作中还要继续坚持与写好课后小结与反思笔记,把教学过程中的一些感触、思考或困惑及时记录下来,以便重新审核自己的教学行为。通过这半年的教学实践我感悟到在新课程下,平常物理教学中需要教师课后小结、反思的地方太多了……。

在以后的教学工作中还要继往开来,做好教学反思,写好课后心得,促使自己成长为新时期研究型、复合型的物理教师。

高中物理教学反思篇二

反思多年的高中物理教学,尤其高一的物理教学,感触颇深。

1、对高一新生引导的反思

高中的物理是一门很重要的学科,同时高校要求选考物理学科的专业占的比例相对较多固然是个有力条件,但是“物理难学”的印象可能会使不少学生望而却步。客观地分析,教学的起点过高,“一步到位”的教学思路是导致学生“物理难学”印象形成的重要原因之一。高一年级的物理教学首先是要正确的引导,让学生顺利跨上由初中物理到高中物理这个大的台阶,其次是要让学生建立一个良好的物理知识基础,然后根据学生的具体情况选择提高。

例如,关于“力的正交分解”这一基本方法的教学就是通过分期渗透,逐步提高的。这不仅是一个遵循认知规律的需要,其意义还在于不要因为抽象的模型、繁琐的数学运算冲淡物理学科的主题,通过降低台阶,减少障碍,真正能够把学生吸引过来,而不是把学生吓跑了,或者教师一味的强调物理如何如何重要,学生就硬着头皮学,学生处于被动学习的状态甚至变成了物理学习的“奴隶”。如果我们老师有意识地降低门槛,一旦学生顺利的跨上的这个台阶,形成了对物理学科的兴趣再提高并不晚。可是,一般新老师并没有很快领会这种意图,因而在实际教学中不注意充分利用图文并茂的课本,不注意加强实验教学,不注意知识的形成过程,只靠生硬的讲解,只重视告诉结论,讲解题目,这怎么能怪学生对物理产生畏难情绪呢?学生如果对物理失去兴趣,对基本概念搞不清楚、对知识掌握不牢也就不足为怪了!我们不妨再举一个例子,有的老师在教完“力的分解”后,马山就去讲解大量的静力学问题,甚至去讲动态平衡问题,试想这时学生对合力的几个效果尚难以完全理解,对平行四边形法则的应用还不够熟练,学生解决这类问题的困难就可想而知了,这种由于教师的引导方法不当,导致学生一开始就觉得物理如此之难,怎么能怪学生认为物理难学呢?我们教师不应该把教学目标选择不当的责任推向学校的考试,推向市场上的参考书,这实际上是站不住脚的,应该多从自身的教学思想以及从对教材的把握上找原因。

如果我们作为引路者有意识的降低高中物理学习的门槛,先将学生引进门,哪怕先是让学生感觉到“物理好学”的假象,我们都是成功的。

2、对教学目标的反思

首先,知识、能力、情意三类教学目标的全面落实。对基础知识的讲解要透彻,分析要细腻,否则直接导致学生的基础知识不扎实,并为以后的继续学习埋下祸根。譬如,教师在讲解“滑动摩擦力的方向与相对滑动的方向相反”时,如果对“相对”讲解的不透彻,例题训练不到位,学生在后来的学习中就经常出现滑动摩擦力的方向判断错误的现象;对学生能力的训练意识要加强,为了增加课堂容量,教师往往注重自己一个人总是在滔滔不绝的讲,留给学生思考的时间太少,学生的思维能力没有得到有效的引导训练,导致学生分析问题和解决问题能力的下降;还有一个就是要善于创设物理情景,做好各种演示实验和学生分组实验,发挥想象地空间。如果仅仅局限与对物理概念的生硬讲解,一方面让学生感觉到物理离生活很远,另一方面导致学生对物理学习能力的下降。课堂上要也给学生创设暴露思维过程的情境,使他们大胆地想、充分的问、多方位的交流,教师要在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。所以教师要科学地、系统地、合理地组织物理教学,正确认识学生地内部条件,采用良好地教学方法,重视学生地观察,实验,思维等实践活动,实现知识与技能、过程和方法、情感态度与价值观的三维一体的课堂教学。

