首页 > 论文发表知识库 > 数学发展史论文1500字

数学发展史论文1500字

发布时间:

数学发展史论文1500字

高中:人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量(实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。 ④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史: 是从18世纪,由J.蒙蒂克拉、C.博絮埃、.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出.康托尔的《数学史讲义》(4卷,1880~1908)以及.博耶(1894、.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有.海贝格、胡尔奇、.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于()H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。 如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。采纳啊!!!!!!!!!!!!!!!

刘 徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为<π<,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈)密率22/7(≈),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 明安图】(1692——1765) 清代蒙古族杰出数学家、天文学家。字静庵。蒙古正白旗(今内蒙古锡林郭勒盟正白旗)人,为蒙古族人。康熙九年(1670),被选入钦天监学习天文、历象和数学

中国数学发展史 中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出、15o、、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。

物理学发展史论文1500字

高中物理教学中引入物理学史初探刘志男高中物理课程标准中明确提出,高中物理教学旨在进一步提高学生的科学素养,从知识与技能、过程与方法、情感态度与价值观三个方面培养学生,使学生通过高中物理的学习逐步养成科学方法、科学态度、科学思维习惯、科学世界观,引导学生认识科学和技术的差别、科学技术对社会的影响、技术对环境的影响,强调认识和领悟科学的本质、科学与人文的关系,培养学生的社会责任感等。物理学史集中体现了人类探索和逐步认识物理世界的现象、特性、规律和本质的历程。任何一个具体的物理知识和理论体系都是汇集许多人的研究成果而建立起来的,常常是几十年、甚至上百年的努力才能迈出有意义的一步,它包含着认识论和方####的因素,包含着探索者的艰辛与悲欢,又体现着认识过程中理论与实践、继承与突破、理性与非理性的辨证统一,因而也包含着丰富的“教书育人”的教育因素,因此,在高中物理教学中引入物理学史教育具有非常重要的意义。一、有助于培养良好的物理学习品质英国哲学家培根在四百多年前提出了一句“知识就是力量”的名言,近代自然科学已经一步步向世人显示了这句名言的真理性。这位哲人还提出一句关于知识的名言:“读史使人明智。”只有当学生对学习的知识有了兴趣,才能表现出学习的自觉性、主动性,才能在学习中发扬开拓和探索精神,以顽强毅力去克服学习中遇到的困难。这就要求我们在教学中,不仅要把日常生活、生产劳动中发生的现象、问题与教材紧密联系起来,使学生认识到学习的现实意义。还须把历史引入教学中。把科学理论的建立,科学发现的过程,科技发明对人类社会发展的贡献用生动事例展示给学生。并通过了解物理学家的生平、各学派间的争端以及尚未解开的物理课题来激发学生学习物理的兴趣,让学生从中学习到物理学家严谨的科学态度和科学的思维方法,不断提高自身科学素质、养成良好的学习习惯,变被动学习为主动获取知识。例如,牛顿是举世公认的伟大科学家,在高一一开始以专题讲座的形式,介绍牛顿的生平及其科学研究历程,从而消除了科学研究的神秘感,拉近了科学家与学生的距离,激励他们把对科学家的崇拜转化为刻苦学习的动力。因此,物理学史能告诉学生物理学思想的逻辑行程和历史行程,让学生理解物理学的本身。只有了解了物理学家探索物理世界所具有的科学思想、科学品质和科学精神,并像他们那样去对待自己的工作、生活、科研,形成科学的情感、态度和价值观,才算真正懂得了物理学知识。同时,通过对物理学史的回顾,使学生消除对已有物理知识来源的神秘感,了解科学技术发展的过程,懂得任何一个定律的发现和理论的建立既与社会生产力密切相关也受到物理学发展内在规律的制约,任何一部分物理知识的获得都离不开实验,可靠的、精确的、可重复的实验是物理学中决定一切的基础。因此,了解物理学史可提高人们进行科学创造的自信心和自觉性,这对于培养学生实事求是的科学态度和创造力有着十分重要的意义。同时,物理学史中有许多科学家为真理献身的动人事迹,如伽利略为宣传哥白尼的日心说而被教会终身监禁,利赫曼为引雷电而捐躯,居里夫人为研制放射性而作出了巨大的牺牲,法拉第舍弃荣华富贵,几次拒绝接受封爵而甘“平民法拉第”,亚里士多德富有批判和怀疑精神等。这些科学家不畏艰险,不惜生命,不慕利禄,不怕权威,追求真理的高尚品质,有利于培养学生实事求是的科学态度、献身科学的探索精神,为以后的学习和研究打下良好的基础。二、有助于对物理知识的理解和把握根据教材编排特点,分单元讲解、分析发展史不仅有助于学生了解各概念、定理、定律的来龙去脉和科学知识的运动过程,而且有助于学生按规有的形式和体系来理解和把握物理知识,从而逐步掌握正确的科学思维方法。例如关于惯性概念,调查发现有些学生虽然能将其定义倒背如流,但仍不能掌握它,用它来分析解释生活中有关惯性的现象和问题。倘若我们从这一概念产生的历史出发,从亚里士多德的“强迫运动定律”、到伽利略的“理想斜面实验”,再到笛卡儿的“惯性原理”、最后到牛顿的“第一运动定律”,在回顾惯性概念的形成过程中,使学生头脑中的观念不知不觉地发生改变,从而纠正原有思维中的错误。这比直接从现象和概念出发不但要生动得多,而且印象也深刻的多。三、有助于弥补传统物理教学的人文缺陷我国是世界四大文明古国之一,在物理学的理论和实践有着辉煌的成就。例如,在理论著作方面,《墨经》中对力学、光学的论述;《天工开物》中关于简单机械的记述;《梦溪笔谈》对磁角的论述,《论衡》中关于简单电现象的记述《考工记》中关于工程技术,声音传播的记载等在当时都是遥遥领先于世界各国,就是在今天仍有参考价值。在实用技术方法,更是举不胜举。指南针、地球仪、浑天仪、船闸、石拱桥、火箭等,都是我国最早发明的。教学中结合教材内容,介绍我国在物理学方面对世界的杰出贡献,可以使学生了解祖国古代灿烂文化,激发他们的民族自尊心和自豪感。物理学发展的历史表明:物理学的发展与人类哲学理论的发展有着极为特殊的密切关系,中学物理教学内容中,概念、定理、定律充满了辩证唯物主义内容。在教学中,有意识地用辩证唯物主义观点去分析物理学发展历史,阐明概念、规律。结合物理学特点,进行物质第一性、物质的运动性和对立统一、量变与质变、否定之否定规律的教育,可以使学生从中领会其中所包含的辩证唯物主义观点。例如介绍爱因斯坦的相对论时,我们就可以把“新生事物不可战胜”这一哲学观点渗透进去,讲到万有引力定律时可将“物质是普遍联系的”这一哲学观点渗透进去。

