首页 > 论文发表知识库 > 计算机视觉毕业论文答辩

计算机视觉毕业论文答辩

发布时间:

计算机视觉毕业论文答辩

首先我要告诉你,其实好多同学看起来知道很多,其实也有很多都是蒙混过关的。毕业答辩虽然是一件很严肃的事情,但是要相信,功夫不怕有心人,以及临阵磨枪不快也光。

如果毕设不是自己写的,就按照上面的方法。

什么都不会,至少也要把毕业论文看2-3遍。你会发现,豁然开朗~~

祝lz毕业顺利

我也是应届毕业生 所以我的指导老师说最多问的问题是如下:1.你为什么想实现这个系统、2.你为什么用这个为实现这个系统的用的高级语言,数据库或某一个软件?3.某个功能怎么实现的?4.这个系统有什么开发前途?等等 一般最多问的就这些。

老师会在你的论文里面找一些问题问问,你首先要好好的把你定的论文读熟。这样一般都会过的。

答辩老师一般是从检验真伪、探测能力、弥补不足三个方面提出三个问题。(1)检验真伪题,就是围绕毕业论文的真实性拟题提问。它的目的是要检查论文是否是学员自己写的(2)探测水平题,这是指与毕业论文主要内容相关的,探测学员水平高低、基础知识是否扎实,掌握知识的广度深度如何来提出问题的题目,主要是论文中涉及到的基本概念,基本理论以及运用基本原理等方面的问题。(3)弥补不足题,这是指围绕毕业论文中存在的薄弱环节,如对论文中论述不清楚、不详细、不周全、不确切以及相互矛盾之处拟题提问,请作者在答辩中补充阐述或提出解释。

计算机视觉论文参考文献

这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果    将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。                                          ————维基百科   通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究:   这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究:    该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解:   这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。   而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:    首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。    于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。    接着,无数条线又整合成一个个轮廓。    最后多个轮廓累加终于聚合我们现在眼前看到的样子。   计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在   (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。   (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。   过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。   另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。   因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。   如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:   如果我们想计算sin(cos(log(exp(x)))),   那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ),   特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。   但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:   给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。    用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。

池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36.   深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括:   受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。   监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科