其次,对重点、难点要把握准确。教学重点、难点正确与否,决定着教学过程的意义。若不正确,教学过程就失去了意义;若不明确,教学过程就失去了方向。在物理教学活动开始之前,首先要明确教学活动的方向和结果,即所要达到的质量标准。因此教学目标重点难点是教学活动的依据,是教学活动中所采取的教学方式方法的依据,也是教学活动的中心和方向。在教学目标中一节课的教学重点、难点如果已经非常明确,但具体落实到课堂教学中,往往出现对重点的知识没有重点的讲,或是误将仅仅是“难点”的知识当成了“重点”讲。这种失衡直接导致教学效率和学生的学习效率的下降。

最后,师生的达标意识要强,达成度要高。对一些知识,教师不要自以为很容易,或者是满以为自己讲解的清晰到位,没有随时观察学生的反映,从而一笔带过,但学生的认知是需要一个过程,并不是马上就接受。譬如,当初在讲“力的正交分解”,笔者花了不到5分钟的时间就“解决问题”,但后来发现学生老是在正交分解这部分出错,自己还埋怨学生学习不认真,后来在学生的物理 学习 总结 里,我看到了不少学生说老师在此“惜墨如金”,他们没有真正的搞懂,此时自己才恍然醒悟。所以我们要随时获取学生反馈的信息,调整教学方式和思路,准确流畅地将知识传授给学生,达到共识。

3、对教学方法的反思

第一,面向全体学生,兼顾两头。班级授课是面向全体学生的、能照顾到绝大多数同学的因“班”施教,课后还要因人施教,对学习能力强的同学要提优,对学习有困难的学生,加强课后辅导。记得有人曾经说过这样的一句话“教师对好学生的感情是不需要培养的”,在教学过程中,教师会有意无意地将太多的精力和荣誉给予成绩好的学生,教学的重心向成绩好的学生倾斜,将学习有困难的学生视为差生,对他们关注的太少,教师缺乏对他们的鼓励和帮助,好像他们就是来“陪读”的,从而使得好的学生昂首阔步,越学越好;有学习有困难的学生信心不足,越来越差,直接导致整体成绩两级分化,对后进生也是一种损失,所以教师要特别注意不要让所谓的差生成为被“遗忘的角落”。

第二,学生的参与意识强,主体作用明显,有充分的动手、动口、动脑的时间。注重学法指导。中学阶段形成物理概念,一是在大量的物理现象的基础上归纳、总结出来的;其次是在已有的概念、规律的基础上通过演绎推理得到的。学生只有在积极参与教学活动,给他们以充分的动手、动口、动脑的时间,充分经历观察、分析、推理、综合等过程,才能完整地理解概念的内涵及其外延,全面地掌握规律的实质,与此同时学生的思维才能得到真正的锻炼,体现其学习的主体角色。所以,在课堂教学中教师应该改变以往那种讲解知识为主的传授者的角色,应努力成为一个善于倾听学生想法的聆听者。而在教学过程中,要想改变以往那种以教师为中心的传统观念就必须加强学生在教学这一师生双边活动中的主体参与。

第三,教学方式形式多样,恰当运用现代化的教学手段,提高教学效率。科技的发展,为新时代的教育提供了现代化的教学平台,为“一支粉笔,一张嘴,一块黑板加墨水”的传统教学模式注入了新鲜的血液。老师除了采用对学生提问,分组讨论,要求学生查资料,写小论文等等传统的教学方式之外,还可以适当的运用电化教学手段,如网络、投影仪、录音录像、制作多媒体课件,特别是制作复杂物理过程的演示动画等视听设备和手段,它除了增强对学生的吸引力,增加课堂的趣味性和视觉上的冲击以外,更重要的是可以表现客观事物和各种物理现象,能在短时间内展示事物的运动和发展的全过程,为学生提供大量而丰富的感性材料,突破传统教学手段在时间、空间上的限制,能将传统教学手段不能表现的许多现象和过程进行形象而生动的模拟表现,它是传统教学手段的补充和延伸,两者协调配合,就能取得更好的教学效果,因而广泛地被广大的教育工作者采用。在新形势下,教师也要对自身提出更高的要求,提高教师的科学素养和教学技能,提高自己的计算机水平,特别是加强一些常用教学软件的学习和使用是十分必要的。

