对于影响混凝土和易性的主要因素从三个方面分析一、水泥数量与稠度的影响 混凝土拌合物在自重或外界振动动力的作用下要产生流动,必须克服其内在的阻力,拌合物内在阻力主要来自两个方面,一为骨料间的摩擦力,一为水泥浆的粘聚力,骨料间摩擦力的大小主要取决于骨料颗粒表面水泥浆层的厚度,亦水泥浆的数量。水泥浆的粘聚力大小主要取决于浆的干稀程度,亦即水泥浆的稠度。 混凝土拌合物在保持水灰比不变的情况下,水泥浆用量越多,包裹在骨料颗粒表面的浆层就越厚,润滑作用越好,使骨料间摩擦力减小,混凝土拌合物易于流动,于是流动性就大。反之则小。但若水泥浆量过多,这时骨料用量必然减少,就会出现流浆及泌水现象,而且好多消耗水泥。若水泥浆量过少,致使不能填满骨料间的空隙或不够包裹所有骨料表面时,则拌合物会产生崩塌现象,粘聚性变差,由此可知,混凝土拌合物水泥浆用量不能太少,但也不能过多,应以满足拌合物流动性要求为度。 在保持混凝土水泥用量不变得情况下,减少拌合用水量,水泥浆变稠,水泥浆的粘聚力增大,使粘聚性和保水性良好,而流动性变小。增加用水量则情况相反。当混凝土加水过少时,即水灰比过低,不仅流动性太小,粘聚性也因混凝土发涩而变差,在一定施工条件下难以成型密实。但若加水过多,水灰比过大,水泥浆过稀,这时拌合物虽流动性大,但将产生严重的分层离析和泌水现象,并且严重影响混凝土的强度和耐久性。因此,绝不可以单纯以加水的方法来增加流动性。而应采取在保持水灰比不变的条件下,以增加水泥浆量的办法来调整拌合物的流动性。 以上讨论可以明确,无论是水泥数量的影响,还是水泥稠度的影响,实际都是水的影响。因此,影响混凝土拌合物和易性的决定性因素是其拌合用水量的多少。二、砂率的影响 砂率是指混凝土中砂的质量占砂、石总质量的百分比。 砂率是表示混凝土中砂子与石子二者的组合关系,砂率的变动,会使骨料的总表面积空隙率发生很大的变化,因此对混凝土拌合物的和易性有显著的影响。当砂率过大时,骨料的总表面积和空隙率均增大,当混凝土中水泥浆量一定的情况下,骨料颗粒表面积将相对减薄,拌合物就显得干稠,流动性就变小,如果保持流动性不变,则需增加水泥浆,就要多耗水泥,反之,若砂率过小,拌合物中显得石子多而砂子过少,形成的砂浆量不足以包裹石子表面,并不能填满石子间空隙,在石子间没有足够砂浆润滑层时,不但会降低混凝土拌合物的流动性,而且会严重影响其粘聚性和保水性,使混凝土产生骨料离析、水泥浆流失,甚至出现崩散现象。 由上可知,在配置混凝土时,砂率不能过大,也不能太小,因该选用合理的砂率值。 所谓合理砂率是指在用水量及水泥用量一定的情况下,能使混凝土拌合物获得最大的流动性,且能保持粘聚性及保水性能良好的砂率值。三、组成材料性质的影响 (1)水泥品种的影响 在水泥用量和用水量一定的情况下,采用矿渣水泥或火山灰水泥拌制的混凝土拌合物,其流动性比用普通水泥时小,这是因为前者水泥的密度较小,所以在相同水泥用量时,它们的绝对体积较大,因此在相同用水量情况下,混凝土就显得较稠,若要二者达到相同的塌落度,前者每立方米混凝土的用水量必须增加一些,另外,矿渣水泥拌制的混凝土拌合物泌水性较大。 (2)骨料性质的影响 骨料性质指混凝土所用骨料的品种、级配、颗粒粗细及表面形状等。在混凝土骨料用量一定的情况下,采用卵石和河沙拌制的混凝土拌合物,其流动性比碎石和山砂拌制的好:用级配好的骨料拌制的混凝土拌合物和水性好,用细砂拌制的混凝土拌合物的流动性较差,但粘聚性和保水性好。 (3)外加剂的影响 混凝土拌合物掺入减水剂或引气剂,流动性明显提高,引气剂还可以有效的改善混凝土拌合物的粘聚性和保水性,二者还分别对硬化混凝土的强度与耐久性起着十分有利的作用。四、拌合物存放时间及环境温度的影响 搅拌拌制的混凝土拌合物,随着时间的延长会变得越来越干稠,塌落度将逐渐减小,这是由于拌合物中的一些水分逐渐被骨料吸收,一部分被蒸发,以及水泥的水化与凝聚结构的逐渐形成等作用所致。 混凝土拌合物的和易性还受温度的影响,随着环境温度的升高,混凝土的塌落度损失的更快,因为这时的水分蒸发及水泥的化学反应将进行的更快。
随着社会经济的不断发展,我国的建筑行业得到了飞速的发展,在不断的发展过程当中需要对建筑材料的质量进行严格的把控。下文是我为大家搜集整理的关于建筑材料论文3000字的内容,欢迎大家阅读参考!
浅谈建筑材料质量检测中存在的问题及其对策
摘要:作为建筑工程的基础,材料的质量直接决定着建筑的安全性和耐久性,也是建筑用户人身财产安全的重要保障。因此相关部门必须充分重视材料质量的检测工作,杜绝由于在建筑施工中使用劣质建材而造成的“豆腐渣工程”。本文从建筑材料质量检测的必要性出发,结合笔者的实际经验,分析了目前建筑材料质量检测中存在的问题,并对提高建筑材料质量检测水平提出了具体的对策措施。
关键词:建筑材料; 质量检测; 问题; 对策
1.建筑材料质量检测的必要性
随着我国经济建设的持续快速发展,建筑工程的设计和施工水平已经取得了长足的进步,为我国各项建设事业中经济价值与社会价值的实现提供了必要的技术支持。而作为建筑工程的基础,建筑材料是指用于建筑工程建设中所有材料的总称,主要包括建筑主体施工材料和装饰装修材料两类。这些材料的质量直接决定着建筑的安全性和耐久性,也是建筑用户人身财产安全的重要保障。然而,从统计数据来看,目前不法单位和个人在建筑施工中使用劣质建材,建造出的“豆腐渣工程”的案例在全国范围内仍时有发生,严重不利于我国建设事业的稳定发展。在这一背景下,建筑材料的质量检测就成为了保障建筑工程质量的关键环节,必须引起相关单位的高度重视。
2.当前不同建筑材料质量检测中存在的具体问题
目前建材检测中存在的质量问题主要源于检测工作者对我国现行的试验标准与检测规程缺乏深入了解,对各种建筑材料的特点及性能认识不足,未能掌握科学的取样方法、试验手段以及评价方式,有时甚至出于利益关系的考虑,作出不切实际的检测报告,违反了检测中准确、科学、公正的工作原则。而不同种类的建筑材料在检测中的常见问题如下:
.钢材的检测
钢材的检测主要分为钢筋检测与焊接试件的检测。由于建筑工程中钢筋用量大、品种多、进货渠道复杂,加之施工场地限制等原因,常存在管理混乱的问题,难以对同一厂别、同一规格、同一炉罐号、且同一交货状态的钢筋进行组批检测。标准虽然明确要求取样时应从同批不同捆中随机抽2根并截取器端部段,分别作冷弯与拉伸检测,但一些施工单位为减少定尺钢筋的使用而从废料堆里找出钢筋进行试验,使检测结果缺乏代表性。在焊接试件方面,一些单位在施工中忽视焊接前准备工作的重要性,未根据不同的焊接形式制定合理的取样频率,或未从成品中取样而直接做模拟试件,使结果失真。
.水泥的检测
一些单位由于进货渠道不稳定,水泥品种杂乱,或为图方便,并不是将同一厂家、同一品种、同等强度、同一批号且连续进场的水泥作为取样单位,使取样失去了代表性。由于水泥的安定性检测时间较长,很多施工单位为抢工期,都是在未取得安定性检验结果的时候就开始了水泥的使用,一旦检测结果显示水泥材料存在质量,将给工程造成更大的工期和成本上的损失;一些出厂3个月以上的水泥未及时复检,加之现场堆放管理不力,造成其强度受损后仍照常使用,必然会给工程带来巨大的安全隐患。很多袋装水泥未进行随机的重量抽检,导致水泥重量的超差现象严重,而负误差值较大的水泥不但会对建筑工程的成本控制造成影响,也不利于提高施工现场配比的准确性,易在导致构件或砌体砂浆强度的降低。
.其他建材的检测
其他常见建筑材料的检测问题主要包括:现场取样以粗中砂代替细砂,并未及时调整砂中的含水量;对碎石颗粒级配的检验未符合规范要求;砖材取样时仅选取质量好的送检,对表面缺棱掉角的现象不予重视,且抗压强度试验不严格,无法确保其性能。
3.提高建筑材料质量检测水平的措施
要提高建筑材料的质量检测水平,除必须针对上述问题严格依照各项国家及行业检测标准进行操作之外,还应对以下几个关键环节进行重点控制:
对环境温湿度的控制
温度和湿度对建筑材料性能的影响比较大,如弹性体改性沥青防水卷材(SBS)等防水材料要求做拉伸试验时室温须控制在(23±2)℃,数据显示,若试验在28℃环境下进行时,试件抗拉强度平均值比标准温度环境下低,而在18℃环境下,其抗拉强度的平均值则比标准值高出。可见,必须将温湿度控制在规定范围内,以保障检测、试验数据的正确可靠性。
检测项目的合理确定
施工现场所用的建筑材料品种繁多,进场检测、试验材料项目要遵照国家、行业及当地建设主管部门的相关规定进行。例如对主要材料水泥的检测,要按批检验其安定性、强度、凝结时间和的水泥细度,混凝土用粗骨料应按常规确定颗粒级配、密度、含泥量及泥块含量、针片状颗粒含量等项检验项目。若用于大于等于C35标号的混凝土,则须做压碎指标,新采用的质地疏松的骨料还应做坚固性试验,活性骨料做活性试验等。
取样试样的操作规范
取样和制样具有很强的技术性,需要检测人员具有高度责任心和熟练的操作技能,并采用科学合理的取样方法。不同的材料有不同的取样要求,因此应在取样前设计好方案。取样的代表性取决于取样点的布置和数量,取样点的布置则应建立在随机的基础之上。以袋装水泥为例,应以生产厂家、生产时间、标号、出厂编号均相同的水泥作为一检测批,且总量不得超过200t。抽样点不得少于20个,样本总质量不得少于12kg。如某编号出厂水泥共1000t,则该批次水泥需分为两个批次检测,每批次抽样间隔为500/20=25(t)。在开始编号的前25t水泥中任意取一袋作为第一个抽样点,抽取第一个样本,之后以25t为间隔,依次抽取剩余的19个样本,每个样本的重量应≥12/20=(kg)。
.试验数据的科学处理
由于建筑材料的试验数据有时可能出现较高的离散性,这时必须对某些结果进行合理取舍。以对水泥胶砂抗折强度的试验为例,若三个强度值中出现>平均值±10%的结果时,即应对该数据予以删除,并对其余数据的平均值重新计算、评价。计算结果的修约应按GB/T8107-87《数值修约规则》进行。此外,操作人员的熟练程度的差异以及材料的匀质性、设备仪器、环境条件等因素的影响,都会使检测、试验结果产生误差,误差超出允许范围时必须重新试验。同一材料、同一样品在不同试验设备中获得的试验结果误差称为再现性误差。试验中一般将钢材等较匀质材料的样品等分为两份,一份交当地质检机构,另一份留本单位,分析比较两个测试单位的试验结果,若相对误差较大,应找出原因并予以改进。
4.结语
检测环节是确保工程中各种材料质量,提高建筑安全性与耐久性的重要保障,必须得到充分的重视。检测工作者应严格遵守检验流程,以准确、科学、公正作为原则,并对检测中各个关键环节进行合理控制,防止不合格的伪劣建材流入施工现场,为建筑工程整体品质的提升保驾护航。
参考文献
[1] 国家建筑工程质量监督检验中心上海市建设工程检测行业协会..建筑工程检测技术与管理[M]..北京:化学工业出版社,.2006,.10.
