首页 > 论文发表知识库 > 大学毕业论文方程组的应用

大学毕业论文方程组的应用

发布时间:

大学毕业论文方程组的应用

matlab在微分方程中的应用毕业论文大纲书写方法为1、先写前言。2、第一部分解释matlab的基本概念。3、第二部分描述其在微分方程中的应用。

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

线性代数是代数学科的一个分支。代数学的起源早在中世纪。在公元820年左右,被冠以 “代数学之父”的称号的阿拉伯数学家花拉子米编著了《代数学》一书这就是Algebra一词的最初来源,书中开始探讨了数学问题的一般解法,尝试用代数方法处理线性方程组与二次方程,同时引进了移项、合并同类项等代数运算。12世纪花拉子米的数学成果传入欧洲,对欧洲数学的发展产生了巨大影响,并作为欧洲人的标准教学课本,使用了几个世纪。 16世纪,法国科学家韦达首先有意识地、系统地使用数学符号,引入了符号体系,这种思想不仅带来了代数学领域的一次突破,而且为以后整个数学的发展奠定了基础.成为近代、现代代数学最明显的标志.18世纪,代数学的主题仍是代数方程,其中代数学发展的一个方向就是方程组理论.首先是线性方程组与行列式理论,莱布尼茨的行列式及其在解线性方程组中的应用思想得到了发展,瑞士数学家克莱姆提出了著名的“克莱姆法则”,即由系数行列式莱确定线性方程组解的表达式法则;接着范得蒙行列式、拉普拉斯展开等重要结果被相继提出. 18-19世纪由欧拉开启了数论的新领域“代数数论”;1824年挪威数学家阿贝尔发表了题为《论代数方程.证明一般方程五次的不可解性》的论文,解决了困扰数学界200多年的难题,在此过程中引发了他对群论的研究,引进了“域”的概念,加上伽罗华对全新的群的探讨,以及后来F.克莱茵和S.李等人的研究,在此基础之上,产生了代数学的一门新学科——群论,从而结束了代数学中以解方程为中心的时代,开始用一种更加抽象的观点来研究代数学,代数学由于群的概念的引进发展而获得新生.在中国,代数学的发展始自华罗庚,他自上个世纪40至50年代在体论,矩阵几何和典型群三方面进行了深入系统的研究,作出了重要的贡献.线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表示的 ,含有n个未知量的一次方程称为线性方程.线性关系问题简称线性问题,解线性方程组的问题是最简单的线性问题.线性代数作为一个独立的分支是在20世纪才形成的,而最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术.方程》中已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换、消去未知量的方法.随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18 —19世纪先后产生,为处理线性问题提供了有力的工具.从而推动了线性代数的发展.随着向量的引入,形成了向量空间的概念.凡是线性问题都可以用向量空间的观点进行讨论.因此,向量空间及其线性变换,以及与此相联系的矩阵理论构成了线性代数的中心内容.线性代数的含义随数学的发展而不断扩大,线性代数的理论与方法已经渗透到数学的许多分支.很多实际问题的处理最后往往归结为比较容易处理的线性问题,因此线性代数在工程技术上和国民经济的许多领域都有着广泛的应用.所以线性代数是一门基本的和重要的学科,线性代数的计算方法是计算数学的一个重要内容.