物理小论文摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“、”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。

这个题目太扯了!500字就能写出物理学发展史?光罗列一下对物理学作出杰出贡献的物理学家,500字都不够用的。要写物理学发展史,500万字起,你别嫌多,还不打折!即使这样,写出来的也只能叫着简史,也不能叫着发展史!初中的,就写物理学发展史?你知道的物理学家超过10个没有?除了牛顿、爱因斯坦,你还知道开尔文、麦克斯韦、卡文迪许、赫兹、洛伦兹、卢瑟福、薛定谔、海森堡、德布罗意、泡利吗?这些人都是对物理学起到决定性作用的人。你听说过吗?你学过高等数学吗?不会高等数学能写物理学发展史?你懂得发展史的基本写法吗?或者说,你明白历史的意义吗?所以,这个玩笑开大了,请打住! 所以,唯一比这个题目更扯的就是你们老师本人了!

物理发展史论文1500字

物理学是研究物质运动最一般的规律、物质基本结构及其相互作用的科学,我整理了初中物理科学论文,有兴趣的亲可以来阅读一下!

物理教学:坚持科学本质

摘要:阐述在物理教学中必须坚持科学本质教育,而不能把物理教学当做是知识的简单灌输和应试技巧的专门传授;以及在教学实践中如何对学生进行潜移默化的科学教育,提高学生科学素养,使学生形成科学的价值观和态度,使之受益终身。

关键词:物理;坚持;科学本质;学生;受益终身

物理学是研究物质运动最一般的规律、物质基本结构及其相互作用的科学,[1]是自然科学的重要组成部分。发展至今,物理学科既有悠久的科学史,又有飞速跃进的现代高科技;既与日常生活紧密联系,又饱含辨证唯物的科学思想;既有严格求实的科学实验,又有严密准确的逻辑推理。简而言之,物理的本质是科学,物理教学理所当然是科学的教育和探索,包括科学理论和技术﹑科学方法和思维﹑科学文化和人文精神等多方面的价值教学,而绝不是知识的简单灌输和应试技巧的专门传授。这是物理教学的基本原则。