[2] 付玉玲..建筑材料检验项目及其数据的准确性研究[J]..中国建设信息,.2006,.(12).
[3] 林伟民,.谢国锋..建设工程质量检测行业的现状与对策[J]..福建建材,.2006,.(01).
[4] 雷鸣,.李菊萍..检测建筑材料的相关技术探讨[J]..江西建材,.2012,.(01)..
[5] 黄泽武..谈如何提高建筑材料的检测与试验结果的准确性[J]..科技与企业..2011,.(07)..
>>>下页带来更多的建筑材料论文3000字
物理室:每天出磨.出厂水泥和熟料的物理性能检验(安定性,强度,凝结时间,细度,比表面积等等)。 分析室:每天进厂原燃材料(煤,石灰石,黄土等原燃材料的工业分析),熟料.出磨.出厂水泥的化学分析(熟料化学成分,水泥的烧失量.氧化镁.氯离子.氧化钙.三氧化硫等等)。 控制室:生产过程中的检测:原燃材料(水分等),出磨.入窑生料(烧失量,氧化钙,水分,细度,三氧化二铁等等),出窑熟料(烧失量,游离钙等),出磨水泥(细度或比表面积,三氧化硫等等),包装或散装水泥的现场取样。 值班室:应是有专门的质量值班员,负责每天的生产调度,落实化验室主任或出厂水泥管理员下达的配比通知。
这个够详细的 就怕看晕你 要有耐心啊 参考资料: 氨基酸的生理功能 氨基酸通过肽键连接起来成为肽与蛋白质。氨基酸、肽与蛋白质均是有机生命体组织细胞的基本组成成分,对生命活动发挥着举足轻重的作用。 某些氨基酸除可形成蛋白质外,还参与一些特殊的代谢反应,表现出某些重要特性。 (1) 赖氨酸 赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。 赖氨酸可以调节人体代谢平衡。赖氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。往食物中添加少量的赖氨酸,可以刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。 赖氨酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。 单纯性疱疹病毒是引起唇疱疹、热病性疱疹与生殖器疱疹的原因,而其近属带状疱疹病毒是水痘、带状疱疹和传染性单核细胞增生症的致病者。印第安波波利斯Lilly研究室在1979年发表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。 长期服用赖氨酸可拮抗另一个氨基酸――精氨酸,而精氨酸能促进疱疹病毒的生长。 (2) 蛋氨酸 蛋氨酸是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。 蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒的作用。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。 (3) 色氨酸 色氨酸可转化生成人体大脑中的一种重要神经传递物质――5–羟色胺,而5–羟色胺有中和肾上腺素与去甲肾上腺素的作用,并可改善睡眠的持续时间。当动物大脑中的5–羟色胺含量降低时,表现出异常的行为,出现神经错乱的幻觉以及失眠等。此外,5–羟色胺有很强的血管收缩作用,可存在于许多组织,包括血小板和肠粘膜细胞中,受伤后的机体会通过释放5–羟色胺来止血。医药上常将色氨酸用作抗闷剂、抗痉挛剂、胃分泌调节剂、胃粘膜保护剂和强抗昏迷剂等。 (4) 缬氨酸、亮氨酸、异亮氨酸和苏氨酸 缬氨酸、亮氨酸与异亮氨酸均属支链氨基酸,同时都是必需氨基酸。当缬氨酸不足时,大鼠中枢神经系统功能会发生紊乱,共济失调而出现四肢震颤。通过解剖切片脑组织,发现有红核细胞变性现象,晚期肝硬化病人因肝功能损害,易形成高胰岛素血症,致使血中支链氨基酸减少,支链氨基酸和芳香族氨基酸的比值由正常人的降至,故常用缬氨酸等支链氨基酸的注射液治疗肝功能衰竭等疾病。此外,它也可作为加快创伤愈合的治疗剂。 亮氨酸可用于诊断和治疗小儿的突发性高血糖症,也可用作头晕治疗剂及营养滋补剂。异亮氨酸能治疗神经障碍、食欲减退和贫血,在肌肉蛋白质代谢中也极为重要。 苏氨酸是必需氨基酸之一,参与脂肪代谢,缺乏苏氨酸时出现肝脂肪病变。 (5) 天冬氨酸、天冬酰胺 天冬氨酸通过脱氨生成草酰乙酸而促进三羧酸循环,故是三羧酸循环中的重要成分。天冬氨酸也与鸟氨酸循环密切相关,担负着使血液中的氨转变为尿素排泄出去的部分工作。同时,天冬氨酸还是合成乳清酸等核酸前体物质的原料。 通常将天冬氨酸制成钙、镁、钾或铁等的盐类后使用。因为这些金属在与天冬氨酸结合后,能通过主动运输途径透过细胞膜进入细胞内发挥作用。天冬氨酸钾盐与镁盐的混合物,主要用于消除疲劳,临床上用来治疗心脏病、肝病、糖尿病等疾病。天冬氨酸钾盐可用于治疗低钾症,铁盐可治疗贫血。 不同癌细胞的增殖需要消耗大量某种特定的氨基酸。寻找这种氨基酸的类似物――代谢拮抗剂,被认为是治疗癌症的一种有效手段。天冬酰胺酶能阻止需要天冬酰胺的癌细胞(白血病)的增殖。天冬酰胺的类似物S–氨甲酰基–半胱氨酸经动物试验对抗白血病有明显的效果。目前已试制的氨基酸类抗癌物有10多种,如N–乙酰–L–苯丙氨酸、N–乙酰–L–缬氨酸等,其中有的对癌细胞的抑制率可高达95%以上。 (6) 胱氨酸、半胱氨酸 胱氨酸及半胱氨酸是含硫的非必需氨基酸,可降低人体对蛋氨酸的需要量。胱氨酸是形成皮肤不可缺少的物质,能加速烧伤伤口的康复及放射性损伤的化学保护,刺激红、白细胞的增加。 半胱氨酸所带的巯基(-SH)具有许多生理作用,可缓解有毒物或有毒药物(酚、苯、萘、氰离子)的中毒程度,对放射线也有防治效果。半胱氨酸的衍生物N–乙酰–L–半胱氨酸,由于巯基的作用,具有降低粘度的效果,可作为粘液溶解剂,用于防治支气管炎等咳痰的排出困难。此外,半胱氨酸能促进毛发的生长,可用于治疗秃发症。其他衍生物,如L–半胱氨酸甲酯盐酸盐可用于治疗支气管炎、鼻粘膜渗出性发炎等。 (7) 甘氨酸 甘氨酸是最简单的氨基酸,它可由丝氨酸失去一个碳而生成。甘氨酸参与嘌呤类、卟啉类、肌酸和乙醛酸的合成,乙醛酸因其氧化产生草酸而促使遗传病草酸尿的发生。此外,甘氨酸可与种类繁多的物质结合,使之由胆汁或尿中排出。此外,甘氨酸可提供非必需氨基酸的氮源,改进氨基酸注射液在体内的耐受性。将甘氨酸与谷氨酸、丙氨酸一起使用,对防治前列腺肥大并发症、排尿障碍、频尿、残尿等症状颇有效果。 (8) 组氨酸 组氨酸对成人为非必需氨酸,但对幼儿却为必需氨基酸。在慢性尿毒症患者的膳食中添加少量的组氨酸,氨基酸结合进入血红蛋白的速度增加,肾原性贫血减轻,所以组氨酸也是尿毒症患者的必需氨基酸。 组氨酸的咪唑基能与Fe2+或其他金属离子形成配位化合物,促进铁的吸收,因而可用于防治贫血。组氨酸能降低胃液酸度,缓和胃肠手术的疼痛,减轻妊娠期呕吐及胃部灼热感,抑制由植物神经紧张而引起的消化道溃烂,对过敏性疾病,如哮喘等也有功效。此外,组氨酸可扩张血管,降低血压,临床上用于心绞痛、心功能不全等疾病的治疗。类风湿性关节炎患者血中组氨酸含量显著减少,使用组氨酸后发现其握力、走路与血沉等指标均有好转。 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有关。此外,组胺会刺激胃蛋白酶与胃酸。 (9) 谷氨酸 谷氨酸、天冬氨酸具有兴奋性递质作用,它们是哺乳动物中枢神经系统中含量最高的氨基酸,其兴奋作用仅限于中枢。当谷氨酸含量达9%时,只要增加10–15mol的谷氨酸就可对皮层神经元产生兴奋性影响。因此,谷氨酸对改进和维持脑功能必不可少。 谷氨酸经谷氨酸脱羧酶的脱羧作用而形成γ–氨基丁酸,后者是存在于脑组织中的一种具有抑制中枢神经兴奋作用的物质,当γ–氨基丁酸含量降低时,会影响细胞代谢与细胞功能。 谷氨酸的多种衍生物,如二甲基氨乙醇乙酰谷氨酸,临床上用于治疗因大脑血管障碍而引起的运动障碍、记忆障碍和脑炎等。γ–氨基丁酸对记忆障碍、言语障碍、麻痹和高血压等有效,γ–氨基β–羟基丁酸对局部麻痹、记忆障碍、言语障碍、本能性肾性高血压、羊癫疯和精神发育迟缓等有效。 谷氨酸与天冬氨酸一样,也与三羧酸循环有密切的关系,可用于治疗肝昏迷等症。谷氨酸的酰胺衍生物――谷氨酰胺,对胃溃疡有明显的效果,其原因是谷氨酰胺的氨基转移到葡萄糖上,生成消化器粘膜上皮组织粘蛋白的组成成分葡萄糖胺。 (10) 丝氨酸、丙氨酸与脯氨酸 丝氨酸是合成嘌呤、胸腺嘧淀与胆碱的前体,丙氨酸对体内蛋白质合成过程起重要作用,它在体内代谢时通过脱氨生成酮酸,按照葡萄糖代谢途径生成糖。脯氨酸分子中吡咯环在结构上与血红蛋白密切相关。羟脯氨酸是胶原的组成成分之一。