线性方程组毕业论文

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

病态方程组毕业论文

我对测绘学的认识学院:测绘学院 专业:测绘工程 班级:10级4班 姓名: 学号:作为武汉大学测绘学院测绘工程专业的一名大一新生,我很有幸上了由几位著名的两院院士及教授主讲的《测绘学概论》,在这个课堂上,我不仅见到了在我国乃至世界都非常著名的院士、教授、专家,还在他们独道精辟的讲解下认识了测绘学这门学科,了解学习了很多关于测绘学的知识及其发展前景。作为专业的基础,我从课堂、图书、网络等各个方面积极的了解测绘学,拓宽了我的知识面,使我认识到测绘不是他们所说的“冷门专业”“辛苦专业”,获益匪浅,使我加深了对测绘的兴趣。下面我将从几个方面讲述我对测绘学的认识及感想。测绘学古老而现代,绘学现在正在向一门刚兴起的学科—地球空间科学发展。测绘学是一门古老的学科,有着悠久的历史。测绘学的发展在世界上古史时代,就有利用测绘学智丽尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,我国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《驻军图》,为目前所发现我国最早的地图。随着人类社会的进步和科学技术的不断发展,测绘学科的理论、技术、方法及其学科内涵也随之发生了很大的变化。尤其是在当代,由于空间技术、计算机技术、通信技术和地理信息技术的发展,测绘学的理论基础、工程技术体系、研究领域和科学目标与传统意义上的测绘学有了很大的不同。测绘学日益发展成为国内外正在兴起的一门新型学科——地球空间信息学(Geo-Spatial Information Science,简称Geomatics)测绘学的主要研究对象是地球(当然再未来将发展到外太空,研究其他的星球)。人类对地球形状认识的逐步深化,要求精确测定地球的形状和大小,从而促进了测绘学发展。因此,测绘学可以说是地球科学的一个分支。测绘学的研究成果是以地图为代表的信息产品,地图的演变及其制作过程、方法是测绘学进步的一个主要标志。测绘学获取观测数据的工具是测量仪器,测量学的发展很大程度上取决于测绘方法和测绘仪器的创造和改革。测绘仪器的发展经历了早期的游标经纬仪到小平板、大平板仪、水准仪、航空摄影机、摆仪、重力仪、全站仪,测量机器人,数字绘图机。成果也原来的手绘地图到数字地图,由原来的二维地图到现在的三维地图,四维地图,最近由武汉大学测绘遥感信息工程国家重点实验室研制的“天地图”这一伟大成果就是一个很好的代表。测绘学的科学地位和作用意义重大。在科学研究中的作用:测绘学在探索地球奥秘和规律、深入认识和研究地球的各种问题中发挥着重要的作用。现在的测量技术可以提供几乎任意时区域分辨率系列,具有检测瞬时地理事件如地壳运动,重力场的时空变化,地球的潮汐和自转等问题,这些观测成果可以用于地球内部物质的研究,尤其在解决地球物理方面可以起到辅助作用。测绘许饿在国民经济上的作用是广泛。丰富的地理信息是国民经济和社会信息化的重要基础,为构建“数字城市”“数字中国”提供了重要的资源。在现代化战争的今天,测绘学在武器的定位、发射、精确制导等方面发挥着不可代替的作用。另外在防灾减灾方面,测绘做出了不可磨灭的作用,2008年汶川特大地震中,测量所的的地图在救灾中起指导作用,减少了灾难等带来的重大损失。在以后的发展中,测绘在防灾、减灾上仍然将发挥它的作用,民政局非常重视测绘的作用。测绘学的分类。随着测绘科技的发展和时间的推移,在发展过程中形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘和地图制图学等分支学科。大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。普通测量学 研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。摄影测量学 研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量。工程测量学 研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供精确的测量数据和大比例尺地图,保障工程选址合理,按设计施工和进行有效管理。海洋测绘 研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。地图制图学 研究地图及其编制的理论和方法。下面我将就这几个分支按我理解简单叙述。大地测量学大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。大地测量学的基本任务是1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。2、 确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及其重力场。3、建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。4、研究为获得高精度测量成果的仪器和方法等。5、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。6、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。几何大地测量学。19世纪起,许多国家都开展了全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图的工作提供大量地面点的精确几何位置。为达此目的,需要解决一系列理论和技术问题,这就推动了几何大地测量学的发展。首先,为了检校天文大地测量的大量观测数据,消除其间的矛盾,并由此求出最可靠的结果和评定观测精度,法国的勒让德()于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。高斯于1828年在其著作《曲面通论》中,提出了椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。物理大地测量学。法国的勒让德()于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。卫星大地测量学。到了20世纪中叶,几何大地测量学和物理大地测量学都已发展到了相当完善的程度。但是,由于天文大地测量工作只能在陆地上实施,无法跨越海洋;重力测量在海洋、高山和荒漠地区也仅有少量资料,因此地球形状和地球重力场的测定都未得到满意的结果。直到1957年第一颗人造地球卫星发射成功之后,产生了卫星大地测量学,才使大地测量学发展到一个崭新的阶段。