摘 要本文详细介绍了多变量预测控制算法及其在环境试验设备控制中的应用。由于环境试验设备的温度和湿度控制系统具有较大的时间滞后,而且系统间存在比较严重的耦合现象,用常规的PID控制不能取得满意的控制效果。针对这种系统,本文采用了多变量预测控制算法对其进行了控制仿真。预测控制算法是一种基于系统输入输出描述的控制算法,其三项基本原理是预测模型、滚动优化、反馈校正。它选择单位阶跃响应作为它的“预测模型”。这种算法除了能简化建模过程外,还可以通过选择合适的设计参数,获得较好的控制效果和解耦效果。本文先对环境试验设备作了简介,对控制中存在的问题进行了说明;而后对多变量预测控制算法进行了详细的推导,包括多变量自衡系统预测制算法和多变量非自衡系统预测控制算法;然后给出了系统的建模过程及相应的系统模型,在此基础上采用多变量预测控制算法对环境试验设备进行了控制仿真,并对仿真效果进行了比较。仿真结果表明,对于和环境试验设备的温度湿度控制系统具有类似特性的多变量系统,应用多变量预测控制算法进行控制能够取得比常规PID控制更加令人满意的效果。关键词:多变量系统;预测控制;环境试验设备【中文摘要共100—300个字,关键词3—7个词中文摘要和关键词占一页】【英文全部用Times New Roman字体】Abstract 【三号字体,加粗,居中上下空一行】【正文小四号字体,行距为固定值20磅】In this paper, multivariable predictive control algorithm and its application to the control of the environmental test device are introduced particularly. The temperature and humidity control system of the environmental test device is characterized as long time delay and severe coupling. Therefore, the routine PID control effect is unsatisfactory. In this case, the simulation of the temperature and humidity control of the environmental test device based on multivariable predictive control algorithm is control algorithm is one of control algorithm based on description of system’s input-output. Its three basic principles are predictive model, rolling optimization and feedback correction. It chooses unit step response as its predictive model, so that the modeling process is simplified. In addition, good control and decoupling effects could be possessed by means of selection suitable this paper, the environmental test device is introduced briefly and the existing problems are showed. Then multivariable predictive control algorithm is presented particularly, including multivariable auto-balance system predictive control algorithm and multivariable auto-unbalance system predictive control algorithm. Next, system modeling process and corresponding system model are proposed. Further, the multivariable predictive control algorithm is applied to the temperature and humidity control system of the environmental test device. Finally, the simulation results are of the simulation show that multivariable predictive control algorithm could be used in those multivariable system like the temperature and humidity control system of the environmental test device and the control result would be more satisfactory than that of the routine PID : Multivariable system; Predictive control; Environmental test device【英文摘要和关键词应该是中文摘要和关键词的翻译英文摘要和关键词占一页】【目录范例,word自动生成】目 录第一章 绪 论 引言 数字图像技术的应用与发展 问题的提出 论文各章节的安排 4第二章 数字图像处理方法与研究 灰度直方图 定义 直方图的性质和用途 几何变换 空间变换 灰度级插值 几何运算的应用 空间滤波增强 空间滤波原理 拉普拉斯算子 中值滤波 图像分割处理 直方图门限化的二值分割 直方图的最佳门限分割 区域生长 16第三章 图像处理软件设计 图像处理软件开发工具的选择 BMP图像格式的结构 软件开发工具的选择 EAN-13码简介 EAN-13条码的结构 条码的编码方法 系统界面设计 22第四章 条码图像测试 条码图像处理的主要方法 条码图像测试结果 25第五章 总结与展望 28参考文献 29当先验概率相等,即 时,则()恰为二者均值。以上分析可知,只要 和 已知以及 和 为正态,容易计算其最佳门限值T。实际密度函数的参数常用拟合法来求出 参数的估值。如最小均方误差拟合估计来会计 参量,并使拟合的均方误差为最小。例如,设想理想分布的密度为正态 ,实际图像直方图为 ,用离散方式其拟合误差为()式中N为直方图横坐标。通常这种拟合求密度函数的几个参数很难解,只能用计算机求数值解,但若 为正态分布时只需求均值和标准差二参数即可。 区域生长区域生长是一种典型的串行区域分割技术,在人工智能领域的计算机视觉研究中是一种非常重要的图像分割方法,其主要思想是将事先选中的种子点周围符合某种相似性判断的像素点集合起来以构成区域。在具体处理时,是从把一幅图像分成许多小区域开始的,这些初始小区域一般是小的邻域,甚至是单个的像素点。然后通过定义适当的区域内部隶属规则而对周围像素进行检验,对于那些符合前述隶属规则的像素点就将其合并在内,否则将其据弃,经过若干次迭代最终可形成待分割的区域。在此提到的“内部隶属规则”可根据图像的灰度特性、纹理特性以及颜色特性等多种因素来作出决断。从这段文字可以看出,区域生长成功与否的关键在于选择合适的内部隶属规则(生长准则)。对于基于图像灰度特性的生长准则,可以用下面的流程对其区域生长过程进行表述,如图所示。图 2. 6 区域生长流程图第三章 图像处理软件设计 图像处理软件开发工具的选择 BMP图像格式的结构数字图像存储的格式有很多种,如BMP、GIF、JPEG、TIFF等,数字图像处理中最常用的当属BMP,本课题采集到的图片也是用BMP格式存储的,要对这种格式的图片进行处理,那么首先就要了解它的文件结构。