体内脯氨酸、羟脯氨酸浓度不平衡会造成牙齿、骨骼中的软骨及韧带组织的韧性减弱。脯氨酸衍生物和利尿剂配合,具有抗高血压作用。 牛 磺 酸 牛磺酸是牛黄的组成成分。 牛磺酸普遍存在于动物乳汁、脑与心脏中,在肌肉中含量最高,以游离形式存在,不参与蛋白质代谢。植物中仅存在藻类,高等植物中尚未发现。体内牛磺酸是由半胱氨酸代谢而来的。 牛磺酸的缺乏会影响到生长、视力、心脏与脑的正常生长。 被细菌感染的病人,由于细菌的大量繁殖消耗了体内的牛磺酸,也会形成牛磺酸缺乏,发生眼底视网膜电流图的变化,而补充牛磺酸后会使眼底的病变好转由于人类只能有限地合成牛磺酸,因此膳食中的牛磺酸就显得非常重要。 奶制品中牛磺酸的含量很低。禽类中,黑色禽肉的牛磺酸含量要比白色肉的高。海产品与禽、畜类比较,以海产品中的牛磺酸含量最高,如牡蛎、蛤蜊与淡菜中牛磺酸可高达400mg/100g以上,同时加热烹调对其牛磺酸的含量没有什么影响。日常的各种食物,包括谷物、水果和蔬菜等,都不含牛磺酸。 精 氨 酸 (一) 精氨酸是鸟氨酸循环中的一个组成成分,具有极其重要的生理功能。多吃精氨酸,可以增加肝脏中精氨酸酶的活性,有助于将血液中的氨转变为尿素而排泄出去。所以,精氨酸对高氨血症、肝脏机能障碍等疾病颇有效果。 精氨酸是一种双基氨基酸,对成人来说虽然不是必需氨基酸,但在有些情况如机体发育不成熟或在严重应激条件下,如果缺乏精氨酸,机体便不能维持正氮平衡与正常的生理功能。病人若缺乏精氨酸会导致血氨过高,甚至昏迷。婴儿若先天性缺乏尿素循环的某些酶,精氨酸对其也是必需的,否则不能维持其正常的生长与发育。 精氨酸的重要代谢功能是促进伤口的愈合作用,它可促进胶原组织的合成,故能修复伤口。在伤口分泌液中可观察到精氨酸酶活性的升高,这也表明伤口附近的精氨酸需要量大增。精氨酸能促进伤口周围的微循环而促使伤口早日痊愈。 精氨酸的免疫调节功能,可防止胸腺的退化(尤其是受伤后的退化),补充精氨酸能增加胸腺的重量,促进胸腺中淋巴细胞的生长。 补充精氨酸还能减少患肿瘤动物的体积,降低肿瘤的转移率,提高动物的活存时间与存活率。 在免疫系统中,除淋巴细胞外,吞噬细胞的活力也与精氨酸有关。加入精氨酸后,可活化其酶系统,使之更能杀死肿瘤细胞或细菌等靶细胞。 郑建仙博士,华南理工大学教授 氨基酸与人类健康 氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 一、构成人体的基本物质,是生命的物质基础 1.构成人体的最基本物质之一 构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。 构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 2.生命代谢的物质基础 生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病。同样,如果人体内缺乏某些非必需氨基酸,会产生抗体代谢障碍。精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。总之,氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。因此,氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。由此可见,氨基酸在人体生命活动中显得多么需要。 二、在食物营养中的地位和作用 人类为了生存必需摄取食物,以维持抗体正常的生理、生化、免疫机能,以及生长发育、新陈代谢等生命活动,食物在体内经过消化、吸收、代谢,促进抗体生长发育、益智健体、抗衰防病、延年益寿的综合过程称为营养。食物中的有效成分称为营养素。 作为构成人体的最基本的物质的蛋白质、脂类、碳水化合物、无机盐(即矿物质,含常量元素和微量元素)、维生素、水和食物纤维,也是人体所需要的营养素。它们在机体内具有各自独特的营养功能,但在代谢过程中又密切联系,共同参加、推动和调节生命活动。机体通过食物与外界联系,保持内在环境的相对恒定,并完成内外环境的统一与平衡。 氨基酸在这些营养素中起什么作用呢? 1.蛋白质在机体内的消化和吸收是通过氨基酸来完成的 作为机体内第一营养要素的蛋白质,它在食物营养中的作用是显而易见的,但它在人体内并不能直接被利用,而是通过变成氨基酸小分子后被利用的。即它在人体的胃肠道内并不直接被人体所吸收,而是在胃肠道中经过多种消化酶的作用,将高分子蛋白质分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿着肝门静脉进入肝脏。一部分氨基酸在肝脏内进行分解或合成蛋白质;另一部分氨基酸继续随血液分布到各个组织器官,任其选用,合成各种特异性的组织蛋白质。在正常情况下,氨基酸进入血液中与其输出速度几乎相等,所以正常人血液中氨基酸含量相当恒定。如以氨基氮计,每百毫升血浆中含量为4~6毫克,每百毫升血球中含量为~毫克。饱餐蛋白质后,大量氨基酸被吸收,血中氨基酸水平暂时升高,经过6~7小时后,含量又恢复正常。说明体内氨基酸代谢处于动态平衡,以血液氨基酸为其平衡枢纽,肝脏是血液氨基酸的重要调节器。因此,食物蛋白质经消化分解为氨基酸后被人体所吸收,抗体利用这些氨基酸再合成自身的蛋白质。人体对蛋白质的需要实际上是对氨基酸的需要。 2.起氮平衡作用 当每日膳食中蛋白质的质和量适宜时,摄入的氮量由粪、尿和皮肤排出的氮量相等,称之为氮的总平衡。实际上是蛋白质和氨基酸之间不断合成与分解之间的平衡。正常人每日食进的蛋白质应保持在一定范围内,突然增减食入量时,机体尚能调节蛋白质的代谢量维持氮平衡。食入过量蛋白质,超出机体调节能力,平衡机制就会被破坏。完全不吃蛋白质,体内组织蛋白依然分解,持续出现负氮平衡,如不及时采取措施纠正,终将导致抗体死亡。 3.转变为糖或脂肪 氨基酸分解代谢所产生的a-酮酸,随着不同特性,循糖或脂的代谢途径进行代谢。a-酮酸可再合成新的氨基酸,或转变为糖或脂肪,或进入三羧循环氧化分解成CO2和H2O,并放出能量。 4.参与构成酶、激素、部分维生素 酶的化学本质是蛋白质(氨基酸分子构成),如淀粉酶、胃蛋白酶、胆碱脂酶、碳酸酐酶、转氨酶等。含氮激素的成分是蛋白质或其衍生物,如生长激素、促甲状腺激素、肾上腺素、胰岛素、促肠液激素等。有的维生素是由氨基酸转变或与蛋白质结合存在。酶、激素、维生素在调节生理机能、催化代谢过程中起着十分重要的作用。 5.人体必需氨基酸的需要量 成人必需氨基酸的需要量约为蛋白质需要量的20%,——37%。 三、在医疗中的应用 氨基酸在医药上主要用来制备复方氨基酸输液,也用作治疗药物和用于合成多肽药物。目前用作药物的氨基酸有一百几十种,其中包括构成蛋白质的氨基酸有20种和构成非蛋白质的氨基酸有100多种。 由多种氨基酸组成的复方制剂在现代静脉营养输液以及“要素饮食”疗法中占有非常重要的地位,对维持危重病人的营养,抢救患者生命起积极作用,成为现代医疗中不可少的医药品种之一。 谷氨酸、精氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗肝病疾病、消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。此外氨基酸衍生物在癌症治疗上出现了希望。 四、与衰老的关系 老年人如果体内缺乏蛋白质分解较多而合成减慢。因此一般来说,老年人比青壮年需要蛋白质数量多,而且对蛋氨酸、赖氨酸的需求量也高于青壮年。60岁以上老人每天应摄入70克左右的蛋白质, 而且要求蛋白质所含必需氨基酸种类齐全且配比适当的,这样优质蛋白,延年益寿。 余传隆(中国医药科技出版) 氨基酸与老年健康 美国“发现”号航天飞机把世界上年龄最大的宇航员(77岁)格伦送入太空。这天对老年人来说,称为最伟大的一天,最引人瞩目。暮年再征太空的格伦,他要帮助医学进行科学实验。老人蛋白质分解、人体氨基酸的生物学试验就是一项重要的研究。氨基酸与老人健康,不仅在地球上要研究,在太空的也要研究。因为氨基酸与老年人的寿命、衰老相关太重要了。为什么重要,下面的分述便可知道。 1.老年的生理变化与氨基酸 一般认为人们进入60岁以上是进入了老年。老年的生理与营养状态随着老年的进程而改变。蛋白质在老年人体的变化归纳起来有二:一是合成,合成组织蛋白质及各种活性物质;二是分解,组织蛋白质的分解、产生能量、产生废物。对于生长发育期的婴儿及青少年合成大于分解,因而身体逐渐成长;对于一般成年人是合成等于分解,因而体重相对稳定。对于老年来说,人体衰老的过程中蛋白质代谢以分解为主,合成代谢逐渐缓慢,身体内的蛋白质逐渐被消耗,往往呈负氮平衡。