最后,在教学过程中应有意向学生渗透物理学的常用研究方法。例如理想实验法(如伽利略的关于力和运动的理想实验),控制变量法(如牛顿第二定律、万有引力定律),数学归纳法(如牛顿第三定律)等等。学生如果对物理问题的研究方法有了一定的了解,将对物理知识领会的更加深刻,同时也学到了一些研究物理问题的思维方法,增强了学习物理的能力。

4、对训练方法的反思

第一,解题要规范。物理是有着严密逻辑体系的学科。解题(特别是计算题)需要“写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位”,对高一的新生一开始就要特别强调并逐渐养成解题的规范性,其次再是正确率,规范性养成了,正确率自然就升高了。我们教师自己首先要做好表率,特别是课堂解题板书,要为学生做好示范,再让学生模仿,最后在作业中严格要求,久而久之就形成习惯。我在此仅重点 说说 列“方程式”和作图的规范。

首先,我们老师要做到规范解题,推理严密,过度自然,避免思维跳跃。

在高一学习摩擦力时,有这样一个题目:质量为m的物体在水平面上滑行,物块与地面间的动摩擦因数为,求物块受到地面的摩擦力的大小。

这个题目本身很容易,一看答案就是,老师往往忽略了严格的逻辑推导而直接给出结果,久而久之,学生就形成这样一个思维定势:只要物体在水平面上滑行,摩擦力就是,显然这是要不得的。

究其原因,还是我们自己首先没有做到规范解题。

高中物理教学反思篇三

紧张忙碌的高一结束了。回首一年来的物理教学工作,可以说有欣慰,更有许多无奈。工作10年,教了4年高三,各方面都积累了一些经验。然而随着教育的发展、高中扩招等诸多问题使得我们的生源质量在下降,很多时候我感觉高中物理越来越难教了。

我所任教的三个班都是平行班,每个班的特点不同。4班因为本人是班主任,很多同学有着不敢不学、不得不学的心理,因此历次考试平均分在平行班中名列前茅。然而从上课的状态来看,我感觉大部分同学没有对物理真正产生兴趣,也就不能真正学好物理。而且一部分同学虽然也想学好物理,也很认真、很努力,然而由于基础薄弱、理解能力差,始终不能真正掌握学好物理的方法。5班是所有任课教师公认的上课纪律很难保证的班,因此在上课时需要花费一定时间维持纪律,纪律保证了才能让那些想听课的学生有所收获。6班是三个班中上课的感觉最好的一个,有相当一部分学生对物理很感兴趣,也肯动脑思考,接受能力比较强,只是课后的功夫不足,有的同学凭借小聪明课后从不看书看笔记复习,作业也要催着要才能交上来。

三个班的学生总体来讲都存在“懒”的特点,懒得动笔、懒得动脑懒得总结。针对这种情况,我尽量做到以下几点:

1.课堂纪律要求严格,决不允许任何人随意说话干扰他人。这一点虽然简单但我认为很重要,是老师能上好课、学生能听好课的前提,总的来说,这一点我做得还不错,几个“活跃分子”都反映物理老师厉害,不敢随便说话。

