原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
能不能给我发一份呢?
数字图像处理方面了解的了。
能不能给我发一份呢?
姓名:刘帆;学号:20021210609;学院:电子工程学院 【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。 【嵌牛鼻子】目标跟踪算法,传统算法 【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点? 【嵌牛正文】 第一阶段 目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。 1、静态背景 1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。 2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。 与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。 3)Codebook 算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。 如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。 在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。 4)GMM 混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。 首先我们需要了解单核高斯滤波的算法步骤: 混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。 5)ViBe(2011) ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。 其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。 Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。 Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。 Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。 可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。 6)光流 光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。 光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设: 1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动; 光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪 2、运动场(分为相机固定,但是视角变化和相机是运动的) 1)运动建模(如视觉里程计运动模型、速度运动模型等) 运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。 Ⅰ、对相机的运动建模 由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。 Ⅱ、对于跟踪目标的运动建模 该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型) 2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波) Ⅰ、Kalman 滤波 Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。 在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为: 对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。) Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF) 由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。 UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。 Ⅲ、粒子滤波 1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征; 2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离; 3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子; 4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子; 5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重; 6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。 3)Meanshift算法 MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。 Meanshift算法步骤 1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量; 2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向; 3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点; 4)Camshift算法 Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串列进行分析。 1、首先在影像串列中选择目标区域。 2、计算此区域的颜色直方图(特征提取)。 3、用MeanShift演算法来收敛欲追踪的区域。 4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。 5、以此为参数重复步骤三、四。 Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。 3、小结 第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。 随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。
