一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
[思路分析]1,数学是什么 2,生活中的数学 3,提出论点 4,进行论证 5,点明中心这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1)写什么 写小论文的关键,首先就是选题,同学们都是初中学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测: “探究大桥的热胀冷缩度” ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它: “一台饮水机创造的意想不到的实惠” ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法:”分式“家族”中的亲缘探究”,”纸飞机里的数学” ④对自己数学学习的某个章节、或某个内容的体会与反思:“没有条件”的推理,小议“黄金分割”,奇妙的正五角星 (2)怎样写 ①课题要小而集中,要有针对性; ②见解要真实、独特,有感而发,富有新意; ③要用自己的语言表述自己要表达的内容 (四)评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,既有实践又有创新的论文肯定更容易受到亲睐,所以,希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 4问题教学法在开放教育高等数学课中的应用 摘要: “问题式”教学是一种以问题为本的教学形式, 它主要是教师引导学生创造性解决问题的过程。在高等数学学习过程中, 给我们留下深刻印象的是不断地提出问题、研究问题、求解问题, 衡量我们学习数学的成效也主要通过解决数学问题的能力来评价。 关键词: 问题教学; 开放教育; 高等数学 一、“问题式”教学法的提出 建构主义理论的内容很丰富,其核心是:以学生为中心,强调学生对知识的主动探索、主动发现 作者:王惠书 文章来源:论文网 人气:2498 加入日期:2008-12-30 --------------------------------------------------------------------------------4“数字鸿沟”与地球信息科学的应对 2003年上半年,连续出现严重的全球性突发事件,国家与地区之间的“数字鸿沟”,差距继续在扩大之中,发人深省! 伊拉克应对美英联军的战争,是一场很不对称的非常规战争。美国步兵师的装备全部数字化、信息化,具备很强的制空能力。精准制导炸弹占80%-90%,而1991年海湾战争中只占,科索沃战争美国一共动用了50多颗民用和军事 作者:陈述彭(院士) 文章来源:论文网 人气:2684 加入日期:2006-5-29 --------------------------------------------------------------------------------4变式教学中习题引申应注意的几个问题 “引申”主要是指对例习题进行变通推广,重新认识.恰当合理的引申能营造一种生动活泼、宽松自由的氛围,开阔学生的视野,激发学生的情趣,有助于培养学生的探索精神和创新意识,并能使学生举一反三、事半功倍.笔者在教学视导中发现,有些教师对引申的“度”把握不准确,不能因材施教,单纯地为了引申而引申,给学生造成了过重的学习和心理负担,使学生产生了逆反心理,“高投入、低产出”,事倍而功半.下面就引申要注意的几个问 作者:佚名 文章来源:论文网 人气:3989 加入日期:2006-5-18 --------------------------------------------------------------------------------4“以错纠错”的案例分析 “以错纠错”的案例分析文/罗增儒 在文〔1〕中,笔者认为:“学生在解题中出错是学习活动的必然现象,教师对错例的处理是解题教学的正常业务,并且,错例剖析具有正例示范所不可替代的作用,两者相辅相成构成完整的解题教学”.下面发生在特级教师身上的“以错纠错”现象,竟能在多家刊物延续十年之久,则促使笔者进一步思考:错例分析可能对教师的教学观念和业务素质都提出了更高的要求. 一、出示案例 我们先引述3处 作者:罗增儒 文章来源:论文网 人气:2877 加入日期:2006-5-14 --------------------------------------------------------------------------------4“研究性学习”的教学研究 “研究性学习”是指学生的一种学习行为,若从这个角度进行研究,应属于学习论的范畴.但教学过程包含“教”与“学”两个方面,学生的“研究性学习”无论是在课内还是在课外,都是在教师指导下进行的.因此,为开展“研究性学习”的教学改革,从教学角度进行研究更显重要.本文想从教学的角度对“研究性学习”的教学含义、教学特性以及“研究性学习”的教学设计等方面谈点粗浅的看法. 1 “研究性学习”的教学含义 随着 作者:郝 澎 文章来源:论文网 人气:6930 加入日期:2006-5-14 --------------------------------------------------------------------------------4“特征信息”的捕捉与解题的最优化 丁保荣在文〔1〕中,提出了一个十分重要的问题:通过捕捉题设(或结论)中的“特征信息”,优化解题思路.