一、分为一阶,高阶二、分为线性,非线性 按教材:一般先讲一阶方程的初等积分法,一类一类的讲,可分离变量,齐次,可化为齐次,线性,伯努利,恰当和积分因子,可降阶的几种类型,然后交代一下,不能用初等积分法的更多,然后是理论:存在唯一性定理,。。。然后重点讲线性。常系数齐次的特征根法,常系数非齐次的待定系数法,刘伟尔定理。。。。。
常系数微分方程:凡是联系自变量x,这个自变量的未知函数y=y(x)及其直到n阶导数在内的函数方程F(x,y,y′,y″,…,y(n))=0叫做常微分方程,并称n为常微分方程的阶。
一、常系数微分方程的地位和作用
常微分方程是是数学与应用数学、信息与计算科学专业的一门专业必修课,在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足常微分方程关系式的数学模型,需要求解常微分方程来了解未知函数的性质.常微分方程是解决实际问题的重要工具。
二、常系数微分方程知识点
1、一阶微分方程的初等解法
侧重点是一些简单的微分方程的求解,注意其中一个“变量代换”的思想。
2、解的存在唯一性定理
解的唯一存在区间求解(定理),区域(李普希思条件必要性)第k次近似解。
3、高阶微分方程
齐次和常数变异法,常数变易法(高阶线性方程)。
三、参考书目
王高雄《常微分方程》、丁同仁《常微分方程教程》、庞特里亚金《常微分方程》、东北师范大学微分方程教研室《常微分方程》、王鸿业《常微分方程及Maple应用》。
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
举例说明常微分方程模型是各类数学建模竞赛中常见的模型, 并通过列举一些参考文献来说明此类模型的建模方法和求解求解技巧不仅相同. 从而得出"常微分方程在数学建模中的应用"是值得研究的.
要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105
学习常微分就是根据已经知道的原理、公式等自然规律,列出一个一阶或者高阶的式子,求解出通解,,发现新个规律。个人观点,仅供参考!!
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
任找一本数学手册查(我是认真的!!!!)
心理学标论文格式:
1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。
2、论文摘要和关键词。
论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以300字左右为宜。
关键词是能反映论文主旨最关键的词句,一般3-5个。
3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
5、正文。是毕业论文的主体。
6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
(参考文献是期刊时,书写格式为:
[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。
参考文献是图书时,书写格式为:
[编号]、作者、书名、出版单位、年份、版次、页码。)
8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
扩展资料:
论文写作技巧:
技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。
技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。
技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。
技巧四:从小从专进行选题。所谓从小从专,即是指论文撰稿者在进行选择和提炼标题时,要从专业出发,从小处入手进行突破,切忌全而不专,大而空洞。
参考资料来源:百度百科-论文格式
高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
学术堂整理了一份心理学论文格式,供大家参考:封面题目:小二号黑体加粗居中.各项内容:四号宋体居中.目录目录:二号黑体加粗居中.章节条目:五号宋体.行距:单倍行距.论文题目小一号黑体加粗居中.中文摘要1、摘要:小二号黑体加粗居中.2、摘要内容字体:小四号宋体.3、字数:300字左右.4、行距:20磅5、关键词:四号宋体,加粗.词3-5个,每个词间空一格.英文摘要1、ABSTRACT:小二号、内容字体:小四号、单倍行距.4、Keywords:四号加粗.词3-5个,小四号TimesNewRoman.词间空一格.绪论小二号黑体加粗居中.内容500字左右,小四号宋体,行距:20磅正文(一)正文用小四号宋体(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式章:标题小二号黑体,加粗,居中.节:标题小三号黑体,加粗,居中.一级标题序号如:一、二、三、标题四号黑体,加粗,顶格.二级标题序号如:(一)(二)(三)标题小四号宋体,不加粗,顶格.三级标题序号如:.标题小四号宋体,不加粗,缩进二个字.四级标题序号如:(1)(2)(3)标题小四号宋体,不加粗,缩进二个字.五级标题序号如:①②③标题小四号宋体,不加粗,缩进二个字.(三)表格每个表格应有自己的表序和表题,表序和表题应写在表格上方正中.表序后空一格书写表题.表格允许下页接续写,表题可省略,表头应重复写,并在右上方写"续表××".(四)插图每幅图应有图序和图题,图序和图题应放在图位下方居中处.图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图.(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号.序号分章依序编码,其标注形式应便于互相区别,可分别为:图、表、公式()等.文中的阿拉伯数字一律用半角标示.结束语小二号黑体加粗居中.内容300字左右,小四号宋体,行距:20磅.致谢小二号黑体加粗居中.内容小四号宋体,行距:20磅参考文献(一)小二号黑体加粗居中.内容8-10篇,五号宋体,行距:20磅.参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出.(二)参考文献的格式:着作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数).引用部分起止页会议论文集:[序号]作者.译者.文章名.文集名.会址.开会年.出版地.出版者.出版时间.引用部分起止页附录(可略去)小二号黑体加粗居中.英文内容小四号TimesNewRoman.单倍行距.翻译成中文字数不少于500字内容五号宋体,行距:20磅.
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
1、 数量研究法
数量研究法又分为“统计分析法”和“定量分析法”。是通过对研究对象的规模、程度、规模等数量关系进行分析,揭示事物之间的关系,并分析发展趋势,以此来达到对事物的正确认识和预测的一种研究方法。
2、 定性分析法
定性分析法其实就是运用归纳、演绎、分析及抽象等的方法来自己收集的材料进行加工,选择适合自己的材料,选择对于文章论点有用的材料,去伪存真、由表及里的进行分析,从而使研究对象可以有“质”的提升。
3、 话题发散法
话题发散法就是采用话题扩散的方法就是在观点的基础上,从社会、环境、文化、家庭关系、经济等角度来切入,扩展适合自己观点的话题。
4、 跨学科研究法
跨科学研究法是从整体上对于某一课题进行综合研究的一种方法。任何事物都是不可能单独存在的,学科的研究看似是单独的一门学科,其实学科之间都是有统一的一个整体。学科之间的联系也越来越密切,在语言、方法和某些概念方面,有日益统一化的趋势。
5、 观察法
观察法就是研究人员通过自己的感官和一些辅助功能根据直接对被研究对象进行分析和观察,获得资料的一种研究方法。这种方法具有一定的目的性、计划性、系统性和可重复性。在一定程度上扩大了人们的感性认识,对于启发人们的思维、发现新的事物有一定的帮助。
以上的内容就是小编分享给大家毕业论文的几大研究方法,希望对正在写论文的你有所帮助哦!想要了解更多论文写作相关内容,欢迎大家及时在平台查看。
以下列举出几种写论文的研究方法:
1、调查法
调查法是最为常用的方法之一,是指有目的、计划的搜集与论文主题有关的现实状况以及历史状况的资料,并对搜集过来的资料进行分析、比较与归纳。调查法会用到问卷调查法,分发给有关人员,然后加以回收整理出对论文有用的信息。
2、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
3、观察法
观察法是指研究者用自己的感官或者其他的辅助工具,直接观察被研究的对象,可以让人们的观察的过程中,可以拥有新的发现,还可以更好的启发人们的思维。
4、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法。
5、比较分析法
是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
6、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。
论文研究方法包括什么
论文研究方法包括什么?论文是大学毕业或者是学术研究经常用到的,研究方法是完成论文的一种手段和方式,那么论文研究方法包括什么呢?以下是我整理的相关内容分享给大家,希望对大家有帮助。
一、规范研究法
会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。规范研究则是研究经济活动“应该是什么,应当怎么样”,或者说研究社会经济问题“应该怎样解决”等这一类的问题。
二、实证研究法
实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。
三、调查法
该方法是有目的、有系统的搜集有关研究对象的具体信息。也是实证分析的一种。研究者有计划地通过亲身接触和广泛考察了解,掌握大量的第一手材料,并在这一基础上进行分析综合,研究有关教育实际的历史、现状及发展趋势,找出科学的结论,以指导教育实践。调查法一般是在自然的过程中进行,通过访问、开调查会、发调查问卷、测验等方式去搜集反映研究现象的材料。
四、案例分析法
案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法。它是根据某些普遍原理,对社会生活中的典型事件或社会实践的典型范例进行研究和剖析,以寻求解决有关领域同类问题的思路、方法和模式,提出新的问题,探索一般的规律,检验某些结论的一种社会科学研究方法。
五、比较分析法
亦称对比分析法、指标对比法。是依据客观事物间的相互联系和发展变化,通过同一数据的不同比较,借以对一定项目作出评价的方法。它是经济活动分析的基本方法。是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。
六、思维方法
思维方法又称思想方法、认识方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等。一般分为三个层次:一是普遍适用的哲学思维方法;二是各门科学通用的思维方法;三是各门具体学科的特殊思维方法。通常所说的思维方法是哲学思维方法。它对于一切科学研究都具有普遍的指导意义。
七、内容分析法
内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的过程。它分析媒介所传递的信息内容,以了解传播者的意图和受传者同信息之间的相互关系的方法。它不同于调查研究通过访问了解人们对各种问卷的反应,也不同于实验方法之观察人的行为,而是对传播内容进行客观、系统的定量和定性分析。精密的内容分析,往往同时附带对信源、渠道、接收者、反馈或其他传播状况,诸如态度、个性、人口特点等进行调查。因此,通过内容分析即可预期传播过程的状况。
八、文献分析法
文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。它指通过对收集到的某方面的文献资料进行研究,以探明研究对象的性质和状况,并从中引出自己观点的分析方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。
九、数学方法
数学方法是运用数学提供的概念、理论和方法对所研究的对象进行定量的分析、描述、推导和计算,以便从量的关系上认识事物发展变化规律的方法。它不是或主要不是指数学家研究数学的方法,而是指除此以外的科研人员以数学概念和理论揭示所研究事物的内在联系和运动规律的方法。它属于理论思维的范畴,是对客观事物进行逻辑分析的重要形式和手段。也就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。
十、模拟法
依据相似原理,先设计出与某自然现象或过程(即原型)相似的模型,然后通过模型间接地研究原型的规律性的实验方法。模拟法是通过建造模型,以研究客观存在的自然现象。一般地说,模型是人们基于想象和抽象而对现实世界某种实体系统的一种简化了的映象。
十一、功能分析法
或称结构功能分析法,西方语言学、社会学等学科分析研究社会现象的一种方法。根据对社会现象功能的分析研究去解释说明社会现象。各个学科对功能分析的说法不一,对功能的解释也不相同。如:(1)语言学的.功能分析法。以功能为依据去分析语言。所谓功能是指一个语言成份在话语中和在它同别的成份的结构关系中所起的作用。如在语法中某一个词在更大一些的句法单位中所起的作用。
十二、预测分析法
对人们所从事的社会经济活动可能产生的经济效果及其可能的发展趋势,事先提出科学预见的一种分析方法。预测分析方法随着分析对象的不同而有所区别,基本上可归纳为定量分析法和定性分析法两种。
写论文步骤
1、搜索资料
在真正进行写作前,你需要清楚你文章的主题(topic),让自己变成关于这个主题的专家。这就需要你大量的搜索资料进行研究。 你可以利用一切便利的条件,比如网络,图书馆或者学术数据库。此过程中一定要做好笔记,让这些知识烙印在你的脑海。
2、分析
当你根据你的主题搜索学习了大量资料之后,你对你论文的论点便有了一个良好的知识基础。因此,现在你需要对你论文的论点进行近一步分析。你可以首先尝试分析别人的文章,进行学习。然后你需明确你的写作中心和目的,强化你的写作逻辑并为你的论点找到依据支持。
3、头脑风暴
好了,现在你可以自由解放你的大脑,让你的大脑活跃起来。如同写每一篇好文章一样,写好论文也需要你发挥自己的洞察力,释放自己的写作才华。你可以对自己提出一个问题并尝试用论文的方法来解答,你可以散散步去思考你论文的主题,提出你独到的见解。
4、要点
从你所想的众多点子里挑选出最好最清晰的,用简洁的一句话来总结他们,作为你论文的主要观点。记住你的观点一定要表达清晰,明确,简洁。
5、提纲
在你正式写论文的主体之前,你需要根据你的要点(thesis)写出提纲。其中要包括你论文的主题和论点,以及写作的顺序和结构。
6、简介
现在,你要开始正式写论文了。首先你要牢牢抓住你的论文主题,对你要写作的内容进行清晰的概述。这之中你可以针对你的主题在开头提出问题,即用反问的模式来吸引读者的注意。
7、段落
根据你的thesis,在每一个段落开头提出你的观点,即写出主题句。而后你需清晰的描述你的观点,阐述你的想法,并提出支持你的主张的依据。在段落写作之前,你可以先试着说出你的观点,想法和依据,这对你的写作会有一定帮助。
8、总结
尽量自然且优雅的对你的段落进行收尾,不需太拖沓。然后用简洁清晰的句子来对你的论文观点进行总结。
9、格式
此即是你论文引用的格式,根据你的导师的要求选择正确的格式,明确的列出你的信息源。
10、语言
现在你要重新审视你的论文,对你论文的语言进行修缮和修改。纠正你论文中的每一个语法错误,调整你句子的流量,对你的句子进行进一步编辑和美化。这之后,一篇优质的论文就诞生了。