国际应用物理联合会曾对20世纪物理教育进行了深刻的反思:“如果所有的学生都要学物理,那么物理教育的主要目标应该放在大多数的未来公民的兴趣和需要上,而不是放在将进一步学习物理而成为科学家或工程师的少数精英分子身上。如果物理教育是为更多学生的全面发展服务的,那就应当重视物理学家的工作成果在社会上、技术上的应用;重视物理学的哲学和物理学的历史;重视蕴含于我们文化之中的物理学方法;重视物理学家这个专业群体的特点,如支持、贡献社会的方式等。”[2]笔者在物理教学实践中也深深体会到:在课堂教学中立足于物理的科学本质教育,进行潜移默化的科学渗透,对于培养学生正确的科学思维、研究方法以及人生观、世界观的确立有着极其重要的作用;而学生正确的方法、信念、准则的形成和强化,又可以转化为学生学习物理的强大内驱力和坚实基础,进一步激发学生学习物理的兴趣和积极性,树立投身科学探究的伟大抱负。

一、以宝贵的科学精神感染人

著名物理学家钱三强先生在《物理学史》的序言中写到:“物理学发

展史是一块蕴藏着巨大精神财富的宝地,这块宝地很值得我们去开垦,这些精神财富很值得我们去发掘。”[3]在科学探索的进程中,并不总有认可、赞美,而是要能够承受来自舆论、宗教、传统观念各方面的压力。因此,伟大的科学家是有献身精神的。今天我们在赞叹伽里略的伟大,学习他的诸多理论时,更应该让学生感知伽里略用生命自由捍卫真理的勇气,理解到科学成功背后的艰辛,培养他们坚持真理的可贵信念和执着精神。

今天我们在广泛的应用电力,那么在学习“电磁感应”时,教师应该不失时机的讲述法拉第是怎样花费了十年的心血,经历了无数次的实验、失败、再实验、再失败的坎坷历程,终于首先发现了“电磁感应” 现象,开辟了人类应用电力的新纪元。从而让学生深刻体会到物理前辈不断求新探索,勇于自我反思,不屈不挠的惊人毅力,培养他们尊重失败、升华失败的科学态度和“从荆棘中收获科学成果”的坚强意志。

在物理学的发展过程中,科学是铁面无私的,科学研究是认真严谨的,但科学的发展和传续是温馨感人的,处处闪耀着“前人栽树,后人乘凉”的人性光环和崇高精神。正如牛顿所言:“如果说我比别人看的远些,那是因为我站在巨人的肩膀上”。在教学“开普勒三大定律”时,开普勒的伟大成就固然令人赞叹,但我们也应该让学生了解这一伟大成就背后的重要奠基人——第谷。第谷几十年如一日的持续观测,孜孜不倦的提高观测的精确性,实事求是的真实记录,最后在生命弥留之际,毫无保留的将全部珍贵的一手资料赠与开普勒。从第谷身上令学生深受感动的不仅是他求真务实的科学态度,更是他甘为人梯,默默奉献的伟大精神。

二、以辩证的科学思想启迪人

物理学科蕴含丰富的辨证唯物主义思想,在物理教学中渗透辩证的科学思想,可以潜移默化的启迪学生并使之:逐步认识到物理学理论的发展历程是动态发展的变化过程;切实体验到科学理论的不断进化、完善;深刻领悟到没有任何一个物理学理论可以被看作是最终完满的,人们在一定条件下的物理学认识只能是近似的、相对的。从而促使他们养成独立思考的习惯,提高认识科学问题的敏锐性和辩证性,使他们的思想沉浸在好奇之中,永不闭塞怀疑的目光。

三、以创新的科学思维塑造人

“授人以鱼,不如授人与渔”,正如著名数学家波利亚所说:“教师在课堂上讲什么当然重要,但学生想的是什么更为重要。思想应当是在学生的头脑中产生出来,教师要做一名真正的优秀的思想助产婆。”因此,塑造具有良好的思维习惯和创新科学思想的当代高中生是中学物理教育的核心价值。在教学中,教师应做到:“确立一个理念——以学生发展为本;落实两个重点——培养学生的创新思维和实践能力;实现三个转变:(1)教师角色的转变——由单纯的知识传授转变为教学活动的指导者和组织者,(2)学生学习地位的转变——由学习的客体转变为学习的主人,(3)教学方式的转变——由教师的主导变为学生的自主合作探究。[4]

教师要为学生创设丰富多彩接近实际的情景,激发学生提出有一定数量和质量的问题,启发学生根据不同的条件、从不同的角度、用不同的方法,引发不同的思路,甚至采用相互对立的思路去解决同一个问题,鼓励学生根据一定的需要,灵活多变的组合相关因素,提出可能可行的设想,可以通过生生交流,师生讨论共同探讨设想是否可行,能否解决问题,在这基础上得出设想的答案,答案可以不是单一的,而是多样的,甚至是开放式的。这样的方法有助于培养学生的创新能力,特别是当学生学会设定虚拟条件,根据解决问题的需要提出有价值的新方法时,他们的创造性思维就会在科学的殿堂自由翱翔,创造性能力同时获得质的飞跃。