2.讲课时随时注意学生的反应,一旦发现学生有听不懂的,尽量及时停下来听听学生的反应。

3.尽量给学生最具条理性的笔记,便于那些学习能力较差的同学回去复习,有针对性的记忆。

4.注重“情景”教学。高中物理有很多典型情景,在教学中我不断强化它们,对于一些典型的复杂情景,我通常将其分解成简单情景,提前渗透,逐步加深。每节课我说得最多的一个词就是“情景”,每讲一道题,我都会提醒学生“见过这样的情景吗?”“你能画出情景图吗?”“注意想象和理解这个情景”。

5.重视基本概念和基本规律的教学。首先重视概念和规律的建立过程,使学生知道它们的由来;对每一个概念要弄清它的来龙去脉。在讲授物理规律时不仅要让学生掌握物理规律的表达形式,而且更要明确公式中各物理量的意义和单位,规律的适用条件及注意事项。了解概念、规律之间的区别与联系,如:运动学中速度的变化量和变化率,力与速度、加速度的关系,动能定理和机械能守恒定律的关系,通过联系、对比,真正理解其中的道理。通过概念的形成、规律的得出、模型的建立,培养学生的思维能力以及科学的语言表达能力。

6.重视物理思想的建立与物理方法的训练。物理思想的建立与物理方法训练的重要途径是讲解物理习题。讲解习题时我把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,从高一一开始就训练学生作示意图的能力,如:运动学习题要求学生画运动过程示意图,动力学习题要求学生画物体受力与运动过程示意图,并且要求学生审题时一边读题一边画图,养成习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力。

一年来,我也遇到很多困难。由于课时有限,没有足够的课堂练习时间,高中物理对学生的思维习惯和学习能力要求又比较高,很多时候物理课后没有作业或者作业很少,但是一些概念、规律及情景需要学生在课下加深理解,然而很多学生所欠缺的正是课下的功夫,导致很多学生反映“一听就懂,一做就不会”。这一点是我教学中遇到的最大困难。在今后的教学工作中我将继续研究探讨这个问题。

高中物理教学反思优秀相关 文章 :

★ 高中物理教学反思优秀

★ 高中物理教学反思范文

★ 高中物理教师教学反思

★ 最新2020高中物理教师工作总结

★ 高中物理教学反思文章

★ 高中物理教育教学反思

★ 怎么写高中物理教学反思范文呢

★ 高中物理教学反思论文

★ 2020高中物理教师工作反思范文

★ 2020高中物理教学反思范文大全简短

护理医学刊物文章

我查了下,中文期刊在线,以下医学核心是可以发护理类文章的。 《护理研究》 《国际护理学杂志》 《医学临床研究》 《重庆医科大学学报》 《重庆医学》 《中国现代普通外科进展》 《中国医药导报》 《护理研究》 《国际护理学杂志》 《中国医院》 《实用预防医学》 《检验医学与临床》 《中华现代护理》 《中国医师杂志》 《河北医学》 《安徽医学》 《海南医学》 《辽宁中医药大学学报》 《现代生物医学进展》 《医学综述》 《世界中西医结合杂志》 《四川医学》 《蚌埠医学院学报》 《中国实验诊断学》 《医学影像学》 《实用临床医药杂志》 《中国妇幼保健》 《中华医院感染学杂志》

护理论文投稿可以投哪些杂志?目前护理类的杂志数量较少,需求量远大于发文量,因此对于护理工作者而言,发表论文难度相对较大。下面小编将结合我们网站统计的数据,为大家推荐几本护理类杂志,供大家参考。1.核心类护理期刊(1)《中华护理杂志》 CSCD核心期刊 北大核心期刊 统计源期刊影响因子:,审稿时间:1-3个月,月刊主要报道护理学领域领先的科研成果和临床经验,以及对护理临床有指导作用的护理理论研究。(2)《中国护理管理杂志》 北大核心期刊 统计源期刊影响因子:,审稿时间:1-3个月,月刊杂志栏目设置:政策法规 经验交流 社区护理 管理漫谈 护理安全 人力资源 整体护理。(3)《护理学杂志》 CSCD核心期刊 统计源期刊影响因子:,审稿时间:1-3个月,半月刊杂志栏目设置:护理研究 专科护理 中医护理 基础护理 整体护理 精神卫生 护理管理 护理教育。2.国家级护理类期刊(1)《循证护理杂志》影响因子:,审稿时间:1个月内,月刊主要栏目有:述评、论著、循证护理知识介绍、海外见闻等。现面向国内外医学院校、科研机构、医疗单位及个人征集稿件。(2)《山西护理杂志》影响因子:,审稿时间:1-3个月,旬刊杂志栏目设置:专题笔谈 论著 综述 调查研究 经济交流 护理管理 护理教育 个案护理。(3)《中国临床护理杂志》影响因子:,审稿时间:1-3个月,双月刊主要栏目:护理学基础、护理一般技术、康复医学护理、中医科护理、卫生保健护理、社区护理、内科护理、外科护理。