摄影测量学摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量摄影测量学。根据地面获取影像时,摄影机安放的位置不同,摄影测量学可以分为航空摄影测量学、航天摄影测量与地面摄影测量。航空摄影测量:将摄影机安放在飞机上,对地面进行摄影,这是摄影最常用的方法。航空摄影测量所用的是一种专门的大幅面的摄影机又称航空摄影机。航天摄影测量学:随着航天、卫星、遥感技术的发展而发展的摄影测量技术,将摄影机安装在卫星上。近几年来,高分辨率卫星摄影的成功应用,已经成为国家基本地图测图、城市、土地规划的重要资源。近地摄影测量是将摄影机安装在地面上进行的摄影测量。摄影测量学的一些基本原理包括影象与物体的基本关系、影象与地图的关系、摄影机的内方位元素、外方位元素、共线方程、立体观测方法等。在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。摄影测量学的研究方向。1、数字摄影测量:以航空影像和卫星米级高分辨率影像为数据源,扩展计算机立体相关理论与算法,发展立体几何模型确定和精化的新方法,以及研究困难地区数字立体测图的新技术;研究近景(地面)摄影测量中的数字相机的快速检校新算法,数字影像精确匹配问题,以及在工业生产过程自动监测和土木工程建筑物(如桥梁和隧道)形变监测中的问题。2.遥感技术及应用以多光谱、多分辨率和多时相卫星影像为数据源,研究地表变迁及地质调查的遥感新方法;研究地球资源(如土地利用)变化检测的有效方法,发展半自动或全自动化的遥感监测手段;开发监测城市环境污染和自然灾害(如洪水与森林、农作物病虫害)的实用遥感系统,等等。基于合成孔径雷达图像,开展干涉雷达(InSAR)等技术的地表三维重建、大范围精密地表形变(包括滑坡、城市沉降和地壳形变)探测和气象变化监测的研究。技术及应用研究车载CCD序列影像测图的方法和算法,为线性工程勘测和调查提供快速而有效的地面遥感测量手段;研究包括遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)在内的3S技术集成的模式和方法,为我国西部大开发的铁路、公路建设探索全新的勘测设计手段。地图制图学地图制图学是研究地图及其编制和应用的一门学科。它研究用地图图形反映自然界和人类社会各种现象的空间分布,相互联系及其动态变化,具有区域性学科和技术性学科的两重性,亦称地图学。 地图制图学的理论与技术。地图编制研究制作地图的理论和技术。主要包括:制图资料的选择、分析和评价,制图区域的地理研究,图幅范围和比例尺的确定,地图投影的选择和计算,地图内容各要素的表示法,地图制图综合的原则和实施方法,制作地图的工艺和程序,以及拟定地图编辑大纲等。地图整饰研究地图的表现形式。包括地图符号和色彩设计,地貌立体表示,出版原图绘制以及地图集装帧设计等。地图制印研究地图复制的理论和技术。包括地图复照、翻版、分涂、制版、打样、印刷、装帧等工艺技术。此外,地图应用也已成为地图制图学的一个组成部分。它主要研究地图分析、地图评价、地图阅读、地图量算和图上作。 地图制图学的发展趋势随着现代科学技术的发展,地图制图学也进入了新的发展阶段,其主要特点和趋势为:①地图制图学作为区域性学科,其重点已由普通地图制图转移到专题地图制图,并向综合制图、实用制图和系统制图的方向发展。②地图制图学作为技术性学科,正在向机助制图方向发展,有可能逐步代替延续几千年的手工编图的作业方法。③随着地图制图学同各学科间的相互渗透,产生了一些新的概念和理论。例如,以地图图形显示、传递、转换、存储、处理和利用空间信息为内容的地图信息论和地图传输论;研究经过地图图形模式化建立地图数学模型和数字模型的地图模式论;研究用图者对地图图形和色彩的感受过程和效果的地图感受论;研究和建立地图语言的地图符号学,等等。工程测量学工程测量学是研究工程建设和自然资源开发中各个阶段进行的控制和地形测绘、施工放样、变形监测的理论和技术的学科。测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。工程测量学的理论平差理论。最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。海洋测绘海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制。海洋测绘的基本理论与方法。测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。海洋测量的基本理论、技术方法和测量仪器设备等,同陆地测量相比,有它自己的许多特点。主要是测量内容综合性强,需多种仪器配合施测,同时完成多种观测项目;测区条件比较复杂,海面受潮汐、气象等影响起伏不定;大多为动态作业,测者不能用肉眼通视水域底部,精确测量难度较大。一般均采用无线电导航系统、电磁波测距仪器、水声定位系统、卫星组合导航系统、惯性导航组合系统,以及天文方法等进行控制点的测定和测点的定位;采用水声仪器、激光仪器,以及水下摄影测量方法等进行水深测量和海底地形测量;采用卫星技术、航空测量以及海洋重力测量和磁力测量等进行海洋地球物理测量。现代测绘中的新技术随着电子信息技术、通信技术、网络技术等的飞速发展,测绘学也迎来发展的机遇与挑战。测量理论,测量方法,测量仪器的改进推动了测绘学科的发展,现在的测绘不但测量精度大大提高,测量时间大大的减少,劳动强度降低,测绘工作者也不再是人民眼中“农民工”。这些新技术包括:1、卫星导航定位技术。以美国的GPS,俄罗斯的GLONASS,中国的北斗以及在建的欧盟的GALILES为代表的的定位系统为测绘工作带来极大的方便,而且提高了精度。2、RS(遥感),他是一种不通过接触物体本身,用传感器采集目标的电磁波信息,经过处理、分析后识别目标物的现代科学技术。我们武汉大学在遥感方面实力强大,遥居亚洲第一。3、数字地图制图技术。4、GIS(地理信息系统)GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。5、3S集成技术。即GPS、GIS与RS技术的集成,是当前国内外发展的趋势。在3S技术的集成中,GPS主要用于实时快速的提供物体的空间位置;RS用于实时快速的提供大面积的地表物质及其环境的几何与物理信息,以及他们的各种变化;GIS则是对多种来源时空数据的综合处理分析和应用的平台。6、虚拟现实摸型技术,他是由计算机构成的高级人机交换系统。测绘学博大精深,我们对它的了解还很肤浅,但我相信在我们回在今后的学习工作中对它有更深的了解,并且,在不久的将来我们必将献身测绘事业,献身祖国的建设事业,成为一个21世纪合格的测绘工作者和祖国的建设的接班人!