四、以严谨的科学实验锻炼人

物理学的形成与发展是以实验为基础的,作为一门实验科学,它源于实验,发展于实验,在实验中得到检验,验证,并上升为高层次的科学理论。在课堂教学中,充分发挥实验的作用,不仅可以激发学生的学习兴趣,培养学生的观察能力;而且在实验中,通过学生的手脑并用,获得观察能力、实验操作能力、数据处理能力等多方面的锻炼,使科学知识与生活实践紧密结合,让学生学以致用,养成学生严谨踏实的科学作风。

物理实验主要分为演示实验、分组实验和课外实验,在教学中要充分发挥各类实验的优势,找准实验的着力点,有的放矢进行设计操作。物理实践活动要着力发挥教师的主导作用,突出学生的主体地位,应充分相信学生,使学生主动参与,让学生独立设计实验,利用物理实验,使学生在不断的实践锻炼中获得综合能力的有效提升。

五、以非凡的科学成就鼓舞人

物理学在悠久的发展过程中,人才辈出,灿如星空,杰出的人才创造伟大的成就。我国古代许多的物理学家,对物理发展有过很大的贡献,不少研究成果长期居世界领先地位。如指南针的发明与应用,不仅在我国古代军事、生产、日常生活中起过重要作用,且对促进东西方文化的交流和世界的发展都卓有功绩。这充分体现了中华民族自古以来的非凡才华和智慧,值得我们每一位炎黄子孙为之感到骄傲和自豪。

随着科技的发展,社会的进步,物理在人类生活的各个领域发挥着越来越重要的作用。在物理教学中,有意识的展示我国当代科技发展成就:例如我国近代著名的力学家、火箭专家钱学森,对我国火箭导弹和航天事业的迅速发展作出了不朽的贡献,被称为“中国的导弹之父”。 如今 “神舟”系列火箭飞船的成功发射圆了中国人的飞天梦,我国成为世界上第三个独立掌握载人航天技术和能够独立开展空间科学试验的国家。又如最近我国大亚湾中微子实验国际合作组在北京宣布,大亚湾中微子实验发现了一种新的中微子振荡,并测量到其振荡几率。这一重要成果是对物质世界基本规律的一项新的认识,对中微子物理未来发展方向起到了决定性作用,并将有助于破解宇宙中的“反物质消失之谜”。[5] ……这一系列的科学成就介绍怎不让我们的学生心潮澎湃,深受鼓舞?民族自信,爱国之情,热爱科技之心怎不油然而生?

总之,物理作为一门重要的基础科学,科学内涵悠久深远,科学素材层出不穷。物理课堂教学中必须坚持科学本质教育,深度挖掘适合教学的“科学题材”, 有效调动学生的学习积极性,让物理课堂焕发科学活力,让我们的每一节物理课都闪耀科学之光,去感染,去鼓舞学生,让学生得到锻炼,获得启迪,促进自我塑造,从而不断提高学生的科学素养,使学生逐步形成科学的价值观和态度,并使之受益终身!

参考文献:

[1] 阎金铎﹑田世昆.中学物理教学概论[M]. 北京:高等教育出版社,1997:35.

[2] 汪明.课堂教学中物理文化教育价值刍议[J]. 物理教学,2011(12):39

[3] 郭奕玲,沈慧君.物理学史[M]. 北京:清华大学出版社,2005:1-2

[4] 徐全学.提高物理教师技能的几点建议[J]. 物理教学,2011(11):21.