12种。只不过俺就不一一举例了就讲一个中国实用护理杂志》吧。望采纳!

你是要现在发布吗?如果急的话我要找找才能告诉你。

物理学报letpub

物理学报sci几区?

sci是国际核心数据库,收录国外英文期刊也会收录中文期刊。经查询,物理学报收录于sci数据库,sci根据影响因子划分为1区、2区、3区、4区,影响因子越高分区就越靠前,物理学报属于sci3区期刊。

查询期刊是否被sci数据库收录,可以利用这个平台查询,输入期刊名称如果有结果就说明是sci期刊,这样关于搜索期刊的所有内容都可以查询到,包括几区、是否在预警名单等问题。如果输入期刊名称没有出现结果,那就说明不属于sci期刊。

接下来,详细的介绍一下物理学报期刊内容:

《物理学报》杂志,于1933年经国家新闻出版总署批准正式创刊,CN:11-1958/O4,本刊在国内外有广泛的覆盖面,题材新颖,信息量大、时效性强的特点,其中主要栏目有:研究论文、研究快报。

Science: 三维断层结构控制震群的动态发展

理解一个地震如何发生及为何开始发生是地震科学的最大挑战之一。考虑到大地震和小地震的发生频度不同,理解断层带地震的发生发展过程可以通过对破坏性大地震的时空破裂过程研究,以及中小地震序列的时空演化过程开展高分辨率探测等途径加以实现。通常认为,断层的结构会控制地震破裂的起始、传播和停止,且断层形态在地下浅部比深部更复杂。但科学家对地下断层结构的探究比较困难,虽可通过钻井等方式直接观测断层的物性特征,但空间采样非常有限。随着地震观测台网密度的增加和分析手段的不断进步,海量中小地震的精定位为认识断层带的三维深部形态提供了一种有效的手段(参见前沿报道《寻找隐藏的微地震》)。

震群(Earthquake Swarm)是一类特殊的地震,通常指的是某一特定小区域在较短时间内发生的一系列中小地震,震群的持续时间可以是一些天、几个月,甚至是几年,震群中会存在多个震级相近的震级较大地震,但整个震群的能量释放过程同常见的主震-余震序列由1个主震或几个大震占主导的方式明显不同。主震后发生的一系列余震不应被称为震群,而震级特别大的多次破坏性地震,一般也不称为震群,比如1976年松潘-平武地区发生的2次级强震和最大震级达级的余震。震群的发生通常被认为是由于外部作用导致断层上的应力增加或者减少了发震断层的强度(Shelly et al., 2016)而致,自然发生的震群常与岩浆迁移和地热流体活动相关联。通过对震群活动的精定位分析研究,可以探究地下岩浆的迁移及断层带内的流体运移过程,为认识地震的孕育和发生发展过程提供直接观测依据。

图1 (a)研究区的地理位置及主要的活动构造分布;(b)卡维拉谷附近三个不同时间震群的时空分布图(Hauksson et al., 2019)