如血红蛋白质合成减少,因此贫血为常患的老年性疾病;由于酶的作用及小肠功能衰退,蛋白质吸收过程中分解不充分,体内肽类增多,游离氨基酸减少。因老年人肾功能低下而影响氨基酸再吸收,因肝功能下降,对肽的利用也减少。近年研究报告,老年人与中青年人给予相同营养条件,但老年人其血浆氨基酸(缬、亮、酪、赖、蛋、丝、丙氨酸)含量减低,特别支链氨基酸(缬、亮、异亮氨酸)显示不足。有人认为,高浓度支链氨基酸有提供合成的作用,当补给支链氨基酸时,能通过产生三磷酸腺苷(ATP)供能源,降低蛋白质分解作用,并通过促进胰岛素分泌量加强蛋白质的合成。现国外已将支链氨基酸用于临床维持氮平衡,促进蛋白质合成。国内已有用于肝病、肾病及儿童的特殊氨基酸。 由于氨基酸的吸收或利用。因老年化而影响到免疫功能,免疫活性的变化也影响其他器官的功能,如感染、癌症、免疫复合病、自身免疫病、淀粉状蛋白变性的发病率在老年均增高,易致衰老病死。 2.氨基酸与长寿 为了促进老年人的健康,如抗衰老、提高身体抵抗力、促进免疫机制的功能,需要食品富含微量元素或糖类。但免疫的物质基础是蛋白质,人体免疫物质没有一样不是由蛋白质组成。如免疫球蛋白、抗体、抗原、补体等,即使白细胞、淋巴细胞与吞噬细胞等细胞内蛋白质的含量也在90%以上。因此人体若不缺乏蛋白质或氨基酸,上述的微量元素与多糖会起作用。如果缺乏,则无论用多少都不起作用。随着营养学与生物化学的进展,新的研究表明补给某种非必需氨基酸虽然人体能够合成,但在严重应激的状态(包括精神紧张、焦虑、思想负担)或某些疾病的情况下容易发生缺乏。如果缺乏,则对人体会发生有害的影响,这些氨基酸称之为条件性必需氨基酸。如牛磺酸、精氨酸和谷氨酰胺。 在正常条件下缺乏必需氨基酸可以减低体液的免疫反应。例如色氨酸缺乏的大鼠,其IgG及IgM受体抑制,而当重新加入色氨酸能维持正常的抗体生成;苯丙氨酸和酪氨酸均缺乏,可以抑制大鼠的免疫细胞对肿瘤细胞作出反应;蛋氨酸与胱氨酸的缺乏,还可引起抗体的合成障碍。已证明,氨基酸的平衡也有这种不利作用。因此必需氨基酸在免疫中起着重要的作用,要延长老年人寿命,必须提高免疫力,重视必需氨基酸的供给。当前与寿命相关的正是热门研究的必需氨基酸有: 牛磺酸:人体牛磺酸的来源一是自身合成,二是从膳食中摄取。牛磺酸的生物合成由蛋氨酸经硫化作用转化成胱氨酸,并由胱氨酸合成,其中经过一系列的酶促反应,许多高等动物包括人已失去了合成足够牛磺酸以维持体内牛磺酸整体水平的能力,需从膳食中摄取牛磺酸以满足机体的需要。有报道,牛磺酸在中枢神经系统衰老中的作用;老年期神经系统退行性变化是全身各系统最复杂而深奥的过程之一,中枢神经系统衰老在形态上或生化水平上都有明显的改变,单胺类和氨基酸类神经递质的合成、释放、重吸收及运输机制方面出现增年性变化。脂褐质是衰老过程中具有特征性物质,大脑脂褐质增加是神经衰老变化标志之一,当神经元胞浆蓄积较大量的脂褐质时,细胞核、细胞质受压变形,影响神经元的正常代谢功能。衰老时,组织中脂褐质含量明显增高,而牛磺酸可使下降、且使超氧化物歧化酶(SOD)活性增加,并且能抑制脂质过氧化产物丙二醛(MDA)对低密度脂质蛋白(LDL)的修饰。同时牛磺酸与葡萄糖的反应产物表现出较强抗氧化作用,能够阻止蛋黄卵磷脂氧化成脂质过氧化物,因而有显著抗衰老的作用。 精氨酸:精氨酸虽然不是必需氨基酸,但在严重应激情况下(如发生疾病或受伤)、或当缺乏了精氨酸便不能维持氮平衡与正常生理功能,因此它又是条件性必需氨基酸。最新提出的理论,精氨酸是一氧化氮(NO)与瓜氨酸反应的酶系统代谢途径中的必要物质。NO或内皮细胞衍生的松弛因子的主要生化作用是刺激机体提高吞噬细胞中环鸟苷酸的水平,并能刺激白介素的产生来调节巨噬细胞的吞噬细菌作用。与精氨酸有关的NO酶系统,也在血管的内皮细胞、脑组织与肝脏的枯否(kupffer)细胞中发现,它能导致这些器官与组织的激素分泌、从而起到免疫功能的作用。为了提高老年人的免疫也可用氨基酸注射液。 谷氨酰胺:在正常情况下,它是一非必需氨基酸,但在剧烈运动、受伤、感染等应激情况下,谷氨酰胺的需要量大大超过了机体合成谷氨酰胺的能力,使体内的谷氨酰胺含量降低,而这一降低,便会使蛋白质合成减少、小肠粘膜萎缩及免疫功能低下,因此它又称条件性必需氨基酸。 最近发现肠道是人体中最大的免疫器官,也是人体的第三种屏障。前两种屏障是血脑屏障和胎盘屏障。如果肠内没有营养供应,肠道就会营养不良,使肠道的免疫功能减弱与发生细菌相互移位。动物试验证明若动物用无谷氨酰胺的全静脉输液或要素膳补充营养,则动物小肠的绒毛发生萎缩,肠壁变薄,肠免疫功能降低。在静脉输液中提供2%的谷氨酰酶(约氨基酸总量的25%)对恢复肠绒毛萎缩与免疫功能有显著作用。谷氨酰胺在维持肠粘膜功能中的作用对提高免疫能力有一定作用,特别老年人是不可缺少的。 3、老年人如何科学补充氨基酸 老年人对氨基酸的需要量随年龄增长,机体蛋白质总量下降,一位健康老人蛋白质总量为青壮年的60%~70%。这可能与骨骼肌的减少有关,但不能由此认为老年人蛋白质需要减少。老年人体内以分解代谢为主,胃液及胃蛋白酶分泌减少、胃液酸度下降、对蛋白质消化吸收下降,此外热能摄入低、饮食氮存留下降,所以老人蛋白质需要不比成年人的少。一般在正常膳食时,蛋白质摄入~体重可维持氮平衡,~体重可达平衡。据此定出每日蛋白质供给量大致为60~75g,其中1/3为动物性蛋白质。如按蛋白质供热比考虑,以12%~14%为宜。在氨基酸代谢方面研究,提示苏氨酸、色氨酸、蛋氨酸等的需要与青年不同,故必需氨基酸的适宜模
0前言
建筑工程中的水泥质量检验是工程实验室材料检验中的重要检测项目之一,其检验工作质量水平的高低,直接关系到施工现场水泥材料的正确使用和工程的结构质量。
青岛市的工程实验室近几年来通过参加省技术监督局、行业主管部门组织的水泥检测对比与能力验证试验,和相关部门对水泥检验人员的专项培训活动,以及实验室资质认定的主管部门对工程材料检测工作的严格要求和监督管理,全市各工程实验室领导对检测工作质量已有高度重视,促使我市建筑工程水泥检验工作的总体质量水平有了长足的进步和提高。
据统计,近年来我市各工程检测机构在全省组织的水泥对比和能力验证试验中所出具的检测数据的单项统计合格率达到,其中满意结果的检测数据占,不合格( 离群值)的检测数据仅占,低于全省平均水平();存在问题的检测数据占,也低于全省平均水平();全部满意的单位占70%(全省为)。
但通过对工程实验室的日常管理工作和监督检查,我们也发现在水泥检验工作中长期存在的一些带有普遍性的问题尚待解决,如水泥样品的取样、处理和保存;检验的及时性和工作程序;设施与环境条件的控制;设备仪器的校准和标准物质的管理;试验工作的具体操作要求;实验室间比对验证和运行检查;检验人员的技术素质和职业道德;检验标准和技术知识的及时更新和培训;以及检验工作质量的监督和管理等方面都存在着不同程度的问题,这些问题如不加以重视和及时解决,将会干扰和影响我们水泥检测工作质量的稳定和提高,进而影响到水泥检测数据的准确性和公正性,并可能给在建工程埋下质量隐患,这是我们工程材料质量检测和工程质量监督工作所不能容许的现象。
本文的主要目的就是通过指出上述存在的问题,并针对这些问题进行深入的研究和探讨,提出规范和切实可行的解决办法及建议,供各实验室参考使用。同时期望通过此举能促使各实验室的水泥检验工作质量水平再上一个新台阶。
1水泥检验工作和质量水平考核的主要依据(相关标准和规程)
(1)水泥质量检验工作的依据主要是国家和行业的相关标准和规程,工作质量水平考核的依据是参照水泥行业和质量监督部门的相关标准和规程的规定,主要标准和规程的目录如下:
1) GB175-2007《通用硅酸盐水泥》(代替GB175-1999、GB1344-1999、GB12958-1999);
2) GB/T1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》;
3) GB/T17671-1999《水泥胶砂强度检验方法》(ISO 法);
4) GB/T 1345-2005《水泥细度检验方法 筛析法》;
5) GB/T 8074-2008《 水泥比表面积测定方法 勃氏法》(替代GB/T 8074-1987)
6) GB/T2419-2005《水泥胶砂流动度测定方法》;
7) GB 12573-1990《水泥取样方法》;
8)《水泥企业质量管理规程》;
9)《水泥企业化验室基本条件》;
10)《水泥企业产品质量对比验证检验管理办法》。
(2)水泥检验用的检测仪器还要符合相关行业制定的标准和检定规程的规定。