罗增儒教授在他的许多文章中也有精辟的论述,尤其是在解题分析中,非常重视解题速度、解题的最优化问题.〔2〕〔3〕 文〔1〕的例1、例2的“特征信息”,其实都可以联系到一个重要不等式: 定理 若a,b∈R,则(a+b)2≥4ab. 文〔1〕的例1尽管给出了三种解题思路,但是却有美中不足:尚未 作者:孙建斌 文章来源:论文网 人气:1461 加入日期:2006-5-14 --------------------------------------------------------------------------------4“尚未成功”的突破 坦率说,在我个人的解题经历中,“尚未成功”乃至失败,实在是比激动人心的成功多得多.但是,“尚未成功”并非只给笔者留下消极的结果,而面对偶尔的顺利笔者也总是要继续寻找当中的“解题愚蠢”(见文〔1〕、〔2〕),我不知道这些说来见笑的个人体验是否对广大读者有点帮助,但我能肯定地说,这是我本来就少得可怜的解题财富中的主要资产,并且我的看法(包括本刊1998年开始的解题分析连载以及《数学解题学引论》一书)已 作者:罗增儒 文章来源:论文网 人气:1590 加入日期:2006-5-14 --------------------------------------------------------------------------------4“排列、组合”单元的教学体会——优化和发展学生教学认知结构的再认识 1.调整教材内容顺序,加强认知结构的层级性 智慧技能的教学是学校教学的中心任务.著名认知心理学家加涅认为,智慧技能主要涉及概念和规则的掌握与运用,它由简单到复杂构成一个阶梯式的层级关系:概念(需要以辨别为先决条件)→规则(需要以概念为先决条件)→高级规则(需要以规则为先决条件).因此,对于中学数学的每个单元,学生应该按照加涅关于智慧技能由简单到复杂构成的这个层级关系去学习,以便按照这个层级关系
一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
相同:(1)表达它们的都是式子:函数式、方程式、不等式 ;(2)它们都含有类似的代数式:ax²+bx+c ;(3)它们的代数式都只含有一个未知数(一元);(4)它们的代数式中的未知数的最高次数都是二次 。————————————————————————————区别:(1)二次函数、一元二次方程、一元二次不等式的概念范畴分别是函数、方程、不等式 ;(2)二次函数中,代数式ax²+bx+c 等于因变量y ;一元二次方程中,代数式ax²+bx+c 等于零;一元二次不等式中,代数式ax²+bx+c 大于或小于零;(3)图像:二次函数的图像是一条曲线:抛物线 ;一元二次方程的解是点:二个点或一个点或无点 ;一元二次不等式的解集是线段或射线 。联系:(1)一元二次方程的知识是研究二次函数和一元二次不等式的基础知识 。(2)令二次函数y=ax²+bx+c的y=0,则原式变为一元二次方程ax²+bx+c=0 ,令一元二次不等式ax²+bx+c>0的不等号变为等号,则原式变为一元二次方程ax²+bx+c=0 。(3)二次函数y=ax²+bx+c抛物线与x轴的两交点的横坐标x1、x2(x1<x2),即为一元二次方程ax²+bx+c=0的两根。(抛物线与x轴有一个交点,即方程有二个相同的根;没有交点,即方程无解。)一元二次不等式ax²+bx+c>0 解集是:x<x1 或 x>x2 ;对于ax²+bx+c<0,解集是:x1<x<x2 。
你找个难一点在网上又有详细解答的题把它抄上去(带解答)再说一下思路就差不多了
2017年美赛B题赛题 2017MCM ProblemB: Merge After Toll Multi-lanedivided limited-access toll highways use “ramp tolls” and “barrier tolls” tocollect tolls from motorists. A ramp toll is a collection mechanism at anentrance or exit ramp to the highway and these do not concern us here. Abarrier toll is a row of tollbooths placed across the highway, perpendicular tothe direction of traffic flow. There are usually (always) more tollbooths thanthere are incoming lanes of traffic (see former 2005 MCM Problem B). So whenexiting the tollbooths in a barrier toll, vehicles must “fan in” from thelarger number of tollbooth egress lanes to the smaller number of regular travellanes. A toll plaza is the area of the highway needed to facilitate the barriertoll, consisting of the fan-out area before the barrier toll, the toll barrieritself, and the fan-in area after the toll