摘要:本文对工程测量学重新进行了定义,指出了该学科的地位和研究应用领域;阐述了工程测量学领域通用和专用仪器的发展;在理论方法发展方面,重点对平差理论、工程网优化设计、变形观测数据处理方法进行了归纳和总结。扼要地叙述了大型特种精密工程测量在国内外的发展情况。结合科研和开发实践,简介了地面控制与施工测量工程内外业数据处理一体化自动化系统——科傻系统。最后展望了21世纪工程测量学若干发展方向。关键词:工程测量工业测量精密工程测量测量机器人工程网优化设计一、学科地位和研究应用领域学科定义工程测量学是研究地球空间中具体几何实体的测量描绘和抽象几何实体的测设实现的理论方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。学科地位测绘科学和技术是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。总的来说,整个学科的二级学科仍应作如下划分:——大地测量学;——工程测量学;——航空摄影测量与遥感学;——地图制图学;——不动产地籍与土地整理。研究应用领域目前国内把工程建设有关的工程测量按勘测设计、施工建设和运行治理三个阶段划分;也有按行业划分成:线路工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、3维工业测量等,几乎每一行业和工程测量都有相应的著书或教材。由Hennecke,Mueller,Werner3个德国人所编著的工程测量学,主要按下述内容进行划分和编写:①测量仪器和方法;②线路、铁路、公路建设测量;③高层建筑测量;④地下建筑测量;⑤安全监测;⑥机器和设备测量。由于工程测量的研究应用领域非常广泛,发展变化也很快,因此写书十分困难。目前国内外没有一本全面涉及工程测量学理论、技术、方法和实际应用的现代专著或教材。国际测量师联合会的第六委员会称作工程测量委员会,过去它下设4个工作组:测量方法和限差;土石方计算;变形测量;地下工程测量。此外还设了一个非凡组:变形分析与解释。现在,下设了6个工作组和2个专题组。6个工作组是:大型科学设备的高精度测量技术与方法;线路工程测量与优化;变形测量;工程测量信息系统;激光技术在工程测量中的应用;电子科技文献和网络。2个专题组是:工程和工业中的非凡测量仪器;工程测量标准。德国、瑞士、奥地利3个德语语系国家自50年代发起组织每3~4年举行一次的“工程测量国际学术讨论会”。过去把工程测量划分为以下几个专题:测量仪器和数据获取;数据解释、处理和应用;高层建筑和设备安装测量;地下和深层建筑测量;环境和工程建筑物变形监测。1992年第11届讨论会的专题是:测量理论与测量方案;测量技术和测量系统;信息系统和CAD;在建筑工程和工业中的应用。1996年的第12届讨论会的专题是:测量和数据处理系统;监测和控制;在工业和建筑工程中的质量问题;数据模型和信息系统;交叉学科的大型工程项目。从以上可见,工程测量学的研究领域既有相对的固定性,又是不断发展变化的。笔者认为,工程测量学主要包括以工程建筑为对象的工程测量和以设备与机器安装为对象的工业测量两大部分。在学科上可划分为普通工程测量和精密工程测量。工程测量学的主要任务是为各种工程建设提供测绘保障,满足工程所提出的要求。精密工程测量代表着工程测量学的发展方向,大型特种精密工程建设是促进工程测量学科发展的动力。二、工程测量仪器的发展工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、通讯及CCD技术,可实现测量的全自动化,被称作测量机器人。测量机器人可自动寻找并精确照准目标,在1s内完成一目标点的观测,像机器人一样对成百上千个目标作持续和重复观测,可广泛用于变形监测和施工测量。GPS接收机已逐渐成为一种通用的定位仪器在工程测量中得到广泛应用。将GPS接收机与电子全站仪或测量机器人连接在一起,称超全站仪或超测量机器人。它将GPS的实时动态定位技术与全站仪灵活的3维极坐标测量技术完美结合,可实现无控制网的各种工程测量。专用仪器是工程测量学仪器发展最活跃的,主要应用在精密工程测量领域。其中,包括机械式、光电式及光机电结合式的仪器或测量系统。主要特点是:高精度、自动化、遥测和持续观测。用于建立水平的或竖直的基准线或基准面,测量目标点相对于基准线的偏距,称为基准线测量或准直测量。这方面的仪器有正、倒锤与垂线观测仪,金属丝引张线,各种激光准直仪、铅直仪、自准直仪,以及尼龙丝或金属丝准直测量系统等。在距离测量方面,包括中长距离、短距离和微距离及其变化量的精密测量。以ME5000为代表的精密激光测距仪和TERRAMETERLDM2双频激光测距仪,中长距离测量精度可达亚毫米级;可喜的是,许多短距离、微距离测量都实现了测量数据采集的自动化,其中最典型的代表是铟瓦线尺测距仪DISTINVAR,应变仪DISTERMETERISETH,石英伸缩仪,各种光学应变计,位移与振动激光快速遥测仪等。采用多谱勒效应的双频激光干涉仪,能在数十米范围内达到μm的计量精度,成为重要的长度检校和精密测量设备;采用CCD线列传感器测量微距离可达到百分之几微米的精度,它们使距离测量精度从毫米、微米级进入到纳米级世界。高程测量方面,最显著的发展应数液体静力水准测量系统。这种系统通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,答应两容器之间的高差从过去的数厘米达到数米。与高程测量有关的是倾斜测量,即确定被测对象在竖直平面内相对于水平或铅直基准线的挠度曲线。各种机械式测斜仪、电子测倾仪都向着数字显示、自动记录和灵活移动等方向发展,其精度达微米级。具有多种功能的混合测量系统是工程测量专用仪器发展的显著特点,采用多传感器的高速铁路轨道测量系统,用测量机器人自动跟踪沿铁路轨道前进的测量车,测量车上装有棱镜、斜倾传感器、长度传感器和微机,可用于测量轨道的3维坐标、轨道的宽度和倾角。液体静力水准测量与金属丝准直集成的混合测量系统在数百米长的基准线上可精确测量测点的高程和偏距。综上所述,工程测量专用仪器具有高精度、快速、遥测、无接触、可移动、连续、自动记录、微机控制等特点,可作精密定位和准直测量,可测量倾斜度、厚度、表面粗糙度和平直度,还可测振动频率以及物体的动态行为。 三、工程测量理论方法的发展测量平差理论最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计;针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有反抗多个粗差影响的优点。建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。无疑附合导线具有许多优点,但由于多余观测少,发现和反抗粗差的能力较弱,不宜滥用。建立一个区域的控制,首级网点采用GPS测量,下面最好用一个等级的导线网作全面加密。从测量平差理论来看,全面布设的导线网具有更好的图形强度,精密较均匀,可靠性也较高。工程控制网优化设计理论和方法网的优化设计方法有解析法和模拟法两种。解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。一般将网的质量指标作为目标函数或约束条件。网的质量指标主要有精度、可靠性和建网费用,对于变形监测网还包括网的灵敏度或可区分性。对于网的平差模型而言,按固定参数和待定参数的不同,网的优化设计又分为零类、一类、二类和三类优化设计,涉及到网的基准设计,网形、观测值精度以及观测方案的设计。在工程测量中,施工控制网、安装控制网和变形监测网都需要作优化设计。由于采用GPS定位技术和电磁波测距,网的几何图形概念与传统的测角网有很大的区别。除非凡的精密控制网可考虑用专门编写的解析法优化设计程序作网的优化设计外,其他的网都可用模拟法进行设计。模拟法优化设计的软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标。模拟观测方案,根据仪器确定观测值精度,可进一步模拟观测值。计算网的各种质量指标如精度、可靠性、灵敏度。精度应包括点位精度、相邻点位精度、任意两点间的相对精度、最弱点和最弱边精度、边长和方位角精度。进一步可计算坐标未知数的协方差阵或部分点坐标的协方差阵,协方差阵的主成份计算,特征值计算,点位误差椭圆、置信椭圆的计算等。可靠性包括每个观测值的多余观测分量和某一观测值的粗差界限值对平差坐标的影响。灵敏度包括灵敏度椭圆、在给定变形向量下的灵敏度指标以及观测值的灵敏度影响系数。将计算出的各质量指标与设计要求的指标比较,使之既满足设计要求,又不致于有太大的富余。通过改变观测值的精度或改变观测方案或局部改变网形等方法重新作上述设计计算,直到获取一个较好的结果。在实践中,总结出了下述优化设计策略:先固定观测值的精度,对选取的网点,观测所有可能的边和方向,计算网的质量的指标,若质量偏低,则必须提高观测值的精度。在某一组先验精度下,若网的质量指标偏高了,这时可按观测值的内部可靠性指标ri,删减观测值。ri太大,说明该观测值显得多余,应删去;若ri很小,则该观测值的精度不宜增加。这种根据ri大小来删除观测值的方法称为从“密”到“疏”,从“肥”到“瘦”的优化策略。从模拟法优化设计的整个过程来看,它是一种试算法,需要有一个好的软件。该软件除具有通用平差软件的功能外,在成果输出的多样性、直观性,在可视化以及人机交互界面设计方面都有更高要求。同时也要求设计者具有坚实的专业知识和丰富的经验。用模拟法可获得一个相对较优且切实可行的方案,可进一步用模拟观测值作网的平差计算,同时可模拟观测值粗差并计算对结果的影响。这种方法称为数学扭曲法或蒙特卡洛法。对于一个精度、可靠性以及灵敏度要求极高的监测网或精密控制网,作上述优化设计和精细计算是十分必要的。国内在这方面的应用道较少。多是为了安全起见,有较大的质量富余,建网费用偏高。网优化设计费用很少,所带来的效益较大,凡是较重要的工程控制网,都应作优化设计。变形观测数据处理工程建筑物及与工程有关的变形的监测、分析及预是工程测量学的重要研究内容。其中的变形分析和预涉及到变形观测数据处理。但变形分析和预的范畴更广,属于多学科的交叉。变形观测数据处理的几种典型方法