(3)另外对工程实验室有些检验工作还要满足建筑工程相关设计、施工和验收规范的要求和规定。如:GB50300-2001《建筑工程施工质量验收统一标准》和GB 50204-2002《混凝土结构工程施工质量验收规范》等标准的'要求和规定。
2水泥样品的取样、接收、制备与存放
目前现状和存在问题
施工现场的取样
水泥进施工现场交货时验收不规范,买卖双方未按标准规定的方法验收并抽取样品;复验见证取样未严格履行规范规定
方法,使样品的代表性受到质疑。
实验室接收和制备水泥样品
办理水泥样品复验委托手续时,委托单位提供的水泥出厂和见证取样的信息资料不齐全;样品制备方法不严谨,数量和程序(应经筛分、缩分法并拌匀后留样)及留样不能满足规定要求。
试验室样品存放
存放的环境条件不符合要求,样品密封不好,标识和存放时间不规范,使封存的水泥样品一旦存在检验结果的争议时,失去了仲裁检验的价值。
标准和规范规定的样品验收取样和制备的方法
(1)根据GB 175-2007 中 条[1]的规定,交货时水泥的质量验收可分为抽取实物试样检验或以生产者同编号水泥的检验报告为依据的两种情况。其中抽取实物的方法又分成在发货前或交货地共同取样和签封的两种方式。
根据GB 50204-2002 中的条[2]的规定,水泥进施工现场时每批必须检查并抽样进行复验。又根据GB 50300-2001中的第 条[3]的规定,水泥应按规定在建设单位或监理单位见证人员的见证下取样检测。
因此,依据前两条规定,施工现场水泥进场验收符合采用上述标准中交货地共同抽取和签封实物试样的规定。具体实施可由买卖双方在见证人员的见证下按GB 12573-1990 的规定[4] 取样。即从20 个以上的不同部位,共取20kg 样品,缩分为二等份,用密闭容器封存好(加贴双方签封的封条),一份委托检验,一份按规定存放40 天。
若水泥质量出现纠纷需进行仲裁检验时,只有上述取样方式才符合标准规定,否则样品的代表性和可信度会受到质疑。
(2)实验室在办理样品检验委托时,如委托方已按上述要求取样,只需委托方提供水泥方面的如下信息:水泥生产企业名称;水泥品种、强度等级;出厂日期、编号;以及代表数量和见证手续等。必要时还应提供混合材品种及掺加量等其它方面的信息。
如委托方虽已取样,但未按规定处理样品,实验室除应获得上述信息外,还应按规定进行筛分、缩分、拌匀和封存样品等处理。若此样品须仲裁时,其代表性和可信度也会受到质疑,除非委托是买卖双方的共同行为。
样品处理和检验的及时性问题
实验室接收水泥样品后应尽快安排检验,尤其是凝结时间、安定性和三天强度(必要时还有细度)的数据,应及时向施工单位报出,以指导现场施工。
若实验室不能立即安排检验应及时通知委托单位,或按相关程序的规定通过分包方式解决检验的及时性问题。
3水泥检验环境及养护条件的控制
目前现状和存在问题
(1) 部分实验室对水泥检验的环境及养护条件的控制重视不够,控制手段和监控措施不到位,尤其是有些检验人员对温度控制范围和其对检验结果的影响在认识上存有误区。
(2)大部分实验室仅重视仪器的检(标)定结果,往往忽视了因季节变化仪器温湿度控制的实际波动,忽视了日常的运行检查。
(3)个别实验室的试验环境和养护箱、部分实验室的水泥试体养护不符合标准规定的要求。
标准要求和解决方法
(1) 根据GB/T17671-1999《水泥胶砂强度检验方法》(ISO法) 条[5]试验室的规定:“在温度给定范围内,控制所设定的温度应为此范围的中值。”因此,我们应理解为:控制温度即为20℃,其范围是短期内允许的波动值。包括成型室和破型室的温度在工作时均应稳定控制在20℃的基准上。
(2)对温湿度的控制最终还应以标定的干湿温度计(最好是水银温度计)为准,不能以控制器显示值作为温湿度记录的依据。成型室、养护箱和养护水池各处配备的温度计数量也应合理,温湿度记录应适时和真实。
(3)养护箱内的架子或搁板应保持水平状态,使正在养护的未硬化水泥胶砂试体也保持水平,以防其变形或流浆。
(4)水泥胶砂试体在水中养护时应满足GB/T17671-1999标准中 条 [5]“ 让水与试件的六个面接触”(尤其是试件底部)和“试件之间间隔或试体上表面的水深不得小于5mm”的规定。各实验室最好使用水泥试件的专用塑料养护箱。
4设备仪器的运行状态及再校准
目前现状和存在问题
从检查情况看主要问题是设备仪器的安装、使用、维护等方面的问题,尤其是设备仪器的运行检查、期间核查和再校准方面问题较多且较普遍。部分实验室的仪器检定工作走过场,致使个别仪器设备长期在非正常状态下工作等。主要情况如下:
(1)水泥振实台的混凝土基座不符合标准要求,有些单位的基座达不到标准[5]规定的混凝土的(有的是用砖砌筑的或混凝土不是整体的)整体性()和重量(约600kg)的要求;仪器底座和基座之间没有用水泥砂浆找平垫实(有的竟用橡胶板垫实);安装完的设备达不到水平状态。
(2)抗折试验机未调整到正常的水平和平衡状态;各组平衡刀口未处于正常位置,灵敏度达不到要求;抗折夹具上的三个受荷圆柱轴已锈死或转动不灵。
(3)抗压强度破型时压力机不能正确调整零点,并且加荷档位选择和加荷速度控制不合理;抗压夹具过载损坏后还在继续使用;抗压夹具的滑动和球头部分锈蚀和润滑不良。
(4)胶砂试模的尺寸公差和搅拌机的转速、运行时间、叶片与锅壁间隙、细度筛子的换算系数等未按标准规定要求定期检查和标定。
标准要求和解决方法
上述情况除第(1)项外都属于运行检查的问题,如抗折机机体的水平和杠杆的平衡必须每次使用前进行检查和校准,试验期间必要时还应进行期间检查。其他问题均应按标准规定定期检查,必要时应进行再校准。
5试验环节及操作的规范要求
(1) 试验时所用的水泥样品、标准砂、水和其它用具的温度应确保与试验室温度(20℃)相同;养护箱或雾室各个区域的温湿度应控制准确和均衡;破型时相关试验室和仪器设备本身的温度也应保持在20℃的基准上。
(2) 成型的胶砂试模四周应用黄油密封好,以使振动成型和养护时水泥浆不致渗出;削平操作时不得扰动水泥胶砂试体;养护箱架子和搁板必须保持水平,以使试模内水泥胶砂试体的表面保持平整,水泥浆体不得流(渗)出。
(3) 脱模时每个试件最好能按规定顺序编上序号,试体的各龄期分布应符合标准规定;试件抗折破型时按上述编号依次进行,之后的抗压破型也应按上述规定的顺序编号依次进行。应注意不能随意打乱破型顺序,以便今后能够对数据通过“统计(分析)技术”进行综合评价和误差分析。
(4)在抗折破型中,杠杆初始的起伏高度调整到试件在破坏时接近平衡位置,这一点是非常重要的。总之,在破型中无论抗折或抗压试件出现非正常破坏情况或特异值时,操作人员均应对此进行记录,以便事后进行分析判断,并对结果进行必要的误差分析和客观评价。
(5)水泥的安定性试验如用试饼法判定处于“界限”左右的情况时,应立即按雷氏夹法进行复检,再根据标准做出判定。用试饼法判定安定性不合格的,应在试验报告中对不合格试饼的形态给予表述(GB/T1346-2001的第12条)。
(6)试验所用标准砂应根据国家和省技术监督部门的文件规定向指定专门经营部门采购,不得购买来源于非正规渠道的标准砂和假冒砂。
(7)对细度筛子在使用期间应经常检查其状态情况,必要时应及时用标准粉校正,适时淘汰换算系数超差的筛子。
6对比和能力验证试验及内部抽查制度
该工作的目的是通过各级实验室间的对比和能力验证及内部抽查工作,使各实验室的水泥检测工作水准保持相对准确和稳定,并统一在国家要求的精确度之内。以满足工程建设对水泥质量检测工作的要求,及时正确地指导现场施工,确保结构工程的质量。
各级技术质量监督部门和行业主管部门已将该项工作作为考核实验室工作质量的重要依据之一。
目前现状和存在问题
(1) 部分实验室未能开展日常的内、外部对比试验和能力验证试验,多数实验室也未建立和运行内部的检测质量抽查制度。
(2)有些实验室在参加省、市组织的对比和能力验证试验时,由于领导重视不够或认识存在偏差,导致试验人员事前未做好充分准备,试验过程中也未认真组织实施,并及时总结经验,导致试验数据超差。
(3)个别实验室在对比试验过程中投机取巧,不去认真组织试验,却热中于打听或利用其他实验室的数据。不如实申报试验结果,甚至编造试验数据,以不正当的手段获取管理部门和客户的信任。
标准、管理规程的要求和解决方法
水泥检测对比和能力验证工作应当引起各实验室领导的高度重视,并应精心组织,认真实施,及时总结,找出差距,严格执行国家的有关标准、规程和相关的管理规定。各实验室要把健全相关规章制度、完善检测设施和环境条件、提高检测人员的技术素质和职业道德作为满足该项工作的基本保证条件。
(1)各实验室应根据检测工作质量保证体系的要求,制定有关对比验证和内部抽查工作的程序文件。每年还应根据程序文件的要求制定年度工作计划,指导日常的具体工作。有条件的实验室可定期参加由国家水泥质检中心、各省级水泥质检站和地市级水泥质检站组成的三级水泥质量检测对比工作网络[6] 的对比验证试验。