[5] 金良快.我国发现新的中微子振荡 有助破解反物质消失之谜. 新华社,2012年03月09日

点击下页还有更多>>>初中物理科学论文

汽车发展史论文1500字

汽车的诞生1.1769年法国人NJ居纽制造了世界上第一辆蒸汽车驱动三轮汽车。1804年脱威迪克设计制造了第一辆蒸汽汽车。 2.1879年德国工程师卡尔?本茨首先试验成功台二冲程试验性发动机。 3.1986年国际汽车产业界推举德国戴姆勒――奔驰汽车公司主办国际汽车百年圣诞庆贺的盛典 汽车工业史上的三次变革 1.1914年美国福特汽车公司安装的汽车装配流水线带来了汽车工业史上的第一次变革。 2.第二次变革发生在本世纪50年代。当时欧洲内部关税壁垒逐渐拆除,使欧洲市场空前繁荣,有力地推动了汽车制造工业的发展。3.本世纪60年代末,日本汽车工业出现奇迹,生产出物美价廉的汽车,使得世界汽车工业发生第三次变革四大汽车城 1.底特律:美国汽车城。盖拥有汽车亿辆,平均每人就有一辆。垄断美国汽车工业的通用、福特和克莱期勒汽车公司的总部均设在底特律城,全国1/4的汽车产于这里。全城442万人口,有91%的人以汽车工业为主。 2.丰田:日本汽车城。丰田市有人口28万,其中丰田汽车公司及其子公司的人员、家属占62%。丰田公司有10座汽车厂,生产几十个系列的轻重型汽车。此外,它还有1240家协作厂。全公司每个职工平均年产值13万美元,居世界之首。3.都灵:意大利汽车城。全市人口120万,其中35万多人从事汽车工业,每年生产汽车占意大利总量的75%。菲亚特公司1899年在这里创建汽车厂时,仅有41名职工,现在已发展为世界第七、欧洲第二大汽车公司。4.斯图加特:德国汽车城。全城人口 60万,是生产世界第一辆汽车的戴姆勒――奔驰汽车公司所在地。该公司在国内设有1800个维修点,在国外17个国家和地区设有4250个未来汽车将呈八大特点 美国《汽车新闻》杂志对目前每年生产5000万辆汽车的统计,预测国际市场汽车结构将出现以下八大特点。1.柴油机被更多的轿车所采用,欧洲装备柴油机的轿车已越来越多。2.汽油机技术发展的标志之一是电控燃油喷射发动机将取代化油器发动机。欧共体已明确规定:今后生产的汽油机汽车必须装备电控燃油喷射系统。3.电动汽车将进入实用阶段。随着低价格、高能量和长寿命新型电池的研究发展,以及人们对环保的强烈呼声,电动汽车将逐渐在各大城市成为一种代步工具。4.汽车安全标准将会更加严格。为保证汽车可靠性和稳定性,ABS也将逐渐成为一些车型的标准装置;安装保障乘客的气囊装置的数量将逐渐增加,一些车型甚至装备侧面气囊;三点自动上肩式安全带、防侧撞杆及钢制链都将装备到各种类型的汽车上。5.使用更多替代钢的轻型材料,以降低车重。铝合金、镁合金及碳素纤维等轻质材料在汽车制造上的应用将增多。6.各种电子装置将在汽车上更多地应用,如电子发动机锁,它使偷车贼无法下手;全球卫星定位系统使驾驶人员无论身处何处,都不会迷路。7.载货汽车将改进现有的动力装置。使用一种更加有效的动力装置,可以使目前的载货汽车拉得更多、跑得更快。8.前轮驱动汽车将有所增加,发动机横置技术进一步发展,将使汽车更省油、更为经济;一些大型汽车也将采用前轮驱动方式,如新奥迪AB 等。

汽车发展史简述

汽车自19世纪末诞生以来,

已经驶过了100多年风雨路程。

卡尔·本茨造出第一辆三轮汽车

到现在的100多年间,汽车发展速

度如此惊人!同时,汽车工业也造

就了多位巨人,他们一手创建了通

用、福特、丰田、本田这样一些在各

国经济中举足轻重的著名公司。

我们一起来回望这段历史,品味其

中的辛酸与喜悦,体会汽车给我们

带来的种种欢乐与梦想……

汽车发展史是一个漫长的历

史,总的说来,可分为蒸汽机发明

前、蒸汽汽车问世、流水线大批量

生产汽车三个阶段。

蒸汽机发明前

人类最初的劳动完全由人本

身来完成,根本没有什么汽车和发

动机,如果说有的话,在未使用牛

和马之前,使用的也是“人体”这台

发动机。

奴隶就是一种“生物发动

机”。

随着人类的进步与发展,人们

对自然界的认识越来越深,利用自

然、改造自然的能力日益增强,人

们不仅使用人力、畜力,而且知道

使用水力、风力。

蒸汽汽车问世

1705年,纽可门首次发明了不

依靠人和动物来作功而是靠机械

来作功的实用化蒸汽机。

这种蒸汽

机用于驱动机械,便产生了划时代

的第一次工业革命。

随着蒸汽驱动

的机械即汽车的诞生,人类社会便

车海钮互)眸

拉开了永无休止的汽车发展的序

幕。

1769年,法国人.古诺制造

出了世界上第一辆蒸汽驱动的三

轮汽车。

到了1804年,托威迪克设

计并制造出一辆蒸汽汽车,这辆汽

车还拉着10吨重的货物行驶了

15

.