我建议你去:"天圆地方"建筑论坛看一看,那里会有的

毕业论文应用方法

1. 调查法

这是最常见的研究方法之一,最常见的形式就是调查问卷,相信每个同学就见过。调查法是是运用历史法、观察法等方法,通过有目的、有计划和有系统的方式来进行资料的收集,并对这些资料进行分析、比较和归纳的方法来揭示本质。

2、实验法

一些自然科学类专业,例如生物学、物理学、化学、医学等,必须要用确切的实验论证观点,这时候就要用到实验法。实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。这种研究方法具有主动变革性、控制性和因果性。实验法是在认为改变研究对象存在方式、变化等的情况下进行研究,使研究对象服从于科学认识的需要;要求根据研究的需要,借助一些方法和技术来消除一些可能影响科学结果的一些因素,从而重新认识研究对象;通过上述方法来确定研究对象之间的一些因果乱系。

3、文献研究法

此种研究方法多应用于理论研究类论文的写作。虽然硕士研究生很少选择这方面的论文写作,但多数硕士论文中都会有文献综述部分,肯定会应用到文献研究法。文献研究法广泛的应用于各个学科中,主要作用是可以了解有关问题的历史和现状,从而更好的完成研究课题;这有助于研究人员更好的了解事物的全貌。

4、个案研究法

这种研究方法在MBA专业被广泛应用。个案研究法具有基本3个基本的类型:个人调查、团体调查和问题调查。研究人员可以根据自己的需求来选择合适的研究类型。根据自己认定的研究对象中的一个特定对象来进行调查和分析,弄清楚其 特点和主要的形成过程。是很实用的一种研究方法。

以上就是小编关于毕业论文研究方法的分享,希望对各位小伙伴们有所帮助,想要了解更多毕业论文相关内容,请关注本平台,小编将会做及时的整理并发布的。

最近我也在写论文的开题报告。下面是我复制的,百分之百正确。调查法调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。观察法观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识。②启发人们的思维。③导致新的发现。实验法实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。文献研究法文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮助确定研究课题。②能形成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。④有助于了解事物的全貌。实证研究法实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。定量分析法在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。定性分析法定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。跨学科研究法运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。个案研究法个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究。功能分析法功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。数量研究法数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法。模拟法(模型方法)模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。探索性研究法探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识,产生出新颖而独特的成果或产品。信息研究方法信息研究方法是利用信息来研究系统功能的一种科学研究方法。美国数学、通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系。当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用。信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标。信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力。经验总结法经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法。总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一。描述性研究法描述性研究法是一种简单的研究方法,它将已有的现象、规律和理论通过自己的理解和验证,给予叙述并解释出来。它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的。它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。数学方法数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。思维方法思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。系统科学方法20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善。而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段。它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系。这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。

写毕业论文的方法有哪些

写毕业论文的方法有哪些,在写论文的时候,写论文是需要一些方法的,每个人都要掌握一些写论文的方法,这样才能更快的写好论文。以下就是我为大家整理的一些关于写毕业论文的方法有哪些的资料,大家一起来看看吧!