(2)不同管理体系下的实验室可根据各自体系内的管理要求参加统一组织的对比和能力验证试验。为配合做好该项工作,各实验室还应组织内部的重复性(密码抽查)试验和外部的再现性试验,以提高水泥检验方法的精确性和检测工作质量的可靠性。因为标准规定的重复性和再现性试验“是考核试验室试验结果稳定性的指标,也是试验室条件稳定程度、人员操作规范性的反映。”[7]
(3)标准规定的再现性和重复性试验
1)根据GB/T17671-1999 的规定[5],抗压强度测量方法的再现性:“是同一个水泥样品在不同试验室工作的不同操作人员,在不同的时间,用不同来源的标准砂和不同套设备所获得试验结果误差的定量表达。”
在合格试验室之间,28 天抗压强度测试的再现性,用变异系数表示,可不超过6%。
2)根据GB/T17671-1999 的规定[8],抗压强度测量方法的重复性:“是同一个试验室在基本相同的情况下(相同的操作人员,相同的设备,相同的标准砂,较短的时间间隔内)用同一水泥样品所得试验结果的误差来定量表达。”一个合格的实验室,在上述条件下,28 天抗压强度测试的重复性,以变异系数表示,可要求在1%~3% 之间。
(4)《水泥企业质量管理规程》[7]中关于试验允许误差的规定:
1)同一实验室(不大于):
a 比表面积:±(相对误差)。
b 细度(µm): 筛余≤ 的为±(绝对误差);
筛余> 的为±(绝对误差)。
c 标准稠度用水量:±(相对误差)。
d 凝结时间: 初凝:±15min(绝对误差);
终凝:±30min(绝对误差)。
e 抗折强度:±(相对误差);
f 抗压强度:±(相对误差)。
2)不同实验室(不大于):
a 比表面积:±(相对误差)。
b 细度(µm): 筛余≤ 的为±(绝对误差);筛余> 的为±(绝对误差)。
c 标准稠度用水量:±(相对误差)。
d 凝结时间: 初凝:±20min(绝对误差);
终凝:±45min(绝对误差)。
e 抗折强度:±(相对误差);
f 抗压强度:±(相对误差)。
7检验质量保证和监控措施
水泥检验数据是否准确可信,是靠日常检验工作的质量保证体系的正常运转和有效的监督工作机制来保证的,是通过有计划的定期的对比和能力验证来进行考核的。
日常检验的质保体系由如下几个方面组成:
(1)检验工作程序;
(2)样品制备和处理;
(3)试验室的环境条件;
(4)设备仪器的运行情况;
(5)检验人员的试验操作过程,
(6)检验数据的采集、处理和校核。
检验工作质量的监控工作分三个层次进行:
(1)检验人员在试验过程中的相互检查;
(2)各试验室监督员对日常检测工作的监督;
(3)实验室质量管理层的随机抽查。
检验对比和能力验证考核
每年都应制定对比和能力验证工作的相关计划(或称内部质量控制方案),定期(一般1~2个月进行一次)实施,分阶段进行统计分析和评价,找出问题应及时进行纠正。
8结束语
只要我们各个实验室的领导能重视对检测工作质量的管理和控制工作,认真组织实施和落实检测工作质量控制的相关工作计划,及时总结和评价检验工作的结果和水平,那我们工程实验室的水泥质量检测能力就能保持在一个相对准确的水平上,以满足向施工现场准确及时地提供科学公正的检验数据的要求,进而促进建筑工程质量的不断提升的总体目标的实现。
参考文献
[1] GB175-2007.通用硅酸盐水泥[S]
[2] GB50204-2002.混凝土结构工程施工质量验收规范[S]
[3] GB50300-2001.建筑工程施工质量验收统一标准[S]
[4] GB12573-1990.水泥取样方法[S]
[5] GB/T17671-1999.水泥胶砂强度检验方法(ISO 法)[S]
[6] 董士文,李坊.我国水泥质量检测对比工作网络体系[J].建材标准化与质量管理,1996(3):10
[7] 张大同.水泥新标准实施过程中有关试验仪器的问题[J].建材标准化与质量管理,2001(4):10
[8] 水泥企业质量管理规程[S] .国家经济贸易委员会 公告(2002 年第1 号)
水泥实验室的温度是20±2℃湿度≥50%,标准养护室的温度是20±1℃,湿度90%以上
随着建筑工程的发展,建筑工程材料也变得越来越重要,建筑项目的完成质量往往取决于建筑材料质量的好坏。下文是我为大家搜集整理的关于建筑材料论文2000字的内容,欢迎大家阅读参考!
浅析建筑材料检测的相关技术
1、建筑材料的分类与检验项目
房屋建筑材料根据其在建筑物中的部位或使用性能,大体上分为三大类,即建筑结构材料(建筑物受力构件和结构所用的材料)、墙体材料(建筑物内、外及隔墙所用的材料)、建筑功能材料(承担某建筑功能的非承重用的材料)。施工现场所用的建筑材料品种繁多,进场检测、试验材料项目要服从国家、行业及当地建设主管部门(或所属有关部门)的规定,并服从《省建筑工程竣工技术档案编制办法》。
例如配制混凝土用的水泥,需按批检验其安定性、 强度、凝结时间和细度;混凝土用粗骨料按常规进行颗粒级配、密度、含泥量及泥块含量、针片状颗粒含量等检验项目,如若用于≥C35的混凝土须做压碎指标,新采用的质地疏松的骨料还应做坚固性试验,活性骨料做活性试验等。对于合成高分子防水材料,按―2000《高分子防水材料――第一部分片材》,应按批检验其物理性能,例如断裂拉伸强度、胶断伸长率、不透水性和低温弯折。材料检测试验项目的确定应以确保工程质量为前提,只检验其原始合格证明而不按规定抽样试验,或虽抽样试验但检测项目不全,都是不符合要求的。
2、取样的数量和方法
取样要有代表性,一般是以一批材料不同部位随机抽取规定数量的样品(钢材是从规定部位截取),即不仅取样数量要正确,而且取样部位及方法也要按规定进行。试样的数量关系到试验结果的准确性,数量过少、取样部位及方法的偏差,都会使试验误差增大,甚至会得出相反的结果。但是,在实际检测中经常会出现取样不具有代表性、取样的数量不够、取样方法不正确等问题。例如袋装水泥要从该批不少于20袋水泥中任取等量样品,总质量至少12kg。
在实际工作中,多次遇到送检人员一次性提取半袋或整袋水泥作为样品,经检测水泥强度值不符合标准要求的情况,后经现场按标准要求取样后复试,试验结果则完全符合国家标准;又如送检钢筋焊接试件时,有的是用工地的废钢筋头作为模拟试件或者取样方法不正确;再如钢筋气压焊焊件按标准应送检6根,3根做拉伸试验,3根做弯曲试验,而有的只送检3根试件,这样即使3根试件的拉伸试验结果全部合格,仍无法判定该批试件是否合格。
3、常用建筑材料检测技术要点分析
在建筑材料质量控制的实践中,我们深刻地体会到,工程材料的质量监控要采取施工单位自检和监理单位平行检测、跟踪检测、见证取样相结合的办法,检测和试验相结合,完善“企业自检、社会监理、政府监督” 的质量保证体系,牢固树立“百年大计、质量第一” 的方针。 现总结几种建筑材料的检测取样试验方法。
钢筋的检测
钢筋进场时,应按照现行国家标准《钢筋砼用热轧带肋钢筋》GB1499等的规定抽取试件作力学性能检验,其质量必须符合有关标准规定。1)取样时,从任一钢筋端头,截取500mm2~1000mm的钢筋,再进行取样。2)冷拉钢筋:应进行分批验收,每批重量不大于20t的同等级、 同直径的冷拉钢筋为一个检验批。3)钢筋焊接。钢筋焊接在建筑施工中一般分为:闪光对焊、电阻点焊、电弧焊、电渣压力焊、预埋件T型接头埋弧压力焊、钢筋气压焊。
(1)闪光对焊:其机械性能试验包括拉伸试验和弯曲试验,拉伸试件长度一般≥500mm(500mm~650mm),冷弯试件长度一般250mm(250mm~350mm)。
(2)电阻点焊:热轧钢筋点焊做抗剪试验,试件长度一般≥600mm;拔低碳钢丝焊点,除作抗剪试验外,还应对较小钢丝做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
(3)电弧焊与电渣压力焊:在现场安装条件下都做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
水泥、砂石的检测
砂石、水泥、外加剂是建筑工程中最基本的、也是用量最大的建筑材料,以往建筑工程在对这些产品检验时,只是检验产品的强度和一些与强度有关的常规性技术指标。而如今对砂、石和水泥甚至包括回填上都要进行放射性的检测。
水泥进场验收:水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。当在使用中对水泥质量有怀疑或水泥出厂日期超过3个月(快硬硅酸盐水泥超过1个月)时,应进行复验,并按复验结果使用。?
