首页 > 论文发表知识库 > 初等数学研究的课程论文题目

初等数学研究的课程论文题目

发布时间:

初等数学研究的课程论文题目

想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值

浅谈初等数学中数形结合的构造法解题的思路及其应用,

初等数学研究的课程论文

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

初等 教育 是整个国民教育的基础,初等教育质量的高低影响着新一代 儿童 的素质发展,同时也影响着我国整体教育水平的发展。下面是我为大家整理的关于初等教育的论文,供大家参考。

初等教育(理科)专业对学生的培养目标是:掌握初等教育(理科)专业知识和专业技能,具有现代教育理念和一定的教育教学研究能力,能够胜任小学数学和小学科学课程教育教学工作的、一专多能的大学专科学历教师。那么如何围绕这一目标做好课程设置呢?本文将试做探析。

初等教育专业课程设置综合化当前师范专科学校在办学过程中课程设置中存在着一些困难和不足,主要表现在:一是专业目标定位不准。为了招生需要,往往把专业的定位拔高,名不符实,较少关注全体师范生的全面培养。二是课程设置缺乏合作举措。小教师资的培养与小学联系不紧密,没有合作 措施 ,共同教研活动很少,许多方案闭门造车。三是技能课程训练不够。学生基本功训练大多数是应付式的作业,纸上谈兵,缺乏行之有效的考核机制。四是课程内容老化陈旧,本科化倾向严重,开发校本教材的政策和措施不多,教师没有针对性教学的积极性,实际教学效果不佳。为此,笔者从课程设置的原则和重点、课程体系构建的过程序以及课程基本体系谈谈一些体会。

一、课程设置的原则

1.思想性原则,即坚持科学理论的指导并注重科学性与思想性的统一,注重学生正确的人生观、世界观和良好师德的培养,注重完善学生的人格结构。

2.师范性原则,即课程设置必须紧紧围绕小学教育、教学实际需要,突出小学教育的特点,坚持为小学教育服务的方向。

3.综合性原则,初等教育专业课程设置应注重学科之间的相互渗透,这不仅包括文理之间的相互渗透,也包括文科各学科和理科各学科之间的相互渗透,以培养教师全面化、多样化,一专多能的素质。

4.实践性原则,课程设置应注重学生的专业知识水准和从教实践能力的提高,使学生既具备坚实的专业知识基础,又具备良好的从教实践能力,并通过实践将知识内化为教师素质。

5.前瞻性原则,课程结构体系应具备适当的弹性和超前性,以满足现代社会快速发展的需要。

二、课程设置的重点

1.课程设置要强化小学教师专业化水平,突出小学教师综合培养。

(1)课程设置要全面化、多样化

课程设置要全面考虑小学教师综合技能及与小学生的沟通及照顾其成长的能力。小学教师除了需具备宽厚基础课程的相关知识,精通任教科目,还要求具有进行教学实践、与人沟通和参与社会竞争的能力。主要体现在职业知识、职业实践、职业关系三个方面。

(2)课程设置要综合化、弹性化

小学教师要有广泛的知识,在课程设置方 面相 对多样化、弹性化。给学生提供较大的选择空间,强调综合性,具有弹性,学生可以通过多种方式选修到自己感兴趣的学科。

重视学科的交叉设置,为师范生成为小学教师所需的广博的综合 文化 知识打下坚实的基础。专业教育课程要重视实践能力的培养,有效促成教师专业化成长。克服通识课程内容相对狭窄、观点陈旧,实践性不强,教育类课程内容普遍抽象,缺乏实践性的缺点。重视师范生综合素质的培养、教师实践能力的培养。

2.课程设置要重视教学实践能力的培养

(1)建立大学与小学长期合作关系

建立大学与小学长期合作关系是教师专业化的有效手段。联系周边的所有小学,与他们建立长期的合作,由大学教师和小学一线教师共同培养师范生,增加在小学进行的专业课程,加强师范生对小学情况包括小学每个年级的年龄特征的了解。让师范生在实践中发现问题,解决问题。

(2)重视教学实践能力的培养

注重实践能力的培养是提高教师整体素质的必由之路。加大实践实习在师范课程体系中的比重。加强教育见习、实习,小学教师的培养过程中,首先,保证实习时间,优化实习内容,让学生参与到实习学校的一切活动中,包括教研活动、班级管理、教工大会等。其次,进行分段实习,将实习贯穿于每个学期的教学中,这样不仅有利于学生在连续的实践过程中逐步认识小学教师职业,还能使学生有时间对其教学体验和感悟进行消化。

三、课程体系的构建过程

1.组建由专业带头人、骨干教师和兼职教师构成的课程体系建设团队。

2.调研、分析专业定位、岗位能力,写出分析 报告 ,提出对应课程模块。

3.依据专业定位,设计岗位需求的课程内容。根据专业知识、岗位能力、素质结构,设置课程及实践教学项目。

4.根据小学理科教师的职业素质、能力要求、国家教育改革与发展的政策和趋势,分解支撑该能力的知识点,制定相应的课程教学大纲、教学计划、考核标准,形成职业能力评价与考核标准与实施办法。