7公里。

1831年,美国的哥德史

沃奇·勒将一辆蒸汽汽车投人运

营,相距巧公里的格斯特夏和切

罗腾哈姆之间便出现了有规律的

运输服务,这辆运输车走完全程约

需45分钟。

此后的三年内,伦敦街

头出现了蒸汽公共汽车当这个笨

重的怪物在英国城镇奔跑时,曾引

起了很大的骚动说起来,这种车

比现在筑路用的压道机还重,速度

又低,常常损坏未经铺修的路,引

起各种事故。

当时市民们曾呼吁取

缔这种汽车,为此英国制订了所谓

的“红旗法规”。

具有讽刺意味的

是,由于这条法规的实施,使得英

国后来在汽车制造方面大大落后

于其它工业国家。

由于蒸汽汽车本身又笨又重,

乘坐蒸汽汽车又热又脏,为改进蒸

汽发动机,艾提力·雷诺在1800

古诺发明制造的蒸汽汽车

年制造了一种与燃料在外部燃烧

的蒸汽机(即外燃机)所不同的发

动机,让燃料在发动机内部燃烧,

人们后来称这类发动机为内燃

机。

1876年,康特·尼古扎·奥托

又发明了具有进气、压缩、作功、排

气四个冲程的发动机。

为了纪念奥

托的发明,人们把这种循环称为奥

托循环。

1879年,德国工程师卡尔

·

本茨首次试验成功一台二冲程

试验性发动机。

1883年10月,本茨

创立了奔驰公司和莱茵煤气发动

机厂,1885年又在曼海姆制成了第

一辆奔驰专利机动车,该车为三轮

汽车,采用一台两冲程单缸0

.