1、实践法

现在很多高校研究生步入了一个认识误区,这也是他们临近毕业没有取得丰硕的、科研成果和具有较强的科研能力的重要原因。他们习惯性地认为,研究生期间,读的书多了,积累的知识多了,临近毕业时,自然就会有很强的科研能力,自然也就可以写出高水平的学术论文和毕业论文来。其实,如果研究生不加选择的、盲目性的读书,学到的很多知识是没有用的。因此,研究生应有选择的读经典著作。仅此还不够,众所周知,科研的能力是需要长期锻炼和培养的,而绝非仅仅是知识积累的结果。有的人读了一辈子书,却是“两脚书橱”,思想观念落伍,没有将所学知识转化为研究成果,对后人也无所裨益。

就研究生而言,平时读的书很多,但是由于不注意练笔,结果眼高手低,到毕业时也写不出像样的学术论文去公开发表。这种现象应引起高度重视和深思。笔者认为,研究生在读书过程中,要充分利用图书馆、网络,搜集相关研究资料,分类存储以备后用。同时,注意围绕热点或自己关注的问题,写心得体会、研究综述和学术评论等文章,善于借鉴学术界有创新意义的学术观点并尝试运用到自己的写作实践中。

2、模仿法

研究生在学术论文写作中遇到最大的困难就是,不知如何选题,不知如何搜集和运用资料,不知如何搭建论文框架结构,也不知写些什么内容,总之不知如何下手。因此,此方法特别适用于初学论文写作者。在实践中,有研究生反映,很多学术大家的论文,艰深难懂,看后产生了畏惧写作的心理,有的反映,看了一线教师教研论文,觉得简单,但又不会写,因为缺乏实践经验;还有的反映,论文创新太难,误认为创新就是“全新”,由此不敢写作。其实,就创新而言,不等于“全新”。创新的要点很多,包括题目的创新、结构的创新、思路的创新、观点的创新、参考资料的创新以及研究方法的创新等诸多方面,对于一篇文章具备的创新点越多,其创新性也就越强。我们研究生在写作时,不要盲目追求“全新”,先低标准要求自己,找一篇同类或类似的文章(和自己研究水平相当或略高于)做参照。可以在行文结构、语言风格等方面进行模仿,而后逐步修改,走模仿到创新之路。

3、切块法

作为导师,要积极鼓励研究生参加调研课题和书稿的撰写工作。一般而言,一个课题或一部书稿,都有明确的结题或完稿的时间限定。这种紧迫性就要求参与者必须潜心读书,严格要求自己,认真撰写出高质量的研究成果来。不论是结项或是著作出版,都要经过有关部门鉴定和认可,这无形中给参与者增加了压力,也增加了科研的动力。之所以提倡研究生参与课题或书稿的编写,原因之一就是“切块法”得到广泛的运用。也即,当研究生在搜集资料撰写研究报告或书稿的过程中,可以从中抽出有价值、有新意的部分,独立成篇,用于发表。由于是在接受重要任务中写出的文章。因此很容易发表在比较权威的杂志上。

4、作业法

目前,在读研究生的专业基础课、专业方向课方面的作业,一般都是以学术论文的形式出现的。然而,很多研究生在做作业时,有一种敷衍、应付的心理,东拼西凑,既糊弄了任课教师,同时也欺自己。笔者认为,研究生要认真对待每一份课程作业,认真选题,搜集资料,按照发表的水平来撰写论文。这样的作业,如果比较成熟,可以随时按照某刊物的'要求修改调整并投稿;如果不成熟,则实行冷处理的方法,停放一段时间,等待有新的思考、新的资料、新的观点时再及时补充到该作业(论文)之中,并逐步达到发表水平。

1、调查法

1、调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。

2、调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。

2、观察法

1、观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

2、科学的观察具有目的性和计划性、系统性和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:扩大人们的感性认识;启发人们的思维;导致新的发现。

3、实验法

1、实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。

2、而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。

3、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。

4、因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。

4、文献研究法查找文献法、

1、文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被广泛用于各种学科研究中。

2、其作用有:能了解有关问题的历史和现状,帮助确定研究课题;能形成关于研究对象的一般印象,有助于观察和访问;能得到现实资料的比较资料;有助于了解事物的全貌。

5、实证研究法

实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。

大学数学应用毕业论文

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内容,欢迎大家阅读参考!

浅析高校目前的应用数学教学状况与改革策略

在高校设立的学科中数学教学占有的位置不容忽视,加强数学 教育 就能够使学生在解决实际问题时更有把握,并且学生自身还可以构建其数学知识体系。所以,在进行高效实际数学教学改革时,师生都对教学改革的观念加以重视,同时要慢慢的培养学生养成良好的学习习惯。

1 高校应用数学内在的意义

高校应用数学这门学科非常重要,并且不同与以往的教学。其一,是应用领域上的不同,高校应用数学的开始针对性特别的强,以往是数学有着较为传统的应用领域。其二,应用数学主要关注的就是将理论知识联系到实际,可是,以往的数学主要就是对理论加以注重。即使有很大的差异存在这两种数学中,可是这两种学科的内容是不能分离的,他们是一个整体,存在的差异也只是在针对性方面和教学目标方面[1].