barrier. For example, a three-lanehighway (one direction) may use 8 tollbooths in a barrier toll. After payingtoll, the vehicles continue on their journey on a highway having the samenumber of lanes as had entered the toll plaza (three, in this example). Considera toll highway having L lanes of travel in each direction and a barrier tollcontaining B tollbooths (B > L) in each direction. Determine the shape,size, and merging pattern of the area following the toll barrier in whichvehicles fan in from B tollbooth egress lanes down to L lanes of considerations to incorporate in your model include accidentprevention, throughput (number of vehicles per hour passing the point where theend of the plaza joins the L outgoing traffic lanes), and cost (land and road constructionare expensive). In particular, this problem does not ask for merely aperformance analysis of any particular toll plaza design that may already beimplemented. The point is to determine if there are better solutions (shape,size, and merging pattern) than any in common use. Determinethe performance of your solution in light and heavy traffic. How does yoursolution change as more autonomous (self-driving) vehicles are added to thetraffic mix? How is your solution affected by the proportions of conventional(human-staffed) tollbooths, exact-change (automated) tollbooths, and electronictoll collection booths (such as electronic toll collection via a transponder inthe vehicle)? YourMCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter tothe New Jersey Turnpike Authority, and your solution (not to exceed 20 pages)for a maximum of 23 pages. Note: The appendix and references do not counttoward the 23 page limit. 2017年美赛B题赛题翻译 B题中文翻译: 问题B:收费后合并 多车道有限接入收费公路使用“坡道收费”和“障碍收费”来收取驾驶员的收费。斜坡收费是在高速公路的入口或出口匝道处的收集机构,并且这些不关心我们在这里。障碍收费是一排跨过高速公路的收费站,垂直于交通流的方向。通常(总是)更多的收费站比交通车道(见前2005年MCM问题B)。因此,当驶出收费站时,车辆必须从较大数量的收费站出口车道“扇入”到较少数量的常规行驶车道。收费广场是高速公路需要用于促进障碍收费的区域,包括在障碍收费之前的扇出区域,收费路径本身以及收费路径之后的扇入区域。例如,三车道高速公路(一个方向)可以在障碍通行费中使用8个收费站。在支付了费用之后,车辆在具有与进入收费广场相同数量的车道(在该示例中为三个)的高速公路上继续行驶。 考虑在每个方向上具有L个行驶车道的收费高速公路和在每个方向上包含B个收费站(B> L)的障碍通行费。确定跟随收费障碍的区域的形状,尺寸和合并模式,其中车辆从B过街出口车道下行到L个车道。在您的模型中纳入的重要注意事项包括事故预防,吞吐量(每小时通过广场末端加入L外出车道的车辆数量)和成本(土地和道路建设昂贵)。特别地,该问题不仅仅要求可能已经实现的任何特定收费广场设计的性能分析。重点是确定是否有比任何常用的更好的解决方案(形状,大小和合并模式)。 确定您的解决方案在轻和重的流量的性能。随着更多自主(自驾)车辆添加到交通组合中,您的解决方案如何改变?您的解决方案如何影响常规(人员配备)收费站,精确更换(自动)收费站和电子收费站(例如通过车辆中的应答器收集电子费用)的比例? 您的MCM提交应包括1页摘要表,1-2页给新泽西州收费公路管理局的信件,以及您的解决方案(不超过20页),最多23页。注意:附录和参考文献不计入23页的限制。 2017年美赛B题优秀论文解读 2017年美国大学生数学建模竞赛有4907支队伍选择了B题,其中有5支队伍获得了特等奖。他们分别是56731、68303、69427、70174、70545,我们对这5篇特等奖论文进行了简单的分析,结果如下: (1)56731队伍提议的收费站的分布类似于蜂巢。在每个规则的六角形蜂窝的中心,有两个收费站,为两个分开的车辆流服务。由于新收费广场的特殊格局,总面积可大幅度减少。同时,可以减少排队造成的平均浪费时间,这意味着吞吐量将得到提高。此外,通过将合并过程分为两个阶段,也可以减少事故发生的可能性。与传统的线性分布收费站相比,新设计的蜂窝结构大大减少了建设面积。利用排队论对收费广场的吞吐量进行了分析。为了验证他们的理论,他们利用PTVISSIM模拟了大量车辆通过收费广场的行为。仿真结果表明,理想的蜂窝式收费站与传统的收费站相比具有更好的效果。接着分析了不同类型收费站的比例对他们设计的影响。他们模拟了蜂窝式收费广场在不同交通流量下的性能,显示该模型对交通流变化不敏感,鲁棒性强,适合于实际施工。为了进一步降低事故发生的可能性,他们对蜂窝收费亭概念模型进行了改进:使过渡区更加平滑,各种收费站的布置更加公平。对于自动驾驶车辆,在收费广场的中心,他们预留了特别的e-zpass收费亭。电子收费和自动车辆是现代交通的发展趋势,我们的新设计模式可以在成本、吞吐量和安全等方面提高收费广场的性能。 (2)68303队伍首先根据收费站的不同形状、大小和合并模式将已实施的区域划分为8类。其次,利用VisSim对收费站典型的8种模型进行了仿真研究。通过设置必要的观测点,他们获得了吞吐量数据、队列的时间和平均延迟时间。接着建立了基于主成分分析的综合评价模型,对8个典型模型进行了评价,并建立了最优评价模型。经过数据归一化后,得到了等腰梯形形状的最佳模型。为了获得更好的解,我们建立了两个模型来获得最优解。第一种是微分方程模型,目的是求出梯形区域的最优高度和收费站的最优数目。第二种是线性规划模型,它可以在最大限度地提高区域吞吐量的同时,计算出最优的合并模式。最后,他们分析了模型在不同条件下的性能,并对模型进行了修正以适应这些条件,还利用LINGO进行了灵敏度分析。 (3)69427队伍从事故率、交通流量和建设成本三个方面研究了收费广场的优化设计方案。同时给出了收费广场的设计方案和合并模式。第一阶段,假设交通状况正常,确定收费站的数目。而收费车道的数量取决于交通容量、交通流量和服务水平。他们通过上述三个指标建立收费站的功能模型。并在在灵敏度分析中发现,交通流量与收费车道数呈正相关。第二阶段,建立了基于最小风险和最大吞吐量的合并模式优化模型。该模型通过对现有收费广场性能的分析,优化其设计方案。他们认为整个收费广场的减速分流和加速合并是一个有方向的加权网络流。第三阶段,考虑到收费站车辆的可变运动,采用前后车的行驶距离和后车的制动距离。确定收费广场的规模,并建立优化模型,使建设成本降至最低。值得注意的是,他们对模型进行了详细的测试,发现轻型交通流的交通流量和事故率较低。最后,应用该模型对新泽西高速公路收费广场的优化设计进行了研究。 (4)70174队伍提出了一种新的广场设计开发和评价方法,该方法综合了不同交通水平的影响、收费站的支付方法以以及越来越多的自动驾驶汽车的数量首先,在NetLogo中创建了一个广场模型。因为它允许汽车模拟交通中的人与人之间的交互。在此基础上,他们的稳健模型能够评估影响广场顾客满意度的各种变量的多重实现。研究发现,为了最大限度地提高广场的满意度和效率,需要采用对称设计。此外,电子应答器专用车道数量的影响很大,此类通道的数量较多,总体满意度较高。研究发现,无人驾驶汽车的影响是可以忽略不计的,在不同的参数中,减少停车量和流量的能力对系统的影响最大。该有助于缓解美国各地主要收费广场的拥挤状况。 (5)70545队伍在建立模型之前,列出了一些假设,以使现实生活中的场景更容易建模。然后他们开始分析现有的模型,从中总结出它们的优缺点。他们通过分析这两种模型的特点,提出了两种新的模型:控制时间模型(CTM)和等待区模型(WAM)。在这两种新模式中,他们介绍了一种控制收费站车辆离开时间的方法。他们将根据他们的控制方法和一些假设,继续计算合并区域的大小和形状。在此基础上,提出了一种基于数学证明和计算机仿真相结合的最优合并模式的求解方法。他们接着根据实际情况下的统计规律,对不同模型的吞吐量、风险和成本进行了仿真研究。然后利用统计假设检验对这三种模型进行了比较,得出结论:ctm总体上是最好的。我们继续通过考察建筑成本和吞吐量(每小时)对模型中包含的一些变量的灵敏度来测试我们的模型,从不同的角度验证了模型的可靠性。最后他们对模型的优缺点进行了分析。
一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆
递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时 通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为: 解得 , .则 ∵ ∴ 解得 方法二:待定系数法构造等比数列1(初等代数解法)设常数 , .使得则 , 时,有……联立以上n-2个式子,得:∵ ,上式可化简得:那么……(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。, 的解为则方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
初中数学方程教学方法研究论文
【摘要】 在新的教学背景下,每一门科目的教师都在不断寻找最简便有用的授课方法。方程是一种解决问题的方法,在数学、物理、化学等学科中都有广泛的运用,因此教师要利用教学课堂把方程这一知识点详细地给学生进行讲解,使学生可以运用好这一解题方法。在数学的具体授课中,教师要从学生的审题、列方程、解方程、验证方程等各个环节进行讲解,学生要熟练掌握方程这一知识点,运用这一知识点可以解决很多数学问题。通过教师方程的课堂讲解,学生能够学会独立分析问题,学会亲自动手动脑解决问题,开拓自己的学习潜能。通过教师的课堂讲解,学生能更快地明白解题思路,同时掌握更多的学习方法与技能。本文对初中数学中方程教学的有效方法应用进行了深入探究,对相应的问题提出了解决方法。
【关键词】 初中数学;方程教学;方法应用
初中数学中方程知识的教学占据着一定的比重,这一知识点可以贯穿到很多的学习内容中,并成为初中数学题目中解题的基础方法。对于方程教学来说,教师不仅要重视学生的解题思路和方程规律特点的讲解,还要对实践操作中的审题环节、作业反馈出现的问题重点关注。通过这样的方式,才能促进学生对于方程更高效的学习,更透彻更全方位地掌握方程知识。教师在制定教学计划的时候,要进行教材内容的分析,确定好教学主题,明确授课目的,做好知识点的衔接贯通、技巧讲解、教学逻辑性等方面的设计。通过这样的教学方法的制定,激发学生对于方程学习的兴趣、启发学生动脑思考能力,从而促进学生该学科成绩的提升。
一、培养学生的方程意识与思维
初中方程授课主要集中在一元一次方程、二元一次方程与一元二次方程的学习,不一样的形式在解题的运用方法方面也有很大的差异。因此,学生在学习过程中要掌握好每个方程的定义以及解题方法,加减法的运用在方程中是非常广泛的,教师在课堂中要利用理论性的教学方式来为学生讲解方程的不同定义以及意义,让学生通过教师课堂的'讲述分清方程的用法,尤其在选择填空题的解题方法中,教师可以引导学生做题的方法,可以运用画图的方式直接作题。在常见的题型中,如果题面上几何与方程没有太多联系,教师就要通过教学引导,引导学生运用代入方式来构建方程的形式来答题。学生刚接触方程就去解答问题往往还不熟练,因此教师要时刻提醒学生用方程的思想去回答问题,使学生形成习惯,建立高效的方程运用思想。要让学生了解到,题目中给了很多的数量关系,学生就要采取构建式子的形式去解答问题,从而利用方程去解答问题。教师通过这样的方式指导学生答题,既可以培养学生利用方程思想解决问题的习惯,又可以培养学生的动脑思考能力,从而教师也达到了制定的教学计划。
二、一题多变式教学方式应用于方程授课
在初中应用题教学过程中,教师首先要引导学生对应用题要有大概的了解,在把题意读懂的基础上进行分析解答,同时教师可以利用一道习题进行改编,使学生学会举一反三。例如:一个生产队有玉米400亩,收玉米340000斤,平均每亩产多少斤?这是一道求平均数的问题,通过教师的引导又可以发现:如果没有告诉我们总量,那么我们可以先求出总产量。这道题又可以改变成另外一种形式:一个生产队有玉米400亩,分两组收割,第一组收割180000斤,第二组收割160000斤,那么平均每亩产多少斤玉米?因为方程的形式并不是一成不变的,学生可以在这道应用题的基础上进行改编,再变成另外一道方程习题。教师也可以通过小组竞赛的方式来激发学生做题的动力,教师把学生分为几个小组,同时让小组成员进行讨论,看哪个小组能改编的题目最多、最新颖。通过这样的方式,学生可以在旧知识的基础上得到新的东西,从而学生的动脑能力也得到了极大的提高。
三、一题多解式的教学方法应用于方程授课
在初中数学中,应用题是学生拿分数的一项题型,应用题可以培养学生解决问题、分析问题的能力,应用题的解决方法是多种多样的。教师可以鼓励学生多分析,用多种方式去解决应用题。学生想出的解决方法越多,越有助于培养学生独立分析问题的能力,还要思考简单的解决步骤,这样就不会束缚自己的思想,从而思维也得到了锻炼。例如:小红和小明在400米的环形跑道上练习长跑,同一时间同一地点向相同的方向出发,已知小红的速度是8米每秒,小明的速度是10米每秒。那么请问小红跑了几圈以后,小明就可以超过小红一圈?这道题有很多的解答方式,教师可以先指导学生运用普通的解答方式解答问题,接下来要引导学生利用方程去解答问题,从中让学生对比两种解答方法有什么差异或相同之处。从各种角度去寻找不同的解决方式,让学生从不同的解法中获得启发。教师用鼓励的形式去激励学生的动脑能力,在数学的学习中解题的思路有很多种,在答案正确的基础上,学生的思路没有绝对的对与错,教师可以通过引导把学生的思路引到简单的解题方式中,从中也培养了学生的独立思考能力,提升学生对于数学解题的兴趣。通过初中数学中方程的授课,学生对方程有了大概的认识。通过习题的练习,培养了学生独立动脑思考能力及分析问题、解决问题能力,激发了学生对于数学学习的兴趣。用方程的形式解决实际遇到的问题,这种解题方式很高效,这种新形式的解题方法在教学中也许不能立即看出效果,教师要对学生进行长久的训练以及培养,让学生熟记这一解决问题的方法及思路。通过长时间的练习,学生提升了分析问题的能力,养成了推理判断的习惯以及自主解决问题的能力。教师也要随时进行新的授课方法的引进,对自己的授课方式进行总结与完善,从而真正提高学生的课堂效率,达到授课的教学目的。
【参考文献】
[1]卢春华.初中数学教学反思刍议[J].中学教学参考,2016(31):90-90.
[2]刘廷超.刍议在初中数学教学中数学思想和方法的渗透[J].科学咨询,2015(51):130-130.
论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数少可几十字,多不超过三百字为宜.4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索. 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方.主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头. 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍,紧扣主题.(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论.主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤; d.结论.6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行.中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证.(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息.如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题. 2,在不了解和了解不详的领域中寻找课题.3,要善于独辟蹊径,选择富有新意的课题.4,选择能够找得到足够参考资料的课题.5,征询导师和专家的意见.6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件. 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法.文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定.综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长.科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢.参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 Fig. 1, Fig. 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)1.选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择.2.创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)3.提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展.三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 words.内容要求与中文大体相同,主要讲目的,过程,方法和结果.内容要精练,不要将结论译成英文作摘要.文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的.先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points).如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了). 高的效率从结论开始,浏览图示和表,看看他的引用. 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分. 跳过你已经知道的部分(比如背景和动机). 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西.写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证.阶段性的复习可以发现这些思想是不是开始走在一起(fit together).即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结.(You may find yourself spending over half of your time reading, especially at the beginning. This is normal.) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设.这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力. 保存读过的文章,建立在线的参考书目.增加关键字的的域,文章的位置和感兴趣的文章的总结.这对以后写文章以及给其他的研究生很有用. 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要.选择一两篇仔细阅读并且批判. 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读. 参加一个研讨会或者讨论组,批判性的听取. 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了.另外一方面,也不要让别人的想法限制了你的创造力. 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育".不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读.一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始. 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的.学习它们的内容和表达,注意它们里面的-进一步工作.(future work) 仔细的记笔记.记下每一个新的结果,即使没有重要的和有帮助的东西. 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处. 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写.直接写主要想法big idea,记录怎样和其他部分组织在一起.一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了.开始写作(四)无休止的修改格式而不是内容也是常犯的错误.要避免这种情况 清楚自己想说什么.这是写清楚要的最难最重要的因素.如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么.确信你的文章真的有思想(ideas).要说清楚为什么,不仅仅是怎么样. 从每一段到整个文章都应该把最引人入胜的东西放在前面.让读者容易看到你写的东西(Make it easy for the reader to find out what you've done).注意处理摘要(carefully craft the abstract).确定(be sure)说出了你的好思想是什么.确定你自己知道这个思想是什么,然后想想怎么用几句话写出来.开始写作(五)不要大肆夸耀你自己做的事情. 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论.知道别人对论文的意见很重要.你给别人帮助,别人会在你需要的时候帮助你.而且,自己也能提高.为文章写有用的评论是一门艺术.你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达. 如何减少写论文的痛苦写下自己的想法是完善它的好方法.你可能发现自己的想法在纸上会变成一团糟. 慢慢 地你也发觉它清晰起来.记住你写得草稿很可能要全部推翻.着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程.当你发现所写的不是你开始想写的,写下粗稿,以后再修补.写粗稿可以理出自己的思想,渐渐进入状态.如果写不出全部内容,就写纲要,在容易写具体的内容时再补充.如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾.当你写出足够的内容,再编辑它们,转化成有意义的东西.另一个原因是想把所有的东西都有序的写出来(in order).次序是不一定的.你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介.写作是很痛苦的事情,有时候一天只能写上一页.追求完美也可能导致对已经完美的文章无休止的修改润饰.这不过是浪费时间罢了.把写作当作和人说话就行了. 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写.一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次.记住:你完成的每一步工作都使你接近完成.六,论文写作辅助工具论文模板绘图工具的使用公式编辑器实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点.以终为始,以始为终.学士论文常见问题1.论文格式不合要求或字数不够 2.第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节.概述最好写到4页以上.,概述写清背景,动机以及本文的工作安排.也可以把本文的贡献放上去, 3.对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果.4.有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码.并对代码给出分析. 5.论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 6.你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)o...
小学数学应用题教学思考论文
用题教学要求老师展开应用题教学的目标应当是在生活中应用所学的数学理论知识,不过就当前的教学模式而言,大部分老师并没有将应用题融入实践元素,只是局限在教学的表面。我为您整理了小学数学应用题教学思考论文,仅供参考。
摘要:
在新课改不断深化的大背景下,新课程理念作为小学阶段的教学理念得到了广大教育工作者的认可,进而有效的提升了小学数学应用题教学的品质,不过仍存在许多问题亟待解决。本文首先阐述了小学数学应用题教学的现状,然后从情境教学法、环境教学法和实践教学法这三点来探讨小学应用题教学的策略。
关键词:
小学数学;新课程理念;应用题
就目前的初中数学教学而言,其教学目标就是理论结合实际,在实践中注入理论的元素。而应用题则实现了理论知识和实际生活的有机结合,进而能够提升学生的兴趣,使学生的社会实践能力和认知数学知识的程度得以提升,是符合新课程理念的教学内容,为培育适合社会发展的人才奠定基础。
1我国小学数学应用题教学的现状
教学模式陈旧师生之间缺乏互动
随着新课改的不断深化,虽然各个教育机构已经着力去改变教学模式,不过运用填鸭式教学模式的老师大有人在,这种教学方式在教学过程中学生只是被动的去学习知识,老师和学生之间没有较多的互动,更甚者要求学生去背诵解题思路和方法,长期下来学生本身依赖老师灌输知识的程度越来越高,渐渐的失去了主动去探索知识的动力,学生创造性思维也就难以得到培育。
应用题教学重理论轻实践
应用题教学要求老师展开应用题教学的目标应当是在生活中应用所学的数学理论知识,不过就当前的教学模式而言,大部分老师并没有将应用题融入实践元素,只是局限在教学的表面,并没有将理论延伸到实际生活中去,由于没有实际生活作依托,这就在很大程度上加大了教授应用题的难度。
学生本身的基础知识不扎实
在长时间的应试教育体系影响下,学生过分注重教科书上的理论知识,渐渐的失去了观察生活现象的能力,这样学生就没有丰富的生活“经验”,当应用题摆在学生面前时,学生通常不明白该题目是在何种背景下出题。另外,老师在针对应用题教学时,得知学生无法理解体型只是去批评,不去顾忌小学生的心理特征,学生在不断批评下就会逐渐丧失学习数学应用题的信心。此外,大多数学生遇到由很多文字所罗列出来的应用题,缺乏准确把握信息的能力,无法把应用题应用到自身生活中去,也就正确的解析应用题。
2在新课程理念下数学应用题教学的方法
在小学数学应用题中采用情景教学法
在小学生数学应用题教学中采用情境教学法,就是将陈旧教学模式改变,把小学数学教科书中牵扯到的应用题与现实相结合,将抽象的应用题变得具体和形象,通过具体化抽象问题来使学生理解知识的能力提升。与此同时,老师运用情景教学法应将应用题联系到学生自身生活中,也可以设计能够引发学生兴趣的情境,这样就能够使学生更容易融入到应用题教学中去,使教学效率更加高效。此外,作为具有客观性的情景教学,学校应当配备相应的多媒体设备来辅助教学,利用多媒体平台促使学生全方位领会应用题表述的内涵,进而使学生理解本应用题的程度加深。
比如,老师在展开加减算法的应用题教学中,如果直接了当的给小学生讲解应用题的解题过程和思路,极易揭露应用题中的数据,进而使学生只专注于数据,而忽略了解析应用题的实际数据,从而使学生偏离了解题思路。我们可以设计一下的应用题:帽子价格10元、衣服价格52元、一双鞋价格32元、裤子价格70元,问题:
①爸爸给女儿买了一顶帽子和一双鞋总共花了多少元钱?
②裤子比衣服贵多少钱?
③假设爸爸只买了一双鞋子,将100元付给卖家,那么卖家应当找回多少钱?
在对该应用题进行教学时,老师应当把学生从数字中拉出来,运用生动、形象的情景教学法引发学生的教学兴趣,也就是抽出两名同学来扮演爸爸和卖家,两者之间进行情景对话,使学生在情景演绎中,明白买卖的关系,更加清晰该应用题的解题思路。使学生理解应用题的能力提高,为提升应用题教学品质奠定基础,同时为小学生学习应用题的相关内容提供保障。
在小学数学应用题中采用环境教学法
在新课程理念的教育环境下,环境教学法在展开小学数学应用题教学生渐渐得到重视,最近几年来教学环境法主要着力点是教学气氛,即充分运用教学气氛使学生的学习兴趣培养起来,充分调动学生的积极性来学习应用题的解析,为培育学生的发散性数学思维提供环境保障。因此老师彻底摒弃以往的教学模式进行教学氛围的烘托,采用的形式是分组学习竞赛、学生主动在黑板上演示解题步骤等方法,从而集中学生精力投入到应用题学习中去。
比如在倍数应用题教学中,有这样一个应用题:
①熊猫捡到了5个玉米,猴子所捡的玉米是熊猫所捡数量的两倍,问题时猴子和熊猫捡玉米的.个数是多少?