最近美国加州理工大学的Zachy Ross博士及合作者在Science杂志刊文(Ross et al., 2020),针对南加州圣哈辛托断层(San Jacinto fault)及埃尔西诺断裂(Elsinore fault)之间的卡维拉谷(Cahuilla Valley)岩体附近2016-2019年发生的震群活动(图1),利用南加州密集分布的固定地震台站记录的连续地震波形数据,应用深度神经网络算法进行自动地震检测及精定位分析,获得了展布在4′4′2 km空间范围内矩震级为的22000多个地震的精细时空分布,进一步分析发现该地区断层带内复杂的三维结构控制着该震群的动态演化过程(Ross et al., 2020)。通过该项研究,推动了对断层带内部精细结构的一系列认识:

(1)精细的地震分布限定了断层带的三维形态。在断层垂直方向,地震分布范围非常窄,只有几十米或更小,因此断层带的孕震层厚度可能较薄。同时断层面在走向方向和倾向方向上都不是一个平面,尤其在西北段,断层面的倾向随深度发生了多次相反的变化。同时,在断层带内部,存在一系列与走向平行的垂直间距约200-400 m较密集展布的地震条带,且这些条带具有起伏的几何形态并在断层带内大部分区域都存在。

(2)精细测定的地震时空分布限定了地震序列的演化过程及可能的物理机制。此次地震序列起始于断层带底部(约8 km深度)一个约100 m宽的区域,其后发生的地震迁移过程与地震波传播类似,存在前锋面(类比地震波传播的波前面),后续的地震活动都发生在该前锋面内部,在前锋面的前方不存在地震活动(图2)。这一观测暗示在断层带底部存在一个连续的点状流体注入源,地震活动性的迁移是因为流体持续注入和迁移导致的。其中慢慢扩散的前锋面暗示这个震群主要是由流体运移来驱动的,而不是如典型的地震序列那样由静态或者动态应力触发来驱动。震群迁移的速度非常慢,达到1-5 m/天,这比慢滑移地震的传播速度(几十千米每天)要慢的多,进而估计断层带内的渗透率约为10 -17 -10 -18 m 2 。整个震群的发展可以分为三个阶段(图2):自2016年至2017年,地震序列平稳发展且地震发生率比较低,然后发展到一个地震高发时段(阶段1和2),直到一次震级较大地震()发生,地震发生率显著增加(阶段3)后减少并在1年后停止。阶段1和2的地震发生过程可能主要由整个断层区的流体压力扩展驱动,而阶段3的震群活动则由静态应力变化和流体压力变化混合驱动作用。地震在周围断层区形成了显著的应力变化,这可能改变了渗透率结构,从而增强了整个系统的流体流动。随时间变化的应力降分析发现,阶段1和2的应力降中值约8 MPa左右,而阶段3的应力降中值下降为2 MPa,这些特征进一步证实了上面的推论。

图2 2016-2019年卡维拉谷震群的时空分布。(a)和(b)震群在水平面及沿断层走向的深度剖面上的分布,不同颜色表示相对于震群起始的时间。c)沿走向和倾向的地震迁移分布,可以看到在阶段2中存在迁移的各向异性,迁移更多是沿着走向方向(蓝色椭圆所示)(Ross et al., 2020)

(3)地震序列的空间演化过程为推测断层带的物性特征提供了直接证据。这个震群的非均匀空间分布暗示断层带的渗透性体系是空间变化的。在4年的震群活动期内,只存在极少量震源深度大于 km的地震,因此推测在该深度可能存在一个渗透率障碍体,或者断层带自身没有延伸到更深或者在这个深度存在介质流变性的变化。2016-2017年,震群在断层面内的迁移速度基本是各向同性的。此后,沿走向的迁移相对沿倾向的迁移速度更快,这同流体进入断层通道的推测相一致(图2c)。在2018年8月,在震群开始3年后,在大约6 km深度处沿断层带倾向向上的迁移基本停止了,仅在断层区东南端沿走向约1 km长的区域内地震继续向上迁移;而在这些地震向上迁移500 m后,地震活动快速升级并最终形成序列中最大的地震(地震)。此后,震群基本是向西北方单向迁移,将深度小于6 km的地震空区填满。基于这些观测,作者推测在6 km深度存在一个近水平的渗透性障碍体,几乎没有流体可以穿过它。因此,断层区的渗透性结构对局部的扩散性质起控制作用,渗透率不是静止不变的标量,而是一个随空间和时间变化的张量,渗透率可能会伴随滑移和断层恢复过程而随时间变化。