三帧差分算法是相邻两帧差分算法的一种改进方法,它选取连续三帧视频图像进行差分运算,消除由于运动而显露背景影响,从而提取精确的运动目标轮廓信息。该算法的基本原理是是先选取视频图像序列中连续三帧图像并分别计算相邻两帧的差分图像,然后将差分图像通过选取适当的阈值进行二值化处理,得到二值化图像,最后在每一个像素点得到的二值图像进行逻辑与运算,获取共同部分,从而获得运动目标的轮廓信息。三帧差法的具体算法如下。提取连续的三帧图像,I(k-1),I(k),I(k+1) 。(1) d(k,k-1) [x,y] = | I(k)[x,y] - I(k-1)[x,y] |;d(k,k+1)[x,y] = | I(k+1)[x,y] - I(k)[x,y] |;(2) b(k,k-1)[x,y] = 1; if d(k,k-1) [x,y] >= T;b(k,k-1)[x,y] = 0; if d(k,k-1) [x,y] < T;b(k+1,k)[x,y] = 1 if d(k+1,k) [x,y] >= T;b(k+1,k)[x,y] = 0 if d(k+1,k) [x,y] < T;(3) B(k)[x,y] = 1 ; if b(k,k-1)[x,y] && b(k+1,k)[x,y] == 1 ;B(k)[x,y] = 0 ; if b(k,k-1)[x,y] && b(k+1,k)[x,y] ==0 ;比较关键的就是第2步的阈值T的选取问题,单纯用otsu算法分割貌似效果不太好,如果手动设置一个较小的值(如10)效果还行。用otsu取阈值实现的一个三分差法代码。效果不是很好。运行环境 VS2008++windows XP .[cpp] view plaincopyprint?#include “”#include “”#include “”#include “”#include
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
科技领域。《光子学报》是中国科学院西安光学精密机械研究所、中国光学学会主办、科学出版社出版的学术月刊。光子学报目标检测论文属于科技领域,宗旨是展示光子学研究领域的新理论、新概念、新思想、新技术和新进展,反映代表该学科前沿并具有中国国内外先进水平而为国际上关心的最新研究成果。
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
不知道诶~不过你要写这类的论文你可以在网上找下(人工智能与机器人研究)吧~多学习多看看~找找灵感和思路·
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
大名鼎鼎的DenseNet,17年CVPR的best paper(当然有争议是后话),不得不读。黄高博士的扛鼎之作,之前在读他的Snapshot-Ensembles时感觉就很舒服,整个文章逻辑很清楚,实验对比做的也十分全面,相信这篇best paper更是没有问题,会给读者一种爽的感觉。
2852次。绝对值很高,但相比其他经典网络,ResNet,GoogLeNet之类,有些差距。
本篇在16年8月挂到arXiv上,中了2017年CVPR,是继16年何大神的ResNet之后,第二个华人的best paper, 这里 有个作者本尊的talk,现场讲解。一作Gao Huang(黄高)05年北航的本科生(GPA第一),15年清华博士毕业(读了6年。。),后来在康奈尔待了3年做博后,此刻在清华作青椒,本篇是在康奈尔时的工作。二作刘壮(同等贡献)也是碉堡,现在在伯克利做博士生,之前是清华姚班的(13级),发这篇文章时还在清华,也就是说 本科生 。。。最近以一作的身份新发了一篇《Rethinking the Value of Network Pruning》,中了19年的ICLR,同时也是18年NIPS的best paper award。。这个世界太疯狂了,这都不是潜力股了,而是才华横溢溢的不行了。
官方实现在这里:
黄高个人主页在这里:
刘壮个人主页在这里:
先前的研究中说明只要网络包含短路连接,基本上就能更深,更准确,更有效的训练。本文基于这个观察,引入了密集卷积网络(DenseNet),它以前馈方式将每个层连接到所有层。传统的卷积网络L层有L个连接,而DenseNet有 个直接连接。对于每一层,它前面所有层的特征图都当作输入,而其本身的特征图作为所有后面层的输入(短路连接被发挥到极致,网络中每两层都相连)。DenseNet具有几个引入注目的优点: 可以缓解梯度消失问题,加强特征传播,鼓励特征重用,并大幅减少参数数量。
随着CNN变得越来越深,一个新的研究问题出现了:随着输入信息或梯度通过多层,它在到达网络结尾(或开始)处就消失了。ResNets和Highway Networks通过恒等连接将信号从一层传输到下一层。Stochastic depth通过在训练期间随机丢弃层来缩短ResNets,以得到更好的信息和梯度流。FractalNets重复组合几个并行层序列和不同数量的卷积块,以获得较深的标准深度,同时在网络中保持许多短路径。尽管上述方法的网络结构都有所不同,但它们有一个共同特征:创建从早期层到后期层的短路径。
本文提出一个简单的连接模式:为了确保网络中各层之间的最大信息流, 将所有层(匹配特征图大小)直接相互连接 。为了保持前向传播性质,每个层从所有前面的层获得附加输入,并将其自身特征图传递给所有后续层。