66

千瓦的汽油机,此车具备了现代汽

车的一些基本特点,如火花塞点

火、水冷循环、钢管车架、钢板弹簧

悬架、后轮驱动、前轮转向和制动

手把等。

1886年,德国人戴姆勒在

与威廉·迈巴赫合作制成第一台

高速汽油试验性发动机的基础上,

又制成了世界上第一辆“无马之

车”。

该车装用功率为千瓦、转

速为每分钟650转的发动机,以每

小时18公里的速度从斯图加特驶

向康斯塔特,于是世界上第一辆由

汽油发动机驱动的四轮汽车诞生

了。

也是在这一年,卡尔·本茨第

一次把三轮汽车卖给了一个法国

人,由于这种三轮汽车设计合理,

选材和制造精良,因此受到好评,

销路日广。

由于上述原因,人们一

般都把1886年作为汽车元年,也

有些学者把卡尔·本茨制成第一

辆三轮汽车的1885年视为汽车诞

生年。

本茨和戴姆勒则被尊为汽车

工业的鼻祖。

这是汽车发展史上的

第二个阶段。

需要说明的是,那时的汽车驾

驶员必须是勇敢、机智的机械修理

工,在许多场合下他不得不从汽车

内爬出或爬到汽车下或者到乡下

铁匠那儿去修车,所以一般人是望

车莫及的。

尽管如此,坐在极为嘈

杂和震动非常厉害的汽车上,不仅

要饱受路人的嘲笑和日晒雨淋,而

且全然没有今日驾驶员的舒适和

气派,况且马车手还认为汽车抢了

他们的生意,当汽车与马车并行

时,他们常常扬起皮鞭抽打汽车驾

驶员。

进入流水线大批最生产时期

进入20世纪以后,汽车不再

仅是欧洲人的专利了,特别是当亨

利·福特于1908年10月开始制

造和销售著名的T型车以后,这种

车产量增长惊人。

1913年,福特公

司首次采用流水装配线方式大规

模生产汽车,使汽车成本大跌,汽

车不再是贵族和有钱人的奢侈品

而开始逐渐成为大众化的商品。

此,美国汽车迅速成为世界宠儿,

福特公司也因此成为名副其实的

汽车王国。

所以,人们说,汽车发明

于欧洲,但获得巨大发展是在20

世纪30年代的美国。

福特采用流

水作业方式生产汽车,在汽车发展

史上树起了一座里程碑。

短短几年时间,汽车已经从一

种实验性的发明转变为关联产业

最广、涉及工业技术最丰富的综合

性工业。

因此,汽车工业的发展不

仅依赖汽车行业本身的技术进步,

而且也取决于汽车工业应用这些

技术的能力和世界汽车市场的容

量,两者相互影响并受到整个经济

形势发展、人们对环境要求和能源

及原材料供应、意外变化及国家政

策等的影响。

例如,第一次世界大

战中就培训了不少驾驶军用卡车

<汽车运用》·月刊

的驾驶员,

他们中的很

多人还学习

到了一些汽

车机械技

术,于是战

后汽车买卖

兴隆,在美

国,汽车制

造商和附件

供应商全负

荷生产仍不

能满足要求的迅速增长,汽车价格

也几倍于战前。

但时隔不久,由于

经济萧条,汽车高需求即宣告结

束。

到了第二次世界大战后,在英

国,汽车的需要量比第一次世界大

战后更高,几乎生产多少就可售出

多少。

第二次世界大战使美国发了

横财,战后的美国工业越发兴旺,

汽车生产在世界上始终处于遥遥

领先的地位。

汽车业、钢铁业、建筑

业曾被誉为美国经济的“三大支

柱”,而汽车工业更是美国工业的

骄傲和象征,长期以来,他们一直

以研究开发豪华汽车为主。

但当

1973年首次发生石油危机时,美国

汽车工业便受到很大的冲击,而日

本似乎对此早有察觉,他们大量研

制生产小型节油汽车,终于在1980

年把美国赶下了“汽车王国”宝座,

取而代之。

日本真可谓“后起之秀”,当历

史进人20世纪后,日本才出现第

一辆汽车,几年后日本才开始研制

汽车。

但谁又能料到,1925年才第

一次出口汽车(向我国上海)的日

本,60年后竟然出口汽车达6400

万辆,登上了汽车王国的宝座。

引起了全世界的广泛关注,成为汽

车发展史上一个特大新闻。

当然美

国也决不会就此罢休,到底鹿死谁

手,还很难预料。

未来的汽车市场仍是世界市

福特T型车

场中竞争最为激烈的市场。

有人以

美国汽车之王通用汽车公司为例,

它平均每巧分钟用于汽车生产的

投资就高达180万美元,这真是令

人惊讶的数字。

因此,人们预料,将

来只有资金雄厚的汽车公司才能

有这样的投资能力,不过由于有政

府以及社会各界支持,未来汽车舞

台也不是大公司唱独角戏,中小型

汽车公司也会有很大的发展。

为了占领未来汽车市场,如今

已有许多公司把各种先进技术和

装备,如微型电子计算机、无线电

通讯、卫星导航等新技术、新设备

和新方法、新材料广泛应用于汽车

工业中,汽车正在走向自动化和电

子化。

有了卫星导航系统,汽车可

接收交通卫星的通信资料,确定汽

车所在位置,从而自动提供最佳行

车路线,并且显示出交通图;汽车

雷达系统可以把障碍物的距离和

大小告诉给驾驶员,这样停车就更

容易;而语言感知系统可以用图、

表和声音告诉驾驶员汽车的各个

部位情况,此外还可按“音”行事,

执行有关驾驶指令等等。

另外,汽

车的能耗、废气排放、噪声和污染

等公害也将减少,安全性、使用方

便性将日益提高,在可以预见到的

未来,汽车仍将是世界上的主要交

通工具。

你这坏小孩不是啥事都能作弊好好念念书, 增加实力才对

你这个有难度,但是貌似又很好解决。百度一下,你就知道。当然去谷歌也是不错的选择。不过感觉你的选题太宽泛了

数学发展史论文300字

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

人类是动物进化的产物,最初也完全没有数量的概念.但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步.这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念.比如捕获了一头野兽,就用1块石子代表.捕获了3头,就放3块石子."结绳记事"也是地球上许多相隔很近的古代人类共同做过的事.我国古书《易经》中有"结绳而治"的记载.传说古代波斯王打仗时也常用绳子打结来计算天数.用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法.这些办法用得多了,就逐渐形成数的概念和记数的符号. 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同. 古罗马的数字相当进步,现在许多老式挂钟上还常常使用. 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000).这7个符号位置上不论怎样变化,它所代表的数字都是不变的.它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍.如:"III"表示"3";"XXX"表示"30". 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600".一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495". 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍.如:""表示 "15,000",""表示"165,000". 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用.到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算.筹算用的算筹是竹制的小棍,也有骨制的.按规定的横竖长短顺序摆好,就可用来记数和进行运算.随着筹算的普及,算筹的摆法也就成为记数的符号了.算筹摆法有横纵两式,都能表示同样的数字. 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制.9位以上的数就要进一位.同一个数字放在百位上就是几百,放在万位上就是几万.这样的计算法在当时是很先进的.因为在世界的其他地方真正使用十进位制时已到了公元6世纪末.但筹算数码中开始没有"零",遇到"零"就空位.比如"6708",就可以表示为"┴ ╥ ".数字中没有"零",是很容易发生错误的.所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关.不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人.他们最早用黑点(·)表示零,后来逐渐变成了"0". 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早.不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思.如"零头"、"零星"、"零丁"."一百零五"的意思是:在一百之外,还有一个零头五.随着阿拉数字的引进."105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义. 如果你细心观察的话,会发现罗马数字中没有"0".其实在公元5世纪时,"0"已经传入罗马.但罗马教皇凶残而且守旧.他不允许任何使用"0".有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字. 但"0"的出现,谁也阻挡不住.现在,"0"已经成为含义最丰富的数字符号."0"可以表示没有,也可以表示有.如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1). 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法.在长期实际生活的应用中,十进制最终占了上风. 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字.实际上它们是古代印度人最早使用的.后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字. 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果. 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的.如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了.中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数.自然数也称为正整数. 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西.为了表示这样的量,又产生了负数.正整数、负整数和零,统称为整数.如果再加上正分数和负分数,就统称为有理数.有了这些数字表示法,人们计算起来感到方便多了. 但是,在数字的发展过程中,一件不愉快的事发生了.让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体.他们认为"数"是万物的本源,支配整个自然界和人类社会.因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉.他们所说的数是指整数.分数的出现,使"数"不那样完整了.但分数都可以写成两个整数之比,所以他们的信仰没有动摇.但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它.如果设这个数为X,既然,推导的结果即x2=2.他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的.可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数.这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心.为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密.而希帕索斯还是忍不住将这个秘密泄露了出去.据说他后来被扔进大海喂了鲨鱼.然而真理是藏不住的.人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个.人们把它们写成 π、等形式,称它们为无理数. 有理数和无理数一起统称为实数.在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度.这时人类的历史已进入19世纪.许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了.但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了."i "成了虚数的单位.后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈.随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了. 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了.可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念.所谓四元数,就是一种形如的数.它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的.四元数的数论、群论、量子理论以及相对论等方面有广泛的应用.与此同时,人们还开展了对"多元数"理论的研究.多元数已超出了复数的范畴,人们称其为超复数. 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰.这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数.尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的.到目前为止,数的家庭已发展得十分庞大.