断层区内破坏区的几何形态决定了内部流体运移的通道或者屏障。此次震群由一个局部流体注入点扩散的特征表明断层区可能同一个深部源区相连,但是连接通道最初是被封闭的(图3)。而卡维拉谷(Cahuilla Valley)岩体附近在1980-1981年、1984-1985年和2016-2019年曾多次发生震群活动,表明该地区地壳深部存在一个规模较大的流体源区(图1;Hauksson et al., 2019)。深部流体供给的运移导致断层区的震群活动,可以用断层阀门模型(Sibson et al., 1981)来进行解释(图3)。该研究中深度神经网络算法的应用,使对海量连续地震波形记录中的地震检测识别和定位工作可以自动化完成,地震学家仅需检验部分识别结果以确保数据质量,这大大提高了微弱地震的识别效率和定位精度。

图3 对震群发生机制的解释卡通图,深部流体穿过底部障碍体的某处进入断层区,并向浅部运移导致震群的发生(Ross et al., 2020)

【致谢:感谢地星室陈棋福研究员对本文提出的宝贵修改建议。】

主要参考文献

吴建平,明跃红,张恒荣等.长白山天池火山区的震群活动研究[J].地球物理学报,2007, 50( 4):1089-1096.

Cesca S, Letort J, Razafindrakoto H N T, et al. Drainage of a deepmagma reservoir near Mayotte inferred from seismicity and deformation[J].Nature Geoscience, 2020, 13(1): 87-93.

Hauksson E, Ross Z E, Cochran E. Slow‐growing and extended‐durationseismicity swarms: Reactivating joints or foliations in the Cahuilla Valleypluton, central Peninsular Ranges, Southern California[J]. Journal ofGeophysical Research: Solid Earth, 2019, 124(4): 3933-3949.

Hill D P. A model for earthquake swarms[J]. Journal of GeophysicalResearch, 1977, 82(8): 1347-1352.

Nur A. Matsushiro, Japan, earthquake swarm: Confirmation of thedilatancy-fluid diffusion model[J]. Geology, 1974, 2(5): 217-221.

Ross Z E, Cochran E S, Trugman D T, et al. 3D fault architecturecontrols the dynamism of earthquake swarms[J]. Science, 2020, 368(6497):1357-1361.

Shelly D R, Ellsworth W L, Hill D P. Fluid‐faultingevolution in high definition: Connecting fault structure and frequency‐magnitudevariations during the 2014 Long Valley Caldera, California, earthquakeswarm[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(3):1776-1795.

Sibson R H. Fluid flow accompanying faulting: field evidence andmodels//Simpson D W, Richards P G (Eds.). Earthquake Prediction: AnInternational Review. American Geophysical Union: 593-603.

Stuart W D, Johnston M J S. Intrusive origin of the Matsushiroearthquake swarm[J]. Geology, 1975, 3(2): 63-67.

White R S, Edmonds M, Maclennan J, et al. Melt movement through theIcelandic crust[J]. Philosophical Transactions of the Royal Society A, 2019,377(2139): 20180010.

Zhang G, Lei J, Sun D. The 2013 and 2017 Ms 5Seismic Swarms in Jilin, NEChina: Fluid‐Triggered Earthquakes?[J]. Journal ofGeophysical Research: Solid Earth, 2019, 124(12): 13096-13111.

  • 索引序列
  • 物理学报文章
  • 地球物理学报文章网络预发表
  • 物理教学探讨文章
  • 护理医学刊物文章
  • 物理学报letpub
  • 返回顶部