至关重要的是,与ResNets相比,在传递给下一层之前, 不是通过求和来合并特征,而是通过concat来合并特征 。因此, 层有 个输入,包括所有先前卷积块的特征图。其特征图被传递到后续所有 层。这在L层网络中引入了 个连接,而不是传统架构的L个连接。正是因为这种密集连接模式,所以称本文方法为密集连接网络( Dense Convolutional Network DenseNet)。
相比传统卷积网络,这种密集连接模式有有一点可能违反直觉的是,它需要更少的参数,因为无需重新学习冗余的特征图。本文提出的DenseNet架构显式区分了添加到网络的信息和保留的信息。DenseNet的层非常窄(如每层只有12个滤波器),只给网络的"集体知识"增加一小组特征图,并保持其余的特征图不变。
除了更好的参数利用率之外,DenseNet的一大优势是它改善了整个网络中的信息流和梯度,使得网络更易于训练。每层都可以直接访问损失函数和原始输入信号的梯度( 我屮,这不就是GoogLeNet当时为解决梯度消失而在中间层引入分类器那种ugly办法的替代吗 ),从而导致隐式的深度监督。这有助于训练更深的网络。
与DenseNet相似的级联结构早在1989年就提出来了。。Adanet的提出差不多是与DenseNet并行的,跨层连接也相似(话说竞争真激烈。。)
本文作者提出的另一个网络Stochastic depth说明并非所有层都需要,在深度残差网络中存在大量冗余的层。本文的部分灵感也来源于此。
相比从极深或极宽的架构中提取表示能力,DenseNet是通过 特征重用 来利用网络的潜力,得到易于训练和高参数效率的压缩模型。相比从不同层拼接特征的Inception网络,DenseNet更简单有效(看来Inception因其结构复杂性没少被批判)。
定义 为单张输入图像,网络由 层组成,每一层实现非线性变换 ,其中 为层的索引号。 可以是BN,ReLU,Pooling,Conv等操作的复合函数,定义 层的输出为 。
传统的层连接: 。ResNets增加了跳跃连接: 。ResNets的一个优势是梯度可以通过恒等函数直接从后面的层流向前面的层。然而,恒等函数和 的输出通过加法合并,有可能会阻碍网络的信息流。
本文引入与ResNets不同的连接模式:从任意层到所有后续层的直接连接(图1)。结果就是,第 层接收所有之前层的特征图作为输入: 。为了便于实现,concat 的多个输入为单一张量。
受ResNet v2启发,定义 为三个连续运算的复合函数:BN,ReLU,3 x 3 Conv
当特征图的大小改变时,concat运算是不可能的,然鹅,卷积网络的一个关键组成部分就是下采样层,通过它可以改变特征图大小。为了便于在架构中进行下采样,将网络划分为多个密集连接的密集块(dense blocks),如图2所示。
将密集块之间的层称为过渡层(transition layers),它们进行卷积和池化。本文实验中的过渡层由BN,1 x 1卷积和 2 x 2平均池化组成。
如果每个函数 生成 个特征图,它后面跟着的 层有 个输入特征图,其中 是输入层的通道数。DenseNet和现有网络架构的一个重要区别是DenseNet可以有非常窄的层,如 。本文将超参数 定义为网络的成长率(growth rate)。对此的一种解释是,每一层都可以访问其块中所有前面的特征图,即,网络的『集体知识』。可以将特征图视为网络的全局状态。每一层增加自己的 个特征图到这个状态。成长率反映了每层由多少新信息对全局状态有贡献。全局状态一旦写入,就可以被网络中的任何地方访问,而不像传统网络那样,无需从一层复制到另一层。(全文精华应该就是这一段了)
1x1 conv非常有用(提升计算效率),本文也大用特用。本文定义DenseNet-B的 为 BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)
为了使模型更紧凑,可以减少过渡层的特征图数量。如果密集块包含 个特征图,定义接下来的过渡层生成 个特征图,其中 表示压缩率。定义 的DenseNet为DenseNet-C,本位实验中设置为 。当同时使用瓶颈层和压缩过渡层时,定义模型为DenseNet-BC。
非ImageNet数据集采用同一个架构,由3个密集块构成。ImageNet的架构如表1所示
CIFAR SVHN ImageNet
所有网络都用SGD。
CIFAR和SVHN的batch size为64,epoch分别为300和40,初始学习率为,在50%和75%的epoch时分别除10。
ImageNet的batch size为256,90个epoch,初始学习率为,在30和60epoch时分别除10。
weight decay为 ,动量为。用He初始化。
对于CIFAR和SVHN,还在每个卷积层后接了dropout层(除第一个卷积层外),丢失率为。
看表2的最后一行
DenseNet可以利用更大更深模型表示能力的增长。
如图4所示
主要用DenseNet-BC和ResNet作比较。
表面上看,DenseNets和ResNets没什么不同,两个式子的差别仅仅是输入从加法变为concat,然而,这种看似很小的修改导致两种网络架构的行为明显不同。
因为鼓励特征重用,所以得到更紧凑的模型。
如图4所示。
对DenseNets准确率提升的一种解释是各个层通过短路连接从损失函数接收额外的监督(某种深度监督)。DenseNets用隐式的方式执行相似的深度监督:网络顶部的单个分类器通过最多两到三个过渡层为所有层提供直接监督。 然而,由于在所有层之间共享相同的损失函数,因此DenseNets的损失函数和梯度基本上不那么复杂。
和随机深度的对比,随机深度有点类似DenseNet:如果所有中间层都随机丢弃,那么在相同的池化层之间的任意两层都有可能直接连接。
DenseNet就是好,就是好啊就是好。在遵循简单的连接规则的同时,DenseNets自然地整合了恒等映射,深度监督和多样化深度的属性。
又是一篇没有什么数学公式的paper,越来越感觉深度学习像物理,很多结果都是基于做实验得到的。通过对实验的观察对比分析,找出实验中的缺陷不足,从而去改进,然后发paper。黄高博士的写作套路还是非常讨喜的,特别是开头的地方,娓娓道来,一步一步告诉你为什么要这么做,为什么要引入这一步。此外,DenseNets和作者本人的工作『随机深度』也有千丝万缕的关系,看来功夫做扎实了,沿着一条道路是可以出一系列成果的。
这是个好问题。。是要进一步衍生ResNet吗?
提出密集连接结构,将ResNet的跳跃连接发扬光大为两两连接
效果比ResNet还好,通过减少滤波器个数(文中称作成长率),参数量也下来了
感觉效果提升并没有那么明显,被后续出来的ResNeXt超过了
各种网络结构的实现:
黄高本人视频讲解:
作者本人的解答: CVPR 2017最佳论文作者解读:DenseNet 的“what”、“why”和“how”
DenseNet的3个优势:
NMS 是 one-stage 和 two-stage 目标检测任务中常用的一种后处理方法,用来过滤无效重叠的检测框。
NMS 全称非极大值抑制,出自 ICPR2006 的论文 《Efficient Non-Maximum Suppression》 。其基本思想很简单,就是保留局部最大值而去除局部非最大值。
NMS 对所有的类别的检测框进行循环过滤。对于某个类别 C ,首先对这些矩形框按照概率降序排列,选中概率最大的框作为候选框,对于剩下的框,依次与候选框求 IOU ,如果 IOU 大于某个阈值(超参),则将这些框丢弃(置0),并标记保留最大概率框。
以此类推,最终所有的框相互之间的 IOU 都是小于超参阈值的,或者概率被置为 0 了。剩下的所有概率非0的框就是最终的检测框。
基于这种计算逻辑的 NMS 有两个缺点。首先, NMS 算法需要一个超参即 IOU Threshold ,这个阈值在不同任务中很难平衡。其次, NMS 会将相邻或者重叠的两个物体对应的两个大概率目标框去掉一个,造成漏检。
实现:
Soft-NMS 出自 CVPR2017 的论文 《Improving Object Detection With One Line of Code》 ,对 NMS 做了一些改进。
Soft-NMS 总体算法流程同 NMS 相同,主要差别循环过程中对阈值的判断部分。 NMS 是简单的对 IOU 大于阈值的检测框进行删除出来,而 Soft-NMS 则是通过权重来降低检测框原有的置信度。对于有重叠的框,重叠区域越大,置信度衰减越严重。
Soft-NMS 计算降低置信度的权重常用两种方法:线性法和高斯法。
线性法:
高斯法:
实现如下,方法 1 为线性法,方法 2 为高斯法,其他参数的话 Soft-NMS 退化为 NMS :
模拟的 5 个候选框:
实验可以看出,在相同 IOU 阈值的情况下, Soft-NMS 相比 NMS 保留了一个检测结果,这在同类别物体重叠的情况下能够提升其召回率。但是 Soft-NMS 又多引入了一个超参,这个参数的设置也会显著影响后处理的结果;而且,由于 Soft-NMS 在每次迭代都会修改 score 值,其最大值是在动态变化的需要在每次迭代都寻找一次,因此 Soft-NMS 相比 NMS 计算效率有所降低。