砂石取样方法:在料堆水取样时,取样部位应均匀分布。在料堆的顶部、中部、底部各均匀分布的5个不同部位取得,组成一组样品,砂子在各部位抽取大致相等的8份,石子在各部位抽取大致相等的15份。砂石、水泥送检的同时,进行砼配合比、砂浆配比的检验工作,一般是与砂石、水泥检验报告同期出示。在第一次使用配合比搅拌砼或砌筑砂浆时,应至少留置一组标准标养试件(标养条件:温度为20±30℃,相对湿度为90%,试件间距为10mm~20mm)作为验证配合比的依据。同时,根据砂浆配比,对所搅拌的砌筑砂浆用砂的粒径、水泥用量、搅拌时间、砂浆和易性等进行检验试验。
砼工程
结构混凝土的强度等级必须符合设计要求,用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机抽取,应及时检查施工记录及试件强度实验报告。对有抗渗要求的混凝土结构,其混凝土试件应在浇筑地点随机取样 ,抗渗试验报告也应随时检查以保障施工质量。
检测时环境温度与湿度的控制温度和湿度对一些建筑材料的性能有很大的影响,故在标准中对材料养护、测试时的环境条件有明确的规定,必须严格遵守。如GB/T17671―1999《水泥胶砂强度检验方法》规定,试体成型时的环境温度应稳定保持在20℃±2℃,相对湿度应>50%;试体拆模前的养护温度为20℃±1℃,相对湿度应>90%;试体在水中养护的温度控制在200C±10C。又如弹性体改性沥青防水卷材(SBS)等防水材料,其性能对环境温度较为敏感,进行拉伸试验时要求室温控制在23℃±2℃。
4、结束语
随着我国建筑行业的发展飞速,人们越来越关注建筑材料的质量。建筑材料作为构建建筑工程的基础,其质量好坏对建筑工程的安全性造成直接的影响。在施工之前,一定要高度重视建筑材料的检测工作,严格执行质量标准,并不断地总结经验教训,不断提高实际操作水平,保证检测结果的准确性,从中确保建筑材料的质量和工程的使用安全。
>>>下页带来更多的建筑材料论文2000字
水泥物理指标的试验方法【1】
摘 要:水泥是混凝土的重要组成部分之一,其品质的好坏,将直接影响混凝土的质量,进而影响整个工程的质量,如何正确地检验水泥的品质,就成了公路检测试验部门的一个重要任务。
本文分析了水泥标准稠度用水量、水泥凝结时间、水泥安定性等物理指标在试验中容易出现的问题和注意事项。
关键词:水泥;标准稠度用水量;水泥凝结;试验
1 水泥净浆搅拌
水泥净浆搅拌的均匀与否直接影响标准稠度用水量、凝结时间、安定性测定。
水泥净浆搅拌与水泥和水的计量、净浆搅拌机等有关,因此应对电子天平、加水器和净浆搅拌机等仪器设备进行严格控制。
量水器
规范规定:量水器分度值为,精度1%。
读数时以弯月低面为准。
一些试验室对这条规定没有引起足够的重视,直接采用量筒加水,量筒的分度值为1mL,根本无法满足试验精度要求,造成标准稠度用水量的加水误差。
电子天平
电子天平应满足精度要求,最大量程1000g,感量1g,并定期检定。
水泥复称,避免计量误差。
一些试验室在加水时采用称量的方法,认为电子天平的精度很高,加水量能控制得比较准确,但忽略了环境温度对水的密度的影响,如果采用称量的方法必须进行温度修正
才能确保试验数据的准确性。
水泥净浆搅拌机
水泥净浆搅拌机应符合JC/T729的要求。
水泥净浆搅拌机的工作程序为:启动搅拌机―低速搅拌120s―停15s―高速搅拌120s停机。
净浆搅拌前,应先用拧干的湿抹布将搅拌锅内壁和搅拌叶片抹湿,但是不能带有明水,并且在重复试验时始终保持同一湿度,这一点是调整加水量的关键,量水器加水再准,如果抹布忽干忽湿,加水量都很难控制。
先将量好的拌和水靠锅口小心倒入锅中,再用加料器在5~10s内小心地将称好的500g水泥加入水中,避免水泥溅出或粘在锅内壁、叶片上形成干灰,影响净浆的标准稠度。
注意试验的顺序为先加水,后加水泥。
在停15s时将锅壁和叶片上的水泥刮入锅中,特别提醒的是操作一定要快,防止刮刀还在锅内没有刮完,搅拌机已开始高速搅拌而引发事故。
2 水泥标准稠度用水量
水泥凝结时间测定是以标准稠度用水量制成的标准稠度净浆装在圆锥试模中来测定的。
标准稠度用水量的确定,对水泥凝结时间、水泥安定性的检验都非常关键。
不同加水量对水泥凝结时间的影响很大,同一水泥用水量愈多,凝结时间愈长,用水量减少,凝结时间会缩短。
因此标准规定凝结时间测定用水量必须满足标准稠度用水量的要求,以确保同一水泥的用水量基本相同。
标准稠度用水量测定有标准法(试杆法)和代用法(试锥法)。
我们一般采用试杆法。
搅拌结束后,立即将搅拌好的水泥净浆装入试模中,要一次装满,并用擦湿的水泥刀从外向内螺旋插捣使其填实,然后拿稳玻璃板连同试模,尽量平端,轻轻振动数次,使浆体内气泡由大变小,再用水泥刀刮平多余的净浆,尽量使刮平面光滑并与试模顶边齐平。
刮平后迅速移至试杆下,使试杆垂直自由下落沉入水泥净浆中,试杆停止下沉或释放试杆30s后记录下沉深度,整个操作过程要在搅拌结束内完成。
试杆法操作时水量调整的规律难于把握。
操作时应注意以下要点:
(1)测定标准稠度用水量时,应将拌和水一次加入,然后视试杆沉入的情况,根据经验调整水量重新称样另拌一锅,如此重复直至达到试杆下沉深度6mm±1mm,并注意下沉时不要阻挡试杆,更不能碰动维卡仪,避免因操作不规范造成误差。
(2)测定出水泥的标准稠度用水量后,不能直接用该水泥净浆装模来测定凝结时间,应按标准稠度用水量重新拌和一锅净浆来装模测定凝结时间,避免因操作时间过长、标准稠度针下落位置留有空隙而造成误差。
(3)标准稠度用水量的测定要求在拌和结束后内完成整个测试操作。
如果时间超过,由于水泥的水化和水分的蒸发,净浆稠度变大,标准用水量会受到很大影响。
因而试验人员正确熟练的操作是关键。
3 水泥凝结时间测定
水泥的凝结时间对工程施工的质量和进度至关重要。
水泥凝结时间过慢,会因水泥浆体或混凝土强度发展缓慢而使脱模时间延长,严重影响工程进度;水泥凝结过快,拌制的水泥浆体和混凝土来不及输送和浇注就失去了流动性或可塑性,使浇捣不能顺利进行,甚至会
在浇捣过程中破坏已不具备触变性的浆体结构,导致混凝土的性能和整个工程质量的降低。
所以水泥凝结时间的测定显得尤为重要。
应从以下几个方面进行控制:
做好温、湿度的控制
水泥的凝结时间受环境温度和湿度影响很大,只有在规定的温度、湿度条件下,水泥凝结时间的测定才具有复演性和可比性。
GB/T 1346-2001规定,试验室温度为20±2℃,相对湿度大于50%,养护箱温度20±1℃,相对湿度大于90%,而且规定水泥试样、拌和水、仪器和用具的温度应与试验室内室温一致。
因为养护箱内试验温度越高,水泥水化速度越快,凝结时间越短;湿度过小,水泥浆体水分蒸发加快,凝结时间缩短。
试验前做好仪器检查
凝结时间测定的主要仪器是维卡仪。
要保证维卡仪的金属棒自由顺畅地滑动,调整至试杆接触玻璃板时指针对准零点,初凝时间测定时维卡仪调整至试针接触玻璃板时指针对准零点。
同一时间测定多个试样时,各圆模的玻璃底板厚度要相同,避免厚度不一致影响零点的
调整,造成试验数据的混淆。
有些试验人员调整试杆接触试模顶边时指针对准零点,这种做法是错误的,因为在试样刮平过程中,试样与试模顶边不一定在同一个水平面上,造成试验误差。
凝结时间测定
在测定凝结时间时,首先要检查试针是否弯曲或表面是否锈蚀,弯曲或锈蚀的试针会使自由下落的阻力增大,产生初凝时间提前的假象。
初凝时间测定在开始时应轻轻扶持金属柱,使其徐徐下降,以防试针撞弯,但结果以自由下落为准。
试针下落的位置应距圆模内壁10mm以外的圆模中心,落点最好在距圆模内壁10~20mm的环状带上,应避免针孔之间的位置过于接近、密集。
每测一次要用湿布抹干净试针。
注意从水泥全部加入水中后30min时开始第一次测定,快要初凝时每隔5min测试一次。
当试针下沉到距底板4±lmm时重复测试,两次结论一样达到初凝;标准要求在初凝时间到达时,应及时将圆模翻转进行终凝时间的测定,在翻转过程中要注意操作技巧,先用一块玻璃板放在试模上面,连同玻璃板一起翻转过来后,沿着水泥方向均匀用力抽出原来的玻璃板,小心不要损坏试体。
终凝用安装了一个环形附件的终凝针测试,每次测定前要确认环形附件的透气孔无堵塞,环形圈与试针之间的凹槽无水泥浆。
临近终凝时每隔15min测试一次,当试针沉入试体,即环形开始不能在试体上留下痕迹时重复测试,两次结论一样时达到终凝。
测试初凝和终凝时间的操作要注意试针突然放松的力度要巧而适宜,既能使试针垂直自由地沉入水泥净浆,又要避免维卡仪晃动。
4 水泥体积安定性
水泥体积安定性,是评定水泥质量的重要指标之一,也是保证水泥制品、混凝土质量的必要条件。
安定性不良的水泥会使水泥硬化体膨胀开裂、强度降低、甚至引起严重工程事故。
水泥安定性测定有试饼法(代用法)和雷氏法(标准法),有争议时雷氏夹法为标准。
我们一般采用雷氏夹法。
操作中应注意以下几点:
(1)由于雷氏夹较小,在装浆和用小刀插捣时,雷氏夹很容易倾斜,底面浆体容易漏出,有些试验人员为了抓牢雷氏夹,紧紧捏着试针,使得雷氏夹的体积减少,结果试样在养护24h后,很容易从雷氏夹内脱落下来,无法测定。
还有一种情况是:插捣用的小刀过宽,向下插捣时会撑开雷氏夹,向上拔出时又会带出一些水泥浆,不容易密实,也影响到测试结果的准确性。
所以小刀宽度一般不要大于10mm。
(2)沸煮 调整沸煮箱内的水位,保持在整个沸煮过程中没过试件。
雷氏夹脱去玻璃板取下试件,先测量雷氏夹指针尖端的距离A,精确到,把试件放入沸煮箱内的支撑板上,指针朝上,试件之间互不交叉,然后在30min±5 min内加热至沸,并恒沸3h±5 min,中途不得添补试验用水,避免因温度高而出现的烫伤情况发生。
(3)结果判别 沸煮结束后,取出试件,测量雷氏夹指针尖端的距离C,精确到,标准规定:当两个试件煮后增加距离(C-A)的平均值不大于时,认定水泥安定性合格,当两个试件的(C-A)值相差超过时,应用同一水泥立即重做一次试验,再如此,则认为该水泥的安定性不合格。
5 结束语
本文通过对水泥净浆搅拌、标准稠度用水量确定、水泥凝结时间测定、水泥安定性测定等试验环节的阐述,重点论述了试验操作过程中的注意事项、试验环境、仪器设备等因素的`影响,并对如何提高水泥试验能力提出建议。
参考文献
[1]JTG E30-2005,公路工程水泥及水泥混凝土试验规程.