四、课程体系的基本结构

根据培养目标和初等教育(理科)专业“以能力形成为主线”的要求,确立构建如下合理、健全的初等教育专业课程体系与结构。

1.学年课程分布体系

(1)三年制高中 毕业 起点学生:学年为理论课(含校内实践课)+学年为校外实践课,即。

(2)五年制初中毕业起点学生:2学年为高中课程+学年为大专理论课(含校内实践课)+学年为校外实践课,即2+。

2.必、选课程体系

必修课程达到“理论够用”目的;选修课程达到“知识面广”目的。

3.课程模块体系

(1)理论课程模块:公共课(基本素质课程)、专业课(专业基础课、核心主干课、其他主干课)、职业素质课(职业基本素质课、教师基本技艺课)三类六模块课程体系。

(2)校内外实践课程模块:实验课、综合训练课、教育见习课、教育实习课和教育调查课共五类实践课程模块体系。

4.理论实践课程比体系

逐渐提高实践课程比例,达到“技术精湛”目的。实践课程占总课时的。

5.选修方向课程体系

在完成专业必须的基本知识、基础理论和基本技能课程后,设立若干个专业选修方向供学生选择,拓宽学生在小学教学的教学空间。

参考文献:

[1]高应东.学前教育三年建设方案(2013-2015年).

[2]王智秋.小学教育专业人才培养模式的研究与探索.教育研究,2007,(5).

[3]惠中.高等师范教育体系中小学教育专业建设的思考[J].高等师范教育研究,2003,(2):35-41.

[4]高璐.经济欠发达地区小学教育专业的定位与发展[J].教育理论与实践,2005,(3):30-32.

[5]王万良.小学数学教育与小学教育专业数学课程设计[J].课程・教材・教法,2006,(1):77-80.

[6]郭黎岩.发达国家小学教师培养的 经验 研究.比较教育研究,2007,(11):27

摘要:职业教育是培养应用型人才和具有一定文化水平和专业知识技能的劳动者。高等职业教育的发展使得我们必将教师这一特殊职业技能岗位的教育纳 入职 业教育的思考范畴。本文在职业教育的思想下讨论了初等教育专业的特性,并根据职业特性对小学教师的培养提出了几点思考。

关键词:职业教育 职业特性 初等教育

中图分类号:G712 文献标识码:C DOI:

职业教育是让受教育者获得职业或生产劳动所需要的职业知识、技能和职业道德的教育。与普通教育和成人教育相比较,职业教育侧重于实践技能和实际工作能力的培养。目前,我国的职业教育类专业大都采用“工学结合、校企合作、顶岗实习”的培养模式,每年培养数十万的职业类人才。传统认为,初等教育是属于普通教育下的师范教育,尽管有着知识积累与传承的这层特殊面纱,使得教师教育带有普通教育的知识特点,但是这无法遮掩“教师”是一个特殊职业技能岗位,也无法回避我们必将用职业教育的视角来看待教师教育。

1 初等教育专业的职业特性

职业教育的特性是其“职业性”,其基本内涵是“职业导向”。职业教育成效如何取决于它所培养的人才能否胜任其面临的岗位。我国初等教育专业所培养的大多是面向小学及教育岗位的人才。专家认为学前教育的主要职业特性是保育,是小学教育的前奏;中学教育的主要职业特性是学科教育,是小学教育的后续篇章;小学教育是两者的衔接,其低学段具有一定的保育性,高学段具有一定的学科教育性,它不仅要传递知识,更为重要的在于把握儿童成长的方向,不仅要保证儿童掌握基本知识和技能,而且更要帮助儿童学会学习,注重培养儿童的社会意识、创造能力、合作精神以及对 自然科学知识 的兴趣等,为其今后一生的可持续学习,成为开放的、具有全球视野的人打下基础。因此,促进小学生养成良好的品德与学习习惯是小学教育的基本目标。由此而言,养成性成为初等教育的主要职业特性。

2 职业特性对教师的要求

小学教师以小学生的教育为己任,而不仅仅以小学学科知识的传授为己任。小学生教育过程中育人是目的,知识的传授是手段。养成性作为初等教育的主要职业特性决定了初等教育的重心在于养成教育,这要求养成教育的执行者――小学教师必须具备以下素养:

知识体系――全科发展

职业视野下的小学教师知识结构与其职业对象密不可分。小学教师的职业对象是小学生。就认知特点来看,小学生的思维感知技能等方面都处于迅速发展的阶段。无论多么复杂的新事物,小学生都可以将其作为整体逐步同化纳入自己的认知体系进而掌握事物的整体特征。这一阶段的儿童不会像成人一样面对新鲜事物就立即将事物划分为各个零部件,了解零部件之后再加以整合进而认识新事物,小学生认识世界的过程是综合的整体的。美国卡内基教学促进基金会前主席波伊尔也曾指出初等教育区别于学前教育、中等教育、高等教育的最基本要素就是联系:人与人是互相联系的,各门课程与知识是互相联系的,课堂内容与文娱生活是互相联系的,学习与学生生活是互相联系的。因此,小学阶段需要有全科型教师对学生进行全方面知识的讲授,这有利于教师引导其更加全面发展的同时加强对学生整体素质的把握。目前,不少国家实行全科小学教师即是一个有力的佐证。