数的诞生 数学——自然科学之父,起源于用来计数的自然数的伟大发明。 若干年以前,人类的祖先为了生存,往往几十人在一起,过着群居的生活。他们白天共同劳动,搜捕野兽、飞禽或采集果薯食物;晚上住在洞穴里,共同享用劳动所得。在长期的共同劳动和生活中,他们之间逐渐到了有些什么非说不可的地步,于是产生了语言。他们能用简单的语言夹杂手势,来表达感情和交流思想。随着劳动内容的发展,他们的语言也不断发展,终于超过了一切其他动物的语言。其中的主要标志之一,就是语言包含了算术的色彩 人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念。连续几天“无”兽可捕,就没有肉吃了,“有”、“无”的概念便逐渐加深。 后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。有些酋长虽是长者,却说不出他捕获过多少种野兽,看见过多少种树,如果问巫医,巫医就会编造一些词汇来回答“多少种”的问题,并煞有其事地吟诵出来。然而,不管怎样,他们已经可以用双手说清这样的话(用一个指头指鹿,三个指头指箭):“要换我一头鹿.你得给我三枝箭。”这是他们当时没有的算术知识。 大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式——农耕生活。他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。特别是在尼罗河谷、底格里斯河与幼发拉底河流域发展起更复杂的农业社会时,他们还碰到交纳租税的问题。这就要求数有名称。而且计数必须更准确些,只有“一”、“二”、“三”、“多”,已远远不够用了。 底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚,那儿产生过一种文化,与埃及文化一样,也是世界上最古老的文化之一。美索不达米亚人和埃及人虽然相距很远,但却以同样的方式建立了最早的书写自然数的系统——在树木或者石头上刻痕划印来记录流逝的日子。尽管数的形状不同,但又有共同之处,他们都是用单划表示“一”。 后来(特别是以村寨定居后),他们逐渐以符号代替刻痕,即用1个符号表示1件东西,2个符号表示2件东西,依此类推,这种记数方法延续了很久。大约在5000年以前,埃及的祭司已在一种用芦苇制成的草纸上书写数的符号,而美索不达米亚的祭司则是写在松软的泥板上。他们除了仍用单划表示“-”以外,还用其它符号表示“+”或者更大的自然数;他们重复地使用这些单划和符号,以表示所需要的数字。 公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”——每收进一捆庄稼,就在绳子上打个结,用结的多少来记录收成。“结”与痕有一样的作用,也是用来表示自然数的。根据我国古书《易经》的记载,上古时期的中国人也是“结绳而治”,就是用在绳上打结的办法来记事表数。后来又改为“书契”,即用刀在竹片或木头上刻痕记数.用一划代表“一”。直到今天,我们中国人还常用“正”字来记数.每一划代表“一”。当然,这个“正”字还包含着“逢五进一”的意思。

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前

  • 索引序列
  • 数学发展史论文1500字
  • 物理学发展史论文1500字
  • 物理发展史论文1500字
  • 汽车发展史论文1500字
  • 数学发展史论文300字
  • 返回顶部