2 高校目前的应用数学的教学状况

建立应用数学的有关课堂

学生在深入学习应用数学知识后,可以对数学中的一些基础运算加以掌握,并且学生的思维能力也得到了提高,学生能够深入的分析数学中的所有问题,并在对所有问题应用所学的理论知识加以解决,对学生的数学理论知识的运用与创新能力进行培养,最后达到提升学生数学素养的目标。

大学生的教学课程就包括高等数学课程,并且高校还建立了与改课程有关的专人培养内容,对应用数学的学习有助于学习其他的学科,想要学好其他的课程,应用数学的学习必不可少[2].高校建立应用数学课堂,这样学生就能掌握数学的理论知识,学生的学习数学能力将会得到培养,同时增加学生的学习兴趣,学生的数学素养也会得到提高。

高校数学中出现的问题

(1)在教学内容上有问题存在。高校数学教学的内容上涵盖性较强,很多专业学生对数学的学习知识为基础理论,根本不能联系数学实践,所以,教学的领域根本不符合教学要求,并且,学生在整个学习的过程中对所有理论知识都不能深刻的理解,这都阻碍了学生积极主动的学习数学理论知识的想法。

(2)存在在教学内容上的问题。现在高校的数学教学课堂主要重视的就是学习技巧,同时还注重推理的严谨性,可是却忽视了实际问题中应用数学理论知识去解决,这样培养出的专业人才将不能以专业实现就业,没有做到立足于岗位,对专业素质的培养不加以重视,致使理论知识脱离于实践应用,最后不能有效的培养学生的职业能力[3].

(3)存在在教师队伍方面的问题。现在,在数学教学中应用数学具有非常重要的作用,可是应用数学的教师并没有对这一点科学知识加以掌握,缺乏基本的教学能力,也缺少培养学生教学的 方法 ,在进行应用数学的教学过程中,经常出现的现象较为普遍就是缺乏专业理论知识,这样学生对理论知识就不能熟练掌握,学生也就体会不到结合理论知识和现实时间的基础要素。

3 高校应用数学的改革策略

高校应用数学制定了正确的教学观念

高校对与应用数学教学有关的课程进行制定时一定要对专业的要求加以确定,对学生所学的专业进行分析,适当的调整应用数学的教育理念。同时数学的基本开放原则为适用性,将学生提升自身的素质作为教学目标。同时还要注意数学教学所包含的育人能力,将学生的所有能力进行有效的培养,引导学生在实际生活中应用数学去解决问题,引领学生增强创新能力。

将以往的 教学方法 加以改变培养学生增加应用数学的意识

传统的数学教学方式为灌输式,新的教学方案要应用启发式来实现数学教学,同时要对多种教学方法进行深入的研究,使教学方法更有效,以往教师在进行教学时,教学方法为单一的,学生学习的知识都是被动接受的,学生在这种教学方法的带领下只能逐渐的失去数学学习的兴趣,这样需要教师将教学方法灵活化,为学生创建出一种愉悦的学习环境[4].主要就是要对学生实施因材施教,使学生能够充分发挥自己的学习热情。

高校在进行整个应用数学教学时,首先要培养的就是学生有基本的应用数学观念,同时数学知识的有效运用是教学中必不可少的内容。这就需要高校的数学教师担负起自己的教育责任,首先教师要掌握学生对应用数学的意识深浅,如果有较差的应用意识,要找其原因,同时一定要培养学生学习数学的兴趣,引导学生进行积极主动的学习,让学生能够认识到我们的生活中广泛的应用数学知识。教育者要对其进行深刻的研究,对应用数学加以重视,使应用数学的重要性在教学中得以发挥[5].同时还要将学生应用数学的意识加以提升,并且逐渐提高应用数学的能力。

对应用数学的教学内容加以改变

对数学的教学内容进行改革时,要对不同专业的内在要求加以综合,可以将课堂改变成弹性教学,对应用数学所具有的严谨性不应过多的强调,根据学生的专业内容进行教学课堂的设计,将众多的基础知识提供给学生,在以后能够更好的支持学生的职业技能,使学生的综合能力得到提高[6].

总之想要使学生的自身学习能力能够提高,就要注意到应用数学不同于纯数学,它的实践性较强,所以,想要使学生能够积极主动学习应用数学,就一定要培养学生的学习兴趣。高校要在数学师资投入这一方面加大力度,并且也要深入的去分析和研究这一教学课题,将应用数学的整体教学提升上来,使应用数学教学不断的发展。

参考文献:

[1] 邢潮锋,黄治琴,杨旭,等。 数学建模与高校数学教学改革的实践---以济南大学为例[J].高等函授学报(自然科学版),2010,23(2):20-22.

[2]郭娜,朱奕奕。浅谈高校应用数学教学改革与学生应用数学意识的培养[J].信息化建设,2015(4):61-63.

[3]王艳华,王笑岩。渗透数学建模思想方法的基本途径[J].辽宁师专学报(自然科学版),2012,14(4):5-6.

[4]王君轩。探究高校学生数学建模意识与方法的培养[J].大观周刊,2012(16):214-214.

[5]宋文静。浅谈高校数学教学中如何培养学生应用数学意识[J].东方青年·教师,2012(2):30.

[6]施明华,赵建中,周本达,等。应用型院校高等数学与数学建模融合的探索[J].教育教学论坛,2013(21):270-271.

浅谈小学生应用数学意识提升策略

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科,这些学科的广泛应用都体现了应用数学的思想。 随着教育体制的改革,教学中也对应用数学教学提出了新的要求,要求应用数学教学要重视与生活的联系性,及与 其它 学科的关联。让小学生能用数学知识,解决实际生活中的一些问题。

1、丰富的生活与应用数学的联系

教师要注重生活素材的积累,并能将这些有用的素材贯穿到教学中,把数学书本中抽象的知识具体化,让小学生更好地进行消化和理解,认识到应用数学与实际生活的联系。 根据学习的内容老师可以有针对性布置一些作业。比如在进行米,厘米的学习时,可以让学生回家里量一下床、门、饭桌等家俱的尺寸,在学习元角分等时,可以让学生自己走超市买矿泉水等进行实践,这样可以加深对学习的数学知识的理解,并起到一定的巩固作用,是一个非常好的教学方法。

2、开启小学生学习应用数学的积极性

小学生的应用数学知识,大多比较简单,在生活中很容易找到切入点和联系性。所以要求老师在教学中,多进行书本与实际的联系,激发学生的学习积极性,多把理论化的数学知识转化成实际的问题。 这样不仅让学生认识起来更清晰,还会使学生真正感受到学习应用数学的价值,积极想办法用应用数学的思想解决问题。 在这个学习的过程中,学生就能够对应用数学产生浓厚的兴趣,有探究下去的意识,这才是教学的目的所在。例如分数部分的讲解,就可以通过分 蛋糕 、分苹果等生活中实际事例来进行讲解,这样学生不仅能很快理解,而且会明白在日常生活中如何去应用分数,所以这样往往教学效果比较理想。

3、不忽视教材的作用,教材融于生活

随着教学方法的推陈出新,很多老师对教材开始忽视。 因为越来越多的教学方式,象分组辅导活动、多媒体教学、课外设计等各种形式教学的开展,老师对教材就不象过去那么重视和依赖了,其实这种想法也是错误的。 任何的教学活动也是要以教材为蓝本的,都是互为补充的关系,教材起到统领性、目标性的作用,任何形式的教学都是围绕教材来进行的,如果脱离了教材就失去了意义,所以老师要充分地利用好手中教材的作用,并与实际生活展开联系。

如:小小采购员、小管家、数字与编码、节约能源、调查利率,计算利息等,这些实践活动内容既符合学生的年龄特征和知识基础,又符合学生的生活背景。因此,我们可充分利用这些资源,遵循教材的要求组织具体、有趣、富有实践性、全员参与的数学活动,培养学生用数学的眼光观察周围事物, 经历应用数学知识分析和解决实际问题的过程,将数学问题与生活 经验 联系起来,使学生认识到数学与日常生活息息相关,获得应用数学的成功体验。

4、生活情境化的练习促进应用数学的学习

对于应用数学的教学,最合适的方法就是放到具体的情境中去讲解,这样更利于学生的思考,并使数学看起来更有趣,更容易激发学生的学习兴趣。在这个方面,就需要教师用心去设计一些生活场景,并根据学生的 兴趣 爱好 ,多设置一些开放性的问题,老师适当进行引导。 这样让学生在回答问题和思考问题的过程中,进行了应用数学知识的学习。

比如,在学生学习加减法时,可以让几个同学进行分组,分别扮演顾客和营业员,拿钱和一些简单的货品进行加减法的运算练习,可以有同学喜欢的糖果,饮料等,也可以有一些平时常见的书包、本子和笔等文具。 这样学生会有参予的积极性,也会对加减法的运算产生浓厚的兴趣, 并且通过分组练习了解了加减法运算在实际生活中的运用,这种情境式教学方法,就是让学生在最熟悉的环境中去感受接触到新知识,在应用数学的教学中受到学生普遍好评。

5、学习应用数学的过程就是培养实际能力的过程

在学习的过程中也不断发现问题,然后再想办法去解决问题。 这整个的过程,都可以让学生不知不觉中去探究知识,增加 逻辑思维 能力与解决问题的能力。 另外,通过学生问问题,其它同学和老师解答,还可以加强学生的沟通交流能力。 在与老师和同学的交流探讨中,还可以让同学懂得集体的力量,懂得克服困难有时需要帮助,从各个角度和层面上,让学生了解感受数学在实际中的应用,应用数学的魅力及学习它的重要意义。

在教学低年级学生学习比多比少,比大比小的知识并能做简单的减法讲讲算算后,可让学生调查家里人的岁数,编成应用题,如奶奶66 岁,爸爸 30 岁,奶奶比爸爸大几岁? 等等,讨论谁的年龄大,谁的年龄小,谁比谁小多少,谁与谁相差多少? 两人相加是多少岁? 谁的年龄是谁的几倍等。 再如教学乘法、除法的含义时,通过摆一摆学具的活动,掌握抽象的概念。 教师要鼓励学生多思考、多观察,从中发现数学问题,并将其分析、探索、组织、锻炼、筛选等活动方式自编应用题,有利于培养学生学数学、用数学的意识,也有利于培养学生从不同角度,全方位分析问题和解决问题的能力。

6、结束语

在我们的日常工作和生活中有着大量的应用数学问题。 只要小学数学教师能够将平时收集和观察到的实践问题的资料, 经过 总结 、概括、处理之后,就能够设计和提炼出相关的应用数学问题,让学生把他们所学到的知识应用于实践生活当中去,从而使学生认识到学习数学的价值,激发学生学习数学的兴趣,开拓学生的数学思维,提高学生灵活运用数学知识的意识和能力。 因此,充分发挥应用数学在小学数学教学中的作用,不仅能够教会学生如何运用学到的数学知识来解决实际应用数学问题,还能激发每个学生的创造潜能,培养学生的创新能力。

参考文献:

[1]季山红.对小学生数学建模思想的培养[J].语数外学习:初中版中旬,2012(09)。

[2]郭霞.在小学阶段进行数学建模的探索[J].中国电力教育,2009(13)。

[3]吴信钰.小学数学教学联系生活策略的研究[D].东北师范大学,2011.

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文

  • 索引序列
  • 大学毕业论文方程组的应用
  • 线性方程组毕业论文
  • 病态方程组毕业论文
  • 毕业论文应用方法
  • 大学数学应用毕业论文
  • 返回顶部