②学校体育部买回了8盒羽毛球,7个羽毛球组成一盒,平均发送给五年级的四个班,那么各个班可以分得的乒乓球个数是?老师这时按着“同组异质,异组同质”的方法划分成解题小组,并提出在特定时间内解答出应用题的要求,每个解题小组派遣一个代表在黑板上演示整个应用题的解析步骤,老师以学生实际解题状况为依据进行评分。
小学数学应用题采用习题教学法
一般探究习题教学法主要包含:
①加大小学生课堂练习应用题的力度,这主要体现在老师在教授完一节课内容后布置一定的课堂练习任务进行练习,进而加深小学生对本节课内容的记忆,同时巩固本节课学习的内容。最后老师以学生解析习题的状况为依据,摸清学生的学习状况。
②加大小学生课后练习习题的力度。具体体现在结束本节课后布置相应的作业,写作业的时间应当控制在两个小时之内,这样学生就会劳逸结合,形成科学的学习规律。
③定期巩固已学过的知识,不过小学生自律性不强,这时老师应当联合家长进行监督,确保复习应用题的有效性。
3结语
综上所述,在新课程理念下对小学生展开应用题教学,应当以应用题教学内容、学生心理特征、实际状况为依据,引发学生学习数学应用题的兴趣,切实提升应用题教学的有效性。摒弃原先的填鸭式教学法,真正致力于提升学生理解应用题的能力、培育学生创造性思维,为学生全方位发展提供保障。
参考文献:
[1]吴君玉.新课程理念下小学数学应用题教学探究[J].课程教育研究,2014(34):115.
[2]薛莹.新课程理念下小学数学应用题教学的思考[J].新课程(小学),2015(06):193.
[3]李莉.新课程理念下小学数学应用题教学的研究与实践[J].赤子(上中旬),2015(02):277.
关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
研究生写论文应该注意的一些问题研究生发表论文是非常常见的也是必须的一件事,但是很多研究生初次接触论文的时候难免会出很多错误导致投稿难。那么研究生在写论文的时候应该注意哪些问题呢?本文总结了如下一些技巧。1、 注意语言表达虽然科研论文可以说是对他人“讲故事”。但与一般的故事不同之处,个人认为,主要在于逻辑性与连贯性。表达方式应以顺叙为佳,不宜像诗歌、散文、小说之类的文艺作品,使用倒叙、插叙等手法。内容详略得当。该简略之处就要言简意赅,该详尽之处就要清晰全面,不要写成“流水账”,也不要写成“意识流”。结构要合理。可以按“提出问题(立论)→分析问题(讨论)→解决问题(结论)”的总体思路来谋篇布局。摘要、正文和结论的相关内容,要前后呼应。语言通俗易懂。论文是给别人看的,不要认为自己知道的,别人就一定知道。要使用书面语言,避免使用网络语言。语句长短合适,少用累赘的长句与跳跃的短句。遣词要恰当得体。比如,“推测”、“推断”与“推定”,语气是有所不同的(在英文文献中,常用的是suggest、indicate、maybe之类“容他性”的词语)。注意错别字。避免因一时的疏忽大意,而留下缺憾。比如,将“风云二号”写成“风韵二号”,“碳酸盐”写成“碳酸岩”。一字之差,天壤之别。正确使用标点符号。不要分号与顿号不分,一“逗(号)”到底等。建议同学们在闲暇时,可以多看看汉语言工具书。同时,也呼吁素质教育阶段,要切实重视母语—汉语的教学质量。2、数据、术语严谨规范严谨规范,是科研论文的主要特征之一。数据分析,避免“张冠李戴”。对数据进行判别时,不要将属性为A的对象,用B作为参照标准。计量单位,要符合国家标准或者相关行业规范。注意有效数字的取舍。并不是小数点之后位数越多就越精确,而是要与获得数据的方法手段结合起来。比如,利用一台精度为5%的仪器进行观测,数据应写成“19”,而不是“”。不能简单地照搬仪器报出值。高于检测上限、或低于检测下限的数据,应该用“>检测限”、“<检测限”、“未检出”或相应的英文缩写等表示。标注要详实。比如,采样位置图,应该有比例尺、方位、坐标、图例及说明等参数。图版中使用专业符号、代码表示对象时,应该附注相应的文字说明。
论文中常见的方法有:定性分析法、调查法、观察法、实验法、文献法、实证研究法、个案研究法、功能分析法、经验总结法等等方面,具体有关如何利用这些方法可以来职称驿站网看看。
小数报论文写法如下:
科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。
独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;
准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。