[2]JC/T 727-1996,水泥物理检验仪器净浆标准稠度与凝结时间测定仪.
[3]JC/T 729-1996,水泥物理检验仪器水泥净浆搅拌机.
[4]孙忠义,王建华.公路工程试验工程师手册[M].北京:人民交通出版社,2009.
通用硅酸盐水泥物理指标及其试验方法【2】
摘要:介绍了通用硅酸盐水泥物理指标及试验方法。
关键词:凝结时间;安定性;强度;细度
通用硅酸盐水泥按混合材料的品种和掺量分为硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。
硅酸盐水泥的强度等级分为、、、、、六个强度等级。
普通硅酸盐水泥的强度等级分为、、、四个强度等级。
矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水水泥的强度等级分为、、、、、六个强度等级。
通用硅酸盐水泥技术要求包括化学指标和物理指标。
化学指标包括不溶物、烧失量、三氧化硫、氧化镁、氯离子。
物理指标包括:凝结时间、安定性、强度、细度。
1凝结时间
硅酸盐水泥初凝时间不及小于45min,终凝时间不大于390min。
普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥初凝时间不小于45min,终凝时间不大于600min。
初凝时间的测定,水泥净浆的拌制:用水泥�浆搅拌机搅拌,搅拌机和搅拌叶片先用湿布擦过,将拌合水倒入搅拌锅内,然后在5s-10s内小心将称好的500g水泥加入水中,防止水和水泥�出;拌合时先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s停机。
拌合结束后,立即将拌制好的水泥净浆装入已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s-2s后,突然放松,使试杆垂直自由的沉入水泥净浆中。
在试杆停止深入或释放试杆30s时记录试杆至底板之间的距离,升起试杆后,立即擦净;整个操作应该在搅拌后内完成。
以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。
其拌合水量为该水泥的标准稠度用水量,按水泥质量的百分比计。
以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,放入湿气养护箱中养护至加水后30min时进行第一次测定,维卡仪试针与水泥净浆表面接触,拧紧螺丝1s-2s后,突然放松,或观察试针停止下沉30s时指针的读数。
临近初凝时每隔5min测定一次。
当试针沉至距底板4mm±1mm时,为水泥达到初凝状态,由水泥全部加入水中至初凝状态的时间为水泥的初凝时间。
终凝时间的测定:直径大端向上,再放入湿气养护箱中继续养护,临近终凝时间每隔15min测定一次,当试针沉入试体时,既环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态。
由水泥全部加入水中至终凝状态的时间为终凝时间,用“min”表示。
2安定性
每个试样需成型两个试件,每个雷试夹需配备质量约75-85的玻璃板两块,凡与水泥净浆接触的玻璃板和雷氏夹内表面都要稍稍涂上一层油。
将雷氏夹放在已稍擦油的玻璃板上,并立即将已制好的标准稠度净浆一次装满雷氏夹,装浆时一只手轻轻扶持雷氏夹,另一只手用宽约10mm的小刀插捣数次,然后抹平,盖上稍涂油的玻璃板,接着立即将试件移至湿气养护箱内养护24h±2h。
调整好沸煮箱的水位,使能保证在整个沸煮过程中都能超过试件,不需中途添补试验用水,同时又能保证在30min±5min内升至沸腾。
脱去玻璃板取下试件,先测量雷氏夹尖端间的距离(A),精确至,将试件放入沸煮箱水中试件架上,在30min±5min内加热至沸并恒沸180min±5min。
沸煮结束后,放掉水冷却至室温。
测量雷氏夹指针尖端的距离(C),准确至,当(C-A)的平均值不大于时,即认为该水泥安定性合格,当两个试件(C-A)相差超过时,应用同一样品立即重做一次试验。
再如此,则认为该水泥安定性不合格。
3强度
试体成型试验室的温度应保持在20℃±2℃,相对温度应不低于50%。
试体带模养护的养护箱或雾室温度应保持在20℃±1℃,相对温度应不低于90%。
试体养护池水温度应在20℃±1℃范围内。
水泥450g±2g,标准砂1350g±5g,水土保持225ml±1ml。
把水加入锅里,再加入水泥,把锅放在行星式水泥胶砂搅拌机的固定架上,上升至固定位置。
立即开动机器,低速搅拌30s后,在第二个30s开始的同时均匀的将砂子加入。
高速再拌30s。
停90s,再高速搅拌60s。
胶砂制备后立即成型。
将空试模和模套固定在振实台上,将砂分两层装入试模,装第一层时,每个槽里约放300g胶砂,用大播料器垂直架在模套顶部沿每个模槽来回一次将料层播平,接着振实60次。
再装入第二层胶砂,用小播料器播平,再振实60次。
移走模套,从振实台上取下试模,用一金属直尺以近似90℃的角度架在试模模顶的一端,然后沿试模长度方向以横向锯割动作慢慢向另一端移动,一次将超过试模部分的胶砂刮去,并用同一直尺以近乎水平的情况下将试体表面抹平。
放入雾室或湿箱的水平架子上养护。
试体龄期是从水泥加水搅拌开始试验时算起,不同龄期强度试验在下列时间里进行。
24h±15min,48h±30min,72h±45min,7d±2h,>28d±8h。
4细度
硅酸盐水泥和普通硅酸盐水泥的细度以比表面积表示,其比表面积不小于300m�2/kg;矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水水泥的细度以筛余表示,其80um方孔筛筛余不大于10%或45um方孔筛筛余不大于30%.试验前所用试验筛应保持清洁,负压筛和手工筛应保持干燥。
负压筛析法:试验时,80um筛析试验称取试样25g,45um筛析试验称取试样10g。
筛析试验前应把负压筛放在筛座上,盖上筛盖,接通电源,检查控制系统,调节负压至4000Pa―6000Pa范围内。
称取试样精确至,置于洁净的负压筛中,放在筛座上,盖上筛盖,接通电源,开动筛析仪连续筛析2min,在此期间,如有试样附着在筛盖上,可轻轻敲击筛盖使试样落下。
筛毕,用天平称量全部筛余物。
对其它粉状物料、或采用45-80以外规格方孔筛进行筛析试验时,应指明筛子的规格、称样量、筛析时间等相关参数。
试验筛必须经常保持洁净,筛孔畅通,使用10次后要进行清洗。
金属框筛、铜丝网筛清洗时应用专门的清洗剂,不可用弱酸浸泡。
水泥检验工技术总结
本文是在XX老师精心指导和大力支持下完成的。X老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响。她渊博的知识、开阔的视野和敏锐的思维给了我深深的启迪。同时,在此次毕业设计过程中我也学到了许多了关于微生物发酵方面的知识,实验技能有了很大的提高。另外,我还要特别感谢师姐对我实验以及论文写作的指导,她为我完成这篇论文提供了巨大的帮助。还要感谢,XX和XX同学对我的无私帮助,使我得以顺利完成论文。同时实验室的XX老师也时常帮助我,在此我也衷心的感谢他。最后,再次对关心、帮助我的老师和同学表示衷心地感谢
在传统上,混凝土是按强度进行设计的,对混凝土的质量的最终标准主要是强度。因此混凝土生产者对水泥品质的要求也是强调强度;强度越高的水泥被认为质量也越高。如此的发展,造成近年来混凝土结构出现裂缝尤其是早期开裂的现象日益普遍。其原因很复杂。单从水泥来说,比表面积、矿物组成中C3A、C3S、碱含量的增加,热水泥的出厂,都增加了开裂的敏感性,降低了流变性能,是原材料中影响混凝土质量主要原因。应当把抗裂性作为水泥品质的重要要求,并限制出厂水泥的温度。 (接上期)4水泥细度对混凝土工作性的影响目前我国混凝土尤其是中等以上强度等级的混凝土普遍使用高效减水剂和其他外加剂。当高效减水剂产品一定时,水泥的成分(主要是含碱量、C3A及其相应的SO3含量)和细度是影响水泥和高效减水剂相容性的主要因素。水泥细度的变化加剧了水泥与高效减水剂相容性问题。近两年时有发生高效减水剂的用户和厂家的纠纷。为此,天津雍阳外加剂厂丘汉用不同细度的天津P.O525水泥和拉法基P.O525水泥分别掺入不同量的UNF-5AS,进行相容性实验。采用水灰比为0.29的净浆,分别在搅拌后5分钟和60分钟后量测...还有更多关于水泥的文章,请上去看看: