不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
检查与实验相关的过程
与实验有关的过程直接影响实验结果,相对来说具体形象,容易分析。分析的目的是确保你设计的实验是可以用来检验假设的,并且获得的实验结果是可靠的。
需要检查的与实验相关的过程包括三方面:实验设计的合理性、实验数据的可靠性、数据分析的合理性。
丢失重要数据
也许由于实验室出现问题或存储数据的硬盘出现技术问题等,你丢失了大量对项目至关重要的数据。
首先,你应该请教导师,询问解决方法。在你有时间、有资源的情况下,可以考虑重新进行数据收集或实地考察,再次获取这些数据。
如果无法重新收集数据,那么可以与导师讨论如何把数据丢失纳入项目,成为研究的一部分。例如,如果是由于你所使用的某种研究方法导致数据丢失(比如,一个实验出现重大错误,导致部分数据被破坏),那就会引发非常耐人寻味、同时也十分重要的讨论。你可以研究并讨论数据丢失和错误的研究方法所带来的影响,这样也能够向该领域贡献有价值的原创知识。
这个有两种办法,第一种是对数据进行深层分析,提升你研究的深度。第二是参考同类型的文献,看看别人都是怎么写的,包括别人的用词和整体结构的。当然,你如果有条件的话,可以让老师给你指导一下,更直接的找出问题进行修改,这样写作质量就高了。在有数据的情况下,论文一般写作质量都很高的,只是细节方面需要优化。
进行科研,少不了做实验。得到实验原始数据后,要进行分析处理,来判断所得结果是否具有统计学意义上的显著相关性,是否支持研究设想,然后对数据结果进行解释,最后得出结论。 无论是期刊论文还是学位论文,在引言或前言(Introduction)中提出本研究的目的(aim/purpose),和研究假设(hypothesis),完成一系列的实验后,在报告方法(Materials and Methods)一节中,要进行数据分析。 通过数据分析,发现得出的结论具有相关性,从而验证了你的研究设想,实现了你的研究目的。 但也有可能实验结果的相关性不显著,得出的结果和研究设想不一致,甚至相反。你的第一反应也许是不理会那些数据,甚至想到要剔除掉它们。这是错误的做法。 一个科研人员应具备科研素质,尊重科学,严谨治学。其实相关性不显著,就是你实验的科学结论,只不过不支持你的研究设想罢了。你的实验结果证明你的设想不成立,从而否定了这一假设,这本身就是一结论。 一般情况下,如得出实验结果相关性不显著时,作者还要分析一下其原因,如样本不够大、变量不易控制、人为因素等。 下面以一篇SCI文章为例,来看看如果处理“不完美”的数据。 ❶We met with mixed success in our objectives. ❷We had believed that our results would indicate that trust was best described as a concept with two distinct dimensions. ❸Instead, we found an overall trust dimension that best characterized the data. ❹At least two plausible reasons may explain this difference, each providing rich areas for further research. ❺In part, some of the inconsistency may exist because of cross cultural variations. ❻In addition, some dissimilarity in results may exist because of methodological differences. 第一句话直接指出了部分结果与设想不一样,第二句和第三句分别阐述了原来的设想和实际得到的实验结果。第四句写出有两个原因,第五、六句具体分析了两个原因。
每一个孩子都经历过被论文支配的痛苦,大多数学生写完了文之后要去相关网站进行查重,如果某一位学生写出来的作文不合格,这位学生会根据不合格的原因进行修改。还有一部分学生论文,写完之后发给辅导员及专业课,老师,查看之后没有问题,却在答辩上出现问题,这类学生可以申请第二次答辩,答辩老师不会为难你的。学生并不害怕答辩,他们害怕自己写的论文效果不显着,那么当我们遇到论文效果不显著时,该怎么办呢?
每一个学生都会得到学校的安排,每一个学生都有专业课老师进行论文辅导。我们学校每一个班级都有一个专业老师,他会帮助我们修改论文,解决论文中的问题。当我们出现任何论文问题时,这位老师会查阅相关资料,给予我们最正确的答复。如果你的论文结果不显著,可以请教专业老师帮忙指导。
绝大部分学生论文效果不显著的原因是资料匮乏,所提出的观点得不到验证。还有一部分学生论文效果不显著的原因是查重率太高,论文不通过。既然你没有查阅相关资料就开始写论文,那么论文的结果肯定不会尽如人意,所以如果碰到论文结果不显著的情况,可以继续查阅资料,丰富论文内容。
这里指的是与其他人进行互帮互助,每一个班里都有学习很好的学生。如果你是一名学渣,所写出的作文结果不如人意,可以向同学寻求帮助,也可以和学习好的同学进行合作。许多人通过讨论与合作完成论文,寻求他人合作与帮助的过程中,千万不要害羞,让同学知道你有一颗爱学习的心。
上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不准确?进行了合理的分析之后,阐述实际的研究结果,不失为一种坦诚的、大度的、有效的方法。这种方法贵在实事求是,体现自己的态度:虽然我的学术水平确实一般,但是我的态度是端正的。老师一般不会难为这种学生的。2:鸵鸟法数据确实和预期不符,那么久摆在这里好了。反正答辩老师不会仔细看,他们不会发现这个问题的,看到就说不知道就是了。这种办法并不推荐,属于到最后没有时间修改的自暴自弃法。
论文中显著性水平标注方法:(1) 先将平均数由大到小排列(从上到下排列),在最大平均数后标记字母 a 。(2)用该平均数依次与各平均数相比(向下过程),凡差异不显著都标记同一字母 a,直到遇到与其差异显著的平均数,其后标记字母 b,向下比较停止;(3)再以标有字母b的该平均数为标准,依次与上方比它大的各个平均数比较(向上过程),凡差异不显著一律再加标b,直至显著为止(开始“掉头”向下);(4)再以标记有字母 b 的最大平均数为标准(向下过程),依次与下面各未标记字母的平均数相比,凡差异不显著,继续标记字母 b,直至遇到某一个与其差异显著的平均数标记 c;(5) 如此循环下去,直到最小的平均数被标记、且比较完毕为止。“招式”的标注方法:数据为不同病原真菌菌株侵染植物叶片后的病斑直径,SPSS数据、分析结果已经上传到论坛,大家可下载下来练一练。用SPSS做完多重比较需得到3个表格,分别是“描述性”,“方差同质性检验”,“多重比较”。从Levene方差齐性检验的结果(p=>)表明,适于用LSD法(Least Significant Difference,最小显著性差异法)进行多重比较。接下来将“描述性”表格,复制粘贴到Excel中,稍作整理后以平均值做倒序排序。差异显著性的知识延展定义:差异显著性即是显著性差异(significant difference),是一个统计学名词。它是统计学(Statistics)上对数据差异性的评价。通常情况下,实验结果达到水平或水平,才可以说数据之间具备了差异显著或是极显著。原理:当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。
会的,老师对数据都很敏感的,如果要改,改的东西太多。还是要严谨的对待论文啊。硕士论文修改实证结果会被发现。首先,硕士论文需要经过导师审核,预答辩,外审,答辩等多个环节,在这些环节中可能就会被参与的专家发现你的修改情况。其次,如果这些阶段都没有发现,那么恭喜你,你给自己埋了一个雷,如果之后被发现就是学术造假,追回学位。
那就自己修改一下。内容要客观,要实事求是。
对于实验来说,没有修正实验数据这一项内容。实验数据显示的都是正确的。但是实验出现错误,会导致得到的数据不正确。此时要从新做实验。这是正确的做法。如何判断实验数据是否正确呢?或者说实验的步骤出错如何尽早发现?预习实验时,要把实验里每步的理论值算出来。做实验时得到的数据与理论值对比,如果差很多,那就是实验出现了错误,须重新做实验。直接将实验数据改成理论值附近的数据的做法是不负责任的。
毕业论文数据有误,可以根据文献资料进行查询,将数据修改过来就可以。
高等学校和科学研究机构的研究生,或具有研究生毕业同等学力的人员,通过硕士学位的课程考试和论文答辩,成绩合格,达到上述学术水平者,授予硕士学位,基于此,硕士学位论文成为检验学业学术水平的重要依据和必要环节。
结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。
毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。
撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大学生在毕业前都必须完成毕业论文的撰写任务。申请学位必须提交相应的学位论文,经答辩通过后,方可取得学位。可以这么说,毕业论文是结束大学学习生活走向社会的一个中介和桥梁。
由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。
论文写作中数据实际涉及很多方面的,大部分是涉及到企业内部管理制度、组织结构、年度规划、年度报告、财务报表等等。
根据写作经验,通过知网找资料只能找到一些通用性的介绍,如公司简介、相关理论等,即使找到数据,也不是最新的。所以还需要通过其他渠道搜集数据。
实际上,能否找到足够的数据与选择的公司有很大的关系。如果是对数据要求非常高,建议选择上市公司作为研究对象,上市公司相关信息与财务数据全部是公开的,通过同花顺、东方财经网等都能够找到历年的财务数据以及相关资料。
截至目前,上市公司数据已经更新到了2021年9月份,完全能够支持论文写作的。如果不是上市公司,那尽量选择自己熟悉的公司,确保自己能够获得一手资料来充实论文。当然,还有一些大型企业,虽不是上市公司,但是在百度上输入“公司名称年报”也是能够搜的部分数据的。
上交论文后会给你结果是否显著1:实事求是法在结论部分坦诚,结论与预期不符,并分析为什么会造成这种结果:样本选择问题?数据收集问题?研究方法问题?还是单纯的预期不准确?进行了合理的分析之后,阐述实际的研究结果,不失为一种坦诚的、大度的、有效的方法。这种方法贵在实事求是,体现自己的态度:虽然我的学术水平确实一般,但是我的态度是端正的。老师一般不会难为这种学生的。2:鸵鸟法数据确实和预期不符,那么久摆在这里好了。反正答辩老师不会仔细看,他们不会发现这个问题的,看到就说不知道就是了。这种办法并不推荐,属于到最后没有时间修改的自暴自弃法。
首先打SPSS软件,开点击“分析”-“比较平均值”-“单因素ANOVA”。 2、在弹出的“单因素方差分析”选项卡中,将“体重”选入到应变量列表中,将“饲料类型”选入到因子中。 3、点击右边的“事后多重比较”,在弹出的选项卡中选择“LSD”,然后点击继续。 4、然后再点击右边的“选项”,在弹出的选项卡中选择“描述性”和“方差同质性检验”,点击确定。 5、在结果中,要看的就是方差齐性检验,在“单因素同质性测试”表中可以看到P=>,说明方差是齐的,可以使用单因素方差分析法。...全文5图75评论踩吕秀才2013-03-02知道合伙人金融证券行家关注
1、首先打SPSS软件,开点击“分析”-“比较平均值”-“单因素ANOVA”。
2、在弹出的“单因素方差分析”选项卡中,将“体重”选入到应变量列表中,将“饲料类型”选入到因子中。
3、点击右边的“事后多重比较”,在弹出的选项卡中选择“LSD”,然后点击继续。
4、然后再点击右边的“选项”,在弹出的选项卡中选择“描述性”和“方差同质性检验”,点击确定。
5、在结果中,要看的就是方差齐性检验,在“单因素同质性测试”表中可以看到P=>,说明方差是齐的,可以使用单因素方差分析法。
原始数据修改哪怕一个数字,所有的统计分析都要重做一遍如果还是不显著,又要修改一次,重做一遍也就是说,你的工作量会增加N倍没有任何一本教材交给你如何修改原始数据,包括世界上最出名的人,也不知道如何去修改原始数据来造假不过,专业做数据分析的人,是有一定的经验的,比普通人更容易知道如何去修改,修改什么地方,改为多大多小我经常帮别人做这类的数据分析的
不可以。经济类本科毕业论文的实证结果要么不显著,要么显著的部分低于20%的显著程度,在学术上很没有说服力,会影响论文通过。综上,经济类本科毕业论文10%显著性水平是不可以用得,不否和要求。
不可以。论文里面阐述的就是题目的要求,到时候答辩,老师问里面的数据和来源以及相关问题回答不出来是不可以的,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
看你是什么方法了,有的可以改