教学技能――知识传授的保证

目前,中国的教师国编招考政策允许综合型大学的学生通过统一考试进入教育行列。而教育专业的学生有别于其他专业学生的特殊性之一是学生在校期间的接受了专门的教学技能培养。初等教育专业定性在教育,决定了初等教育专业培养的学生必须通晓教育理论,熟练教学实践技能。当前,无论是国外还是国内,对职前教育培养都加强了实践教学教育。大多数采用2+1的培养模式和院-校合作的方式。但是小学教师的职业技能与中学教育技能不同,小学生模仿能力强,有很强的向师性,教师往往是学生的榜样,因此教师的教学技能必须规范。其次,理论研究和实践经验都表明,教育对象越是低龄,对教师的教育教学技能性和艺术性要求越高。儿童知觉过程的直觉性,使他们喜欢教师采用直观的教学呈现方式进行教学。因为儿童记忆的具体形象性,使他们更容易记住那些形象生动的事物。另外,儿童思维想象的独特性和情感的易感染性和弥散性等心理特点也都使得他们特别喜欢艺术活动。这些都要求小学教师在教学过程中,能结合小学生的心理特点,借助图片、声音、影像等生动活泼的载体,必要时辅之以儿歌、 童谣 、舞蹈、 简笔画 等形式帮助学生加深对知识的理解,并吸引学生的注意力,提高课堂效果。

职业的认识

教师职业是一种特殊的职业,是一种用生命感动生命,用心灵去浇灌心灵的职业。作为小学教师的初等教育专业毕业生对小学生的影响可以说是终身的,他们的工作态度,有时甚至一个随意的动作、一个不经意的眼神,都会在小学生们幼嫩的心里激起阵阵涟漪。小学教师的培养应该强调文化底蕴、通识教育、养成教育,使之具有较高的职业水准,使他们深刻认识什么叫教育,什么叫孩子,什么是初等教育,明确初等教育的养成教育意识,懂得养成教育的原理与 方法 ,这样才能促进他们的学生养成良好品德、良好习惯,才可能促进其生命的健康成长,真正实现对人的教育意义。

参考文献:

[1]陈莹.“职业性”:德国职业教育本质特征之研究[D].华东师范大学,2012.

[2]刘慧.初等教育学学科:高师小学教育专业的学科基础[J].课程・教材・教法,2011,(5).

[3]王佳艺.全科型小学教师培养的必要性及其途径[J].湖南第一师范大学学报,2012,(2).

[4]国家中长期教育改革和发展规划纲要2010-2020[EB/OL]..

[5]刘春玲.论小学教育专业学生应具备的语文教学技能[J].赤峰学院学报,2008,(8).

[6]司成勇.当代小学教育专业教师职业技能训练的内容、途径与策略[J].当代教师教育,2009,(9).

[7]雅斯贝尔斯著,邹进译.什么是教育[M].三联书店,1991.

[8]夏小林.初等教育专业毕业生素质问题研究[D].华中师范大学,2008.

关于初等教育的论文相关 文章 :

1. 有关初等教育毕业论文

2. 浅谈初等教育毕业论文范文

3. 初等教育专业论文参考

4. 初等教育毕业论文

5. 初等教育论文范文

6. 浅谈基础教育毕业论文范文

自己去百度找

想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1

初等代数研究论文课题

让学生学习生活中的数学 ——我校开展数学实践活动的做法及体会 自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。 (一)一 选取内容要符合学生年龄特点,可操作性强。 数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。 本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。二活动过程中,及时交流,互相启发,逐步完善。 数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。三关注过程与方法、情感与态度而不仅仅是结果。 综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。(二)一 师生互动,有助于教师观念更新 在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣 数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。三 综合利用知识,有助于学生综合能力的提高 《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

α,β是方程x²-3x+1=0的两根,则有α+β=3,αβ=1;1/β=αα²-3α+1=0,α²=3α-1∴ α^4=(α²)²=(3α-1)²=9α²-6α+1=9(3α-1)-6α+1=21α-83/β=3α∴α^4+3/β=(21α-8)+3α=8(3α-1)由方程解得 α=(3+√5)/2∴α^4+3/β=8(3α-1)=4(7+3√5)

虽然不太明白什么意思,还是靠我的理解给你写一篇吧.(我是按学生写的,你应该不是老师吧)小学6年级数学小论文小学的学习即将结束,我对小学数学也有了一些了解,在此篇论文中做一下总结.小学数学主要是奠定数学的一些最基础的概念,除了基本正有理数运算外,有两个主要部分,一是图形或几何体体积、面积的求解以及性质,即几何部分;二是一次方程以及其实际应用,即代数部分.下面我将依次说明.几何部分.几何是数学中一个重要分支,在小学,我们学习了一些几何公式,像三角形:C△=三角形三边之和S△=底×高÷2平行四边形:C=四边之和S=底×高圆形:C=2πrS=πr²立方体(长方体):S=六面面积之和V=底面积×高圆柱体:S=S侧+2S底V=S底×高还学会了一些几何性质,如平行四边形对边相等,有一个角是直角的平行四边形是矩形,圆柱体的侧面展开是一个长方形等,这些性质加深了我们对几何图形的理解,让我们能够根据这些性质解决一些简单的几何问题,并理解几何的一些公式.代数部分.代数是贯穿整个数学的思想,在小学,我们学习了正有理数的一些基本运算,还学习了一元一次方程与二元一次方程的列与解,简单了解了移项,合并同类项等一些基本解方程地方法,并能够利用方程解决一些实际问题,这些都是为今后高次方程与函数奠定的基础.这些是我们在6年学习的一些主要数学知识,我们应记牢小学中学过的知识,以便今后更深入的研究.

初等数学研究课堂小论文

第一部分:题头 题头含标题标题要求直接、具体、醒目、简明扼要(25字以内),3号宋体加粗,居中编排。第二部分:提要 提要部分含摘要、关键词等。分别以【摘要】、【关键词】(小4号楷体加粗)开头,内文用5号楷体,各空2字格编排。 摘要是论文内容的高度概要,是不加注释和评论的简短陈述,具有独立性和自含性。其内容应说明论文的主要研究内容、研究方法、研究结论等。论文中文摘要一般以3—5行为宜。 关键词3-5个,应能反映全文的主题、主要内容、主要思想、主要观点等,关键词之间以分号隔开,关键词结束不用标点符号。 第三部分:正文 正文是论文的核心内容,含引言与本论。 引言,或称小引,要简要说明论文话题的缘起、价值与意义、研究方法等,直接“引入”本论。 本论是主体部分,内容须观点明确、论据充分、论证严密、逻辑清晰、层次分明、语言流畅、结构严谨。 正文应按照内容层次分节,编号,要层次分明,用5号宋体。各种标题要求如下: 1. 一级标题:以阿拉伯数字排序标号,数字后用英文句号“.”,如:1. …。一级标题标号与标题采用小3号黑体,单独一行,居左顶格编排。 2. 二级标题:用阿拉伯数字在一级标号后增第二层标号顺序标注,两层标号之间用英文句号“.”分割,第二层标号后不使用任何符号,如: …。二级标题标号与标题采用4号黑体,单独一行,居左顶格编排。 3. 三级标题:用阿拉伯数字在二级标号后增第三层标号顺序标注,各层标号之间用英文句号“.”分割,第三层标号后不使用任何符号,如:…。三级标题标号与标题采用小4号黑体,单独一行,居左顶格编排。 各级标题字数均以不超过1行为限,标题结束处不使用任何标点符号。 4.定义:定义在各一级标题下顺序标号,比如,第1节第二个定义为定义。 5.结论与说明:定理、引理、推论、注记等结论与说明在各一级标题下按顺序统一标号,比如,第2节第3个上述定理、引理、推论或注记,如果是引理则标注为引理,如果是推论则标注为推论。 6.教学案例示例:各种举例在各一级标题下按顺序统一标号,比如,第2节第3个例子应标注为例。定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论、引理等)为小4号黑体,其后空一字格。其内容采用5号楷体。 7.公式:独立的数学公式要居中排列,在各一级标题下在最右边按顺序标号,并用括弧括住,比如,第2节第5个公式标注为()。多行公式的各行应当按照第一行的第一个等号对齐,各行的开头应该是等号或其它运算符号。 第四部分:参考文献 参考文献是指论文在研究和写作中参考或引证的主要文献资料,以【参考文献】作为标题(小4号楷体加粗,单独一行居左顶格编排),文献等用5号楷体,列于论文的末尾。所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 参考文献标注方式按《GB7714-87文后参考文献著录规则》进行。 文献是期刊、著作时,书写格式分别为: [1] 作者(甲,乙). 篇名. 杂志[J],年,卷(期):起始页(如). [2] 作者(甲,乙). 书名[M]. 地点:出版社,年. 附论文格式范例高一数学新教材教学策略初探【摘要】: 本文从分析新教材特点着手探索高一数学教学策略【关键词】:新教材;教学策略高一数学新教材,已于2001年秋季正式在我省施行,为把握新教材的知识结构、编排体系、编写意图、教学要求和教学特点,笔者认真阅读了教学大纲和教材,结合自己近期的教学实践,在此谈谈对新教材的认识和体会,不妥之处,敬请同行指正。1.新教材的特点分析精选内容在保证基础知识教学、基本技能训练、基本能力培养的前提下,对传统的初等数学进一步精简其次要的、用处不大的、而且学生接受起来有一定困难的内容。如高一上学期中删减了幂函数、指数方程和对数方程等,同时降低了某些内容的要求,如反三角函数的相关内容等。更新部分知识、表达方法及教学手段新增加了一些为了进一步学习打基础、有着广泛应用的、而且又是学生能够接受的新知识,如简易逻辑等;更新了传统内容的讲法和部分数学语言,更广泛地使用集合语言、逻辑联结词等来处理某些问题;更新了某些概念和数学符号,更新了教学手段和教学方法。如补集符号的更新、充许使用计算器等。2教学策略重视基础,以本为本,落实“双基”《新教学大纲》确定教学内容本着"有用、基本、能接受"的原则,即精选那些在现代社会生活和生产中有着广泛应用的,为进一步学习必需的知识;在数学理论、数学方法、数学思想上都是最基本的内容;在程度和分量上是高中学生能够接受的知识,避免要求过高、分量过重的现象。改变教学手段,注重形象思维的培养新教材更新了传统内容的讲法和部份数学语言,教材设计也更具形象化,因此在数学教学中,培养学生的形象思维能力显得非常重要。数学形象思维是数学思维的先导,在获得知识与解决数学问题的过程中,形象思维是形成表征(表象)的重要思维方式。在新教材中,它更进一步渗透于逻辑思维过程之中。如果没有形象思维的参与,逻辑思维就不能很好地展开和深入,也就不能使思维较好地求异和发散,更不适应新形势的要求。 【参考文献】:[1]人民教育出版社数学室编著.普通高中课程标准实验教科书•数学必修3.北京:人民教育出版社,2004,7[2]章晓军.解题要善于捕捉隐含条件.中学数学,2001,3

三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。

数学在生活中很多地方都有如:各色他告诉他绊脚石关于五十一高速钢第一位桃仁台红骨髓用途归保佑

第一部分:题头 题头含标题标题要求直接、具体、醒目、简明扼要(25字以内),3号宋体加粗,居中编排。第二部分:提要 提要部分含摘要、关键词等。分别以【摘要】、【关键词】(小4号楷体加粗)开头,内文用5号楷体,各空2字格编排。 摘要是论文内容的高度概要,是不加注释和评论的简短陈述,具有独立性和自含性。其内容应说明论文的主要研究内容、研究方法、研究结论等。论文中文摘要一般以3—5行为宜。 关键词3-5个,应能反映全文的主题、主要内容、主要思想、主要观点等,关键词之间以分号隔开,关键词结束不用标点符号。 第三部分:正文 正文是论文的核心内容,含引言与本论。 引言,或称小引,要简要说明论文话题的缘起、价值与意义、研究方法等,直接“引入”本论。 本论是主体部分,内容须观点明确、论据充分、论证严密、逻辑清晰、层次分明、语言流畅、结构严谨。 正文应按照内容层次分节,编号,要层次分明,用5号宋体。各种标题要求如下: 1. 一级标题:以阿拉伯数字排序标号,数字后用英文句号“.”,如:1. …。一级标题标号与标题采用小3号黑体,单独一行,居左顶格编排。 2. 二级标题:用阿拉伯数字在一级标号后增第二层标号顺序标注,两层标号之间用英文句号“.”分割,第二层标号后不使用任何符号,如: …。二级标题标号与标题采用4号黑体,单独一行,居左顶格编排。 3. 三级标题:用阿拉伯数字在二级标号后增第三层标号顺序标注,各层标号之间用英文句号“.”分割,第三层标号后不使用任何符号,如:…。三级标题标号与标题采用小4号黑体,单独一行,居左顶格编排。 各级标题字数均以不超过1行为限,标题结束处不使用任何标点符号。 4.定义:定义在各一级标题下顺序标号,比如,第1节第二个定义为定义。 5.结论与说明:定理、引理、推论、注记等结论与说明在各一级标题下按顺序统一标号,比如,第2节第3个上述定理、引理、推论或注记,如果是引理则标注为引理,如果是推论则标注为推论。 6.教学案例示例:各种举例在各一级标题下按顺序统一标号,比如,第2节第3个例子应标注为例。定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论、引理等)为小4号黑体,其后空一字格。其内容采用5号楷体。 7.公式:独立的数学公式要居中排列,在各一级标题下在最右边按顺序标号,并用括弧括住,比如,第2节第5个公式标注为()。多行公式的各行应当按照第一行的第一个等号对齐,各行的开头应该是等号或其它运算符号。 第四部分:参考文献 参考文献是指论文在研究和写作中参考或引证的主要文献资料,以【参考文献】作为标题(小4号楷体加粗,单独一行居左顶格编排),文献等用5号楷体,列于论文的末尾。所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。 参考文献标注方式按《GB7714-87文后参考文献著录规则》进行。 文献是期刊、著作时,书写格式分别为: [1] 作者(甲,乙). 篇名. 杂志[J],年,卷(期):起始页(如). [2] 作者(甲,乙). 书名[M]. 地点:出版社,年. 附论文格式范例高一数学新教材教学策略初探【摘要】: 本文从分析新教材特点着手探索高一数学教学策略【关键词】:新教材;教学策略高一数学新教材,已于2001年秋季正式在我省施行,为把握新教材的知识结构、编排体系、编写意图、教学要求和教学特点,笔者认真阅读了教学大纲和教材,结合自己近期的教学实践,在此谈谈对新教材的认识和体会,不妥之处,敬请同行指正。1.新教材的特点分析精选内容在保证基础知识教学、基本技能训练、基本能力培养的前提下,对传统的初等数学进一步精简其次要的、用处不大的、而且学生接受起来有一定困难的内容。如高一上学期中删减了幂函数、指数方程和对数方程等,同时降低了某些内容的要求,如反三角函数的相关内容等。更新部分知识、表达方法及教学手段新增加了一些为了进一步学习打基础、有着广泛应用的、而且又是学生能够接受的新知识,如简易逻辑等;更新了传统内容的讲法和部分数学语言,更广泛地使用集合语言、逻辑联结词等来处理某些问题;更新了某些概念和数学符号,更新了教学手段和教学方法。如补集符号的更新、充许使用计算器等。2教学策略重视基础,以本为本,落实“双基”《新教学大纲》确定教学内容本着"有用、基本、能接受"的原则,即精选那些在现代社会生活和生产中有着广泛应用的,为进一步学习必需的知识;在数学理论、数学方法、数学思想上都是最基本的内容;在程度和分量上是高中学生能够接受的知识,避免要求过高、分量过重的现象。改变教学手段,注重形象思维的培养新教材更新了传统内容的讲法和部份数学语言,教材设计也更具形象化,因此在数学教学中,培养学生的形象思维能力显得非常重要。数学形象思维是数学思维的先导,在获得知识与解决数学问题的过程中,形象思维是形成表征(表象)的重要思维方式。在新教材中,它更进一步渗透于逻辑思维过程之中。如果没有形象思维的参与,逻辑思维就不能很好地展开和深入,也就不能使思维较好地求异和发散,更不适应新形势的要求。

初等数学研究学生结课论文

数学是整个小学 教育 教学的重点和难点,同时也是很多学生的弱项,小学数学教师如何提高教学质量,激发学生学习兴趣,是贯穿于整个教学中的主要任务。下面我给大家带来小学数学论文题目与选题参考,希望能帮助到大家!

小学数学论文题目

1、小学低年级数学游戏 教学 方法 的案例研究

2、以学习为中心的小学数学教学过程研究

3、激发小学生数学学习兴趣的实践研究

4、农村小学与初中数学教学衔接问题的研究

5、小学低年级学生数学学习兴趣的培养

6、游戏化教学在小学数学教学中的应用与研究

7、激发兴趣对小学生数学探究能力影响的研究

8、小学数学教学中信息技术应用策略研究

9、《几何画板》在小学平面图形上的教学应用研究

10、小学高年级学生数学直觉思维能力培养的研究

11、培养小学第一学段学生计算能力的策略研究

12、交互式电子白板在小学数学教学中的应用研究

13、基于学习共同体的学校教研组建设调查研究

14、小学阶段教师对数学评价任务的认识研究

15、小学低年级数学游戏教学方法的案例研究

16、中美小学阶段数学课程标准比较研究

17、小学 四年级数学 教师课堂提问有效性调查研究

18、农村小学 三年级数学 体验式教学调查与实验探究

19、农村小学与初中数学教学衔接问题的研究

20、小学课堂环境改善的行动研究

21、网络环境下小学数学主题教学模式应用研究

22、培养小学生数学学习兴趣的教学策略研究

23、小学五年级 儿童 数学学习策略干预对改善其执行功能的研究

24、小学生数学 创新思维 的培养

25、促进小学生数学课堂参与的教学策略研究

26、使学生真正成为学习的主人

27、改革课堂教学的着力点

28、谈素质教育在小学数学教学中的实施

29、素质教育与小学数学教育改革

30、浅谈学生数学思维能力的培养

31、浅议表象积累与培养学生的思维能力

32、也谈学生创新意识培养

33、实施创新教学策略 培养学生创新意识

34、谈谈计算教学的改革

35、小学数学数与计算教学的回顾与思考

36、小学数学教材结构的研究与探讨

37、 小学数学应用题的研究

38、 改进教学方法培养创新技能

39、21世纪我国小学数学教育改革展望

40、面向21世纪的小学数学课程改革与发展

41、不拘一格育“鸣凤”

42、使学生真正成为学习的主人

43、 改革课堂教学的着力点

44、谈素质教育在小学数学教学中的实施

45、素质教育与小学数学教育改革

46、 浅谈学生数学思维能力的培养

47、浅议表象积累与培养学生的思维能力

48、也谈学生创新意识培养

49、《9和几的进位加法》教学设计

50、实施创新教学策略 培养学生创新意识

51、10以内加法整理和复习

52、改良“有余数除法计算”教法

53、给学生创新的时间和空间

54、和谐愉悦 主动探索--一年级《统计》教学片断评析

55、小学数学教育--教师之家--教师培训

56、面向21世纪的数学素质及其培养

57、能被3整除的数的特征

58、数学教学中培养学生创造思维能力

59、改进几何初步知识教学的初步探索

最新小学数学论文题目

1、基于DEA-Tobit模型的中国西部农村小学效率研究

2、中美职前小学教师教育中数学课程的比较研究——以上海师范大学和纽约城市大学为例

3、小学教育专业数学教学中应用现代教育技术探索

4、基于数学 文化 观的小学教育专业高等数学课程研究

5、数学史与小学数学教学:历史文化向度的思考——以竖式乘法为例

6、关于小学教育专业初等数论课程例题和练习题的几点思考

7、小学教育专业数学课程整合的策略

8、小学教育专业数学课教学突出专业特点的研究

9、小学教育专业(本科)高数类课程建设和教学改革的思考

10、高师小学数学教育类课程改革的路径选择

11、小学教育专业理科高等数学教学改革实践

12、用初等数论知识巧解小学数学题

13、Floyd算法在中心小学选址上的应用

14、小学教育本科专业数学课程教学研究

15、师范院校小学数学教育专业课程设置的现状及对策研究

16、学教育专业有效高等数学教学的探讨

17、关于小学教育本科专业数学课程目标的思考

18、整合数学类课程,提高小学教育专业本科学生的数学素养

19、小学教育专业数学核心课程体系探析

20、地方高校小学教育专业数学课程改革研究——以湖北科技学院为个例

21、浅谈微积分学习对提高小学数学教师素质的作用

22、基于数学文化观的小学教育专业高等数学课程研究

23、论高等数学与小学数学思维上的相通性

24、高师小学数学微格教学的 反思 与实践

25、新建本科院校小学教育专业数学分析教学初探

26、小学教育专业数学分析课程教学的几点思考

27、初中起点六年制本科小学教育专业(数学方向)高等代数课程的教学探索

28、小学教育专业本科生高等数学学习状况的调查研究

29、师范数学教学与小学数学教师学科知识相关性的调查研究

30、五年制师范小学教育专业《高等代数》教材初探

31、实践取向小学教育理科方向高等代数课程建设的探索与实践优先出版

32、高等数学与小学数学的链接点

33、学习义务教育教学大纲改革小学数学教学

34、小学教育专业微积分教学设计探讨——以《微分的概念》教学设计为例

35、高等数学与小学数学相关性的研究

36、对高师小学教育专业《高等数学》的思考

37、九年义务教育小学数学教学大纲审查说明

38、对小学教育专业数学类课程体系建构的思考

39、小学职前教师概率课程教学研究

40、试论高等数学课程体系改革——以小学教育专业为例

小学生数学论文题目与选题

1、浅议表象积累与培养学生的思维能力

2、浅谈学生创新意识培养

3、实施创新教学策略

4、改良“有余数除法计算”教法 小学数学数与计算教学的回顾与思考

5、小学数学教材结构的研究与探讨

6、小学数学应用题的研究

7、改进教学方法培养创新技能

8、21世纪我国小学数学教育改革展望

9、面向21世纪的小学数学课程改革与发展

10、改革课堂教学的着力点

11、谈素质教育在小学数学教学中的实施

12、素质教育与小学数学教育改革

13、浅谈学生数学思维能力的培养

14、改革课堂教学的着力点

15、谈素质教育在小学数学教学中的实施

16、素质教育与小学数学教育改革

17、浅谈学生数学思维能力的培养

18、浅议表象积累与培养学生的思维能力

19、谈学生创新意识培养

20、实施创新教学策略

21、谈谈计算教学的改革

22、信息技术与小学数学课程整合的研究与实践

23、运用CAI技术,优化素质教育

24、合理运用学具提高数学课堂教学效率

25、略谈“问题解决”与小学数学教学

26、渗透数学思想方法提高学生思维素质

27、引导学生参与教学过程发挥学生的主体作用

28、优化数学课堂练习设计的探索与实践

29、实施“开放性”教学促进学生主体参与

30、数学练习要有趣味性和开放性

31、“五、四、三自主式学法指导”教学模式初探

32、引导学生主动参与教学活动

33、改进几何初步知识教学的初步探索

34、多媒体课件在优化课堂教学中的功能及其策略研究

35、创新从习惯抓起

36、培养学生的创新意识要处理好的几个关系

37、让学生在数学学习中获得持续发展

38、小学数学创新学习的实验与研究

39、小学数学课题教学中学生创新意识的培养

40、浅谈小学数学总复习的“步步反馈,逐层提高”法

41、入情才能入理激情方能启思

42、实施“生活数学”教育培养自主创新能力

43、数学作业批改中巧用评语

44、提高元认知水平培养自学能力

45、“圆的面积”的教案

46、圆柱的认识

47、运用多媒体辅助教学优化数学教学方法

48、组织课堂讨论优化课堂教学

49、重视学生获取知识的思维过程

50、小论文巧算圆的面积

51、倒推转化巧拿硬币

52、联系生活实际提高课堂效率

53、数学教学中如何调动学生的学习积极性

54、根据心理学的理论进行计算法则教学

55、简单应用题教学再探

56、创设情境,培养学生创造个性

57、数学教学中培养学生创造思维能力

58、启动学海搁浅之舟-- 转化数学学习后进生的体会

59、学生“四会”能力的培养

60、联系实际,强化操作,努力优化数学教学

小学数学论文题目与选题参考相关 文章 :

小学数学教学论文参考(2)

★ 小学数学课题研究论文范文

★ 数学教育毕业论文题目参考选题大全

★ 小学数学应用题论文(2)

★ 小学数学课题方案

★ 小学数学教育专业毕业论文

★ 小学数学建模的优秀论文范文

★ 浅谈小学数学教育教学论文

★ 班主任教育论文题目选题大全

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值

如何写好数学教育论文华南师范大学数学系 何小亚一、数学教育论文的基本结构标题(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)作者名(单位名、省、市、邮政编码)摘要:[ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]关键词:(关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)引言(开头语)1. 选题的原因和重要性。2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。3. 本课题研究的目的、方法、计划。4. 本课题研究的意义和价值。几种常见的开头方法:1.内容范围开头法,即说明本文要论述的内容范围;2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;4.目的开头法,即直接把论文要达到的目的告诉读者;5.背景开头法,即阐述所研究课题的历史背景;6.结论开头法,即直接阐述论文的的主要结论。正文1 …………………………2 …………………结论与讨论(结束语)结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。下列情况可以省略结论部分:1. 前言部分已对结论进行了概括;2. 结论已不言自明;3. 验证性的论文;4. 商榷、反驳、补充性的论文。附录附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。参考文献参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。引用文献为期刊,可仿下面的例子书写:[1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,6:41-43.[5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:[2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:江苏教育出版社,1998. 96-104.引用文献为报纸,可仿下例书写:[8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。一、问题的提出(背景、问题、你要研究什么问题……)二、术语界定(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)三、研究的现状(综述同行(相关文献)的研究情况)(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)五、研究方法(你的方法属文献研究、比较研究、定性研究)六、研究结果就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。七、研究结论(根据“五、研究结果”得出的结论)八、研究展望(研究的不足/存在的问题/进一步值得研究的问题)二、数学教育论文的选题1.学习研究数学教育文献数学教育类期刊Educational Studies in Mathematics(荷兰);Journal for Research in Mathematics Education(美);Mathematics Teaching(英);Mathematics Teacher(美);《课程. 教材. 教法》(人民教育出版社)《数学教育学报》(天津师范大学等)《数学通报》(中国数学会,北京师范大学);《数学教学》(华东师范大学);《中学数学》(湖北大学);《中学数学教学参考》(陕西师范大学);《中学数学研究》(华南师范大学)。2.把握数学教育研究的新动向及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。3.研究课程标准和新教材九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材4.研究学生学习数学的过程和教学方法5.研究初等数学问题对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。三、注意事项1.结合自己的兴趣特长选择研究课题2.注意文献资料的取舍围绕课题选择文献资料,选择的材料应具有典型性(代表性)、实践性、理论性和新颖性3. 构思与布局在总体构思论文的框架结构时,要注意从整体上思考如何提出问题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。4. 修改和定稿初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。5. 注意创新论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。6.不容易被刊用的稿件的特点(1) 论述的经验、方法是众所周知的;(2) 所列举的数据有为自己评功摆好的嫌疑;(3) 选用的例证陈旧;(4) 仅仅是例证的堆砌,缺少深刻的理论分析;(5) 概念不清,逻辑推理出错;(6) 结论的推导冗长而应用面狭窄;(7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;(8) 文章过长(超过5000字)。附件四:研究课题举例一、一般性的研究课题1. 中学数学课程标准的分析研究2. 关于高考数学命题及答卷的研究3. 数学开放题研究4. 数学应用题研究5. 优秀数学教师的教育思想及教学艺术评析6. 数学教学改革实验研究7. 数学差生的成因与教学对策8. 学生数学能力评价研究9. 数学教育中的素质教育内涵10. 中学数学教学与学生创新意识培养11. 中学数学教学与学生应用意识培养12. 数学课程评价的理论与实践13. 数学语言教学研究14. 数学思想方法的教学研究15. 中学数学作业处理16. 运用数学方法论指导数学教学17. 中学生数学阅读能力的调查研究18. 中学生数学语言能力的调查研究19. 数学学习方式的调查研究20. 数学交流能力的调查研究二、 高中数学新课程教学方面的研究课题(一)在新课程理念下对原有内容的教学研究1. 函数教学研究2. 向量教学研究3. 立体几何教学研究4. 解析几何教学研究5. 导数及其应用教学研究6. 概率与统计的教学研究7. 不等式教学研究8. 三角恒等变换教学研究(二)对新增内容的教学研究9. 算法教学研究10. 统计案例教学研究11. 框图、推理与证明教学研究12. 选修系列3教学研究13. 选修系列4教学研究(三)双基与能力教学研究14. 新课程理念下高中数学双基教学设计研究15. 关于培养学生抽象、概括能力的研究16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究17. 数学新课程实施中学生自主学习的研究18. 数学教学中培养学生自我监控能力的研究19. 关于《标准》中课程内容与要求的科学性、可行性的研究20. 数学文化对于促进学生数学学习的研究21. 数学教学中渗透数学探究、研究性学习的研究三、高中数学新课程的评价课题1. 对学生数学学习过程评价的研究2. 体现新课程理念的模块终结性评价工具与方法的开发3. 对选修系列3、选修系列4读书报告的评价4. 对数学探究、数学建模的评价5. 高中新数学课程课堂教学评价6. 高中数学教师专业化发展评价7. 数学新课程理念下的高考命题研究8. 数学教学中情感、态度、价值观的评价9. 关于过程性评价与终结性评价有机结合的研究四、高中数学新课程的信息技术研究课题1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)3. 信息技术与研究性学习的融合4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)5. 信息技术对评价的形式与内容带来的影响6. 以信息技术为主要手段的数学课程和教学资源库的建立7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究9. 信息技术与数学课程内容整合的案例开发五、高中数学新课程的课程资源研究课题1. 算法的背景与实例的收集与积累2. 概率与统计的背景与实例的收集与积累3. 导数及其应用的背景与实例的收集与积累4. 关于高中数学选修系列3课程资源的开发与积累5. 关于高中数学选修系列4课程资源的开发与积累6. 现行高中数学新教材的比较研究7. 数学新课程资源的拓广与应用8. 网上数学资源的拓广与利用9. 数学教学软件的研制与开发10. 数学教学资源的传播与信息共享六、高中数学新课程的研究性学习(数学建模、数学探究)1. 如何指导学生选择数学探究、数学建模的课题2. 数学探究、数学建模活动与课堂教学的关系研究3. 研究性学习对培养学生能力的作用中学数学教材、教学研究的问题1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。3.统计与概率内容的系统设计及案例交流。4.课题学习的系统设计及案例交流。5.整理与复习的系统设计及案例交流。6.几何内容的系统设计及案例交流。7.发展学生推理能力的系统设计及案例交流。8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。9.信息技术对课程内容选择、呈现以及教师专业发展的影响。10.如何体现数学的文化价值,不只局限于数学史。11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)12.教材怎样才能更好地体现数学的特点及学生的认知特点。13.建立数学模型与数学的双基教学。14.如何处理教材“留白”和学生自学(阅读)之间的关系。15.教材“留白”与教师发展空间之间的关系。16.对评价的思考与实践。附二:教学设计模板课题名称:×××××××教学年级:×年级设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)一、教学内容分析1.教学主要内容2.教材编写特点本节课内容在单元中的地位,本节课教材编写的意图及特点等。3.教材内容的数学核心思想4.我的思考下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。二、学生分析1.学生已有知识基础(包括知识技能,也包括方法)2.学生已有生活经验和学习该内容的经验3.学生学习该内容可能的困难4.学生学习的兴趣、学习方式和学法分析5.我的思考:下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。调研中可以将学生测验、访谈、小组观察等结合起来。三、学习目标(以学生为主语)1. 知识与技能2. 过程与方法(数学思考、解决问题)3. 情感态度价值观说明:1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。四、教学活动教学活动就是为学习目标的实现所设计的活动。包括1.活动内容2.活动的组织与实施说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。3.活动的设计意图说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。4. 活动的时间分配预设说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。可以参考下面的表格形式,也可以用文档的形式。活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配五、教学效果评价目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。以下几点供教师思考:(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。(4) 教学是需要设计的,最后达到寓教于“无形”之中。(5) 设计应该考虑单元或更大的范围。

  • 索引序列
  • 初等数学研究的课程论文题目
  • 初等数学研究的课程论文
  • 初等代数研究论文课题
  • 初等数学研究课堂小论文
  • 初等数学研究学生结课论文
  • 返回顶部