(1)BMP文件格式简介BMP(Bitmap-File)图形文件是Windows采用的图形文件格式在Windows环境下运行的所有图象处理软件都支持BMP图像文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 以前的BMP位图文件格式与显示设备有关,因此把这种BMP图像文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 以后的BMP图像文件与显示设备无关,因此把这种BMP图像文件格式称为设备无关位图DIB(device-independent bitmap)格式,目的是为了让Windows能够在任何类型的显示设备上显示所存储的图像。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。(2)BMP文件构成BMP文件由位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、颜色信息(color table)和图形数据四部分组成。它具有如表所示的形式。表 3. 1 BMP位图结构位图文件的组成 结构名称 符号位图文件头(bitmap-file header) BITMAPFILEHEADER bmfh位图信息头(bitmap-information header) BITMAPINFOHEADER bmih颜色信息(color table) RGBQUAD aColors[]图形数据 BYTE aBitmapBits[] 软件开发工具的选择(1)Win32 APIMicrosoft Win32 API(Application Programming Interface)是Windows的应用编程接口,包括窗口信息、窗口管理函数、图形设备接口函数、系统服务函数、应用程序资源等。Win32 API是Microsoft 32位Windows操作系统的基础,所有32位Windows应用程序都运行在Win32 API之上,其功能是由系统的动态链接库提供的。(2)Visual C++Visual C++是Microsoft公司出品的可视化编程产品,具有面向对象开发,与Windows API紧密结合以及丰富的技术资源和强大的辅助工具。Visual C++自诞生以来,一直是Windows环境下最主要的应用开发系统之一,Visual C++不仅是C++语言的集成开发环境,而且与Win32紧密相连,所以利用Visual C++可以完成各种各样的应用程序的开发,从底层软件直到上层直接面向用户的软件。Visual C++是一个很好的可视化编程环境,它界面友好,便于程序员操作。Visual C++可以充分利用MFC的优势。在MFC中具有许多的基本库类,特别是MFC中的一些,利用它们可以编写出各种各样的Windows应用程序,并可节省大量重复性的工作时间,缩短应用程序的开发周期。使用MFC的基本类库,在开发应用程序时会起到事半功倍的效果。Visual C++具有以下这些特点:简单性:Visual C++中提供了MFC类库、ATL模板类以及AppWizard、ClassWizard等一系列的Wizard工具用于帮助用户快速的建立自己的应用程序,大大简化了应用程序的设计。使用这些技术,可以使开发者编写很少的代码或不需编写代码就可以开发一个Windows应用程序。灵活性:Visual C++提供的开发环境可以使开发者根据自己的需要设计应用程序的界面和功能,而且,Visual C++提供了丰富的类库和方法,可以使开发者根据自己的应用特点进行选择。可扩展性:Visual C++提供了OLE技术和ActiveX技术,这种技术可以增强应用程序的能力。使用OLE技术和ActiveX技术可以使开发者利用Visual C++中提供的各种组件、控件以及第三方开发者提供的组件来创建自己的程序,从而实现应用程序的组件化。使用这种技术可以使应用程序具有良好的可扩展性。(3)MFCMFC(Microsoft Foundation Class)是Microsoft公司用C++语言开发的一套基础类库。直接利用Win32 API进行编程是比较复杂的,且Win32 API不是面向对象的。MFC封装了Win32 API的大部分内容,并提供了一个应用程序框架用于简化和标准化Windows程序的设计。MFC是Visual C++的重要组成部分,并且以最理想的方式与其集成为一体。主要包括以下各部分:Win32 API的封装、应用程序框架、OLE支持、数据库支持、通用类等。 EAN-13码简介人们日常见到的印刷在商品包装上的条码,自本世纪70年代初期问世以来,很快得到了普及并广泛应用到工业、商业、国防、交通运输、金融、医疗卫生、邮电及办公室自动化等领域。条码按照不同的分类方法,不同的编码规则可以分成许多种,现在已知的世界上正在使用的条码就有250种之多。本章以EAN条码中的标准版EAN-13为例说明基于数字图像处理技术,对EAN条码图像识别的软件开发方法。EAN码是国际物品编码协会在全球推广应用的商品条码,是定长的纯数字型条码,它表示的字符集为数字0~9。由前缀码、厂商识别代码、商品项目代码和校验码组成。前缀码是国际EAN组织标识各会员组织的代码,我国为690~695;厂商识别代码是EAN会员组织在EAN前缀码的基础上分配给厂商的代码;商品项目代码由厂商自行编码;校验码上为了校验前面12位或7位代码的正确性。 EAN-13条码的结构EAN-13码是按照“模块组合法”进行编码的。它的符号结构由八大部分组成:左侧空白区、 起始符、左侧数据符、中间分隔符、右侧数据符、校验符、终止符及右侧空白区,见表。尺寸: × ;条码: ;起始符/分隔符/终止符: ;放大系数取值范围是~;间隔为。表 3. 2 EAN-13码结构左侧空白区 起始符 左侧数据符 中间间隔符 右侧数据符 校验符 终止符右侧空白区9个模块 3个模块 42个模块 5个模块 35个模块 7个模块 3个模块 9个模块EAN-13码所表示的代码由13位数字组成,其结构如下:结构一:X13X12X11X10X9X8X7X6X5X4X3X2X1其中:X13~X11为表示国家或地区代码的前缀码;X10~X7为制造厂商代码;X6~X2为商品的代码;X1为校验码。结构二:X13X12X11X10X9X8X7X6X5X4X3X2X1其中:X13~X11为表示国家或地区代码的前缀码;X10~X6为制造厂商代码;X5~X2为商品的代码;X1为校验码。在我国,当X13X12X11为690、691时其代码结构同结构一;当X13X12X11为692时其代码结构为同结构二。EAN条码的编码规则,见表:起始符:101;中间分隔符:01010;终止符:101。A、B、C中的“0”和“1”分别表示具有一个模块宽度的“空”和“条”。表 3. 3 EAN条码的编码规则数据符 左侧数据符 右侧数据符A B C0 0001101 0100111 11100101 0011001 0110011 11001102 0010011 0011011 11011003 011101 0100001 10000104 0100011 0011101 10111005 0110001 0111001 10011106 0101111 000101 10100007 0111011 0010001 10001008 0110111 0001001 10010009 0001011 0010111 条码的编码方法条码的编码方法是指条码中条空的编码规则以及二进制的逻辑表示的设置。众所周知,计算机设备只能识读二进制数据(数据只有“0”和“1”两种逻辑表示),条码符号作为一种为计算机信息处理而提供的光电扫描信息图形符号,也应满足计算机二进制的要求。条码的编码方法就是通过设计条码中条与空的排列组合来表示不同的二进制数据。一般来说,条码的编码有两种:模块组合和宽度调节法。模块组合法是指条码符号中,条与空是由标准宽度的模块组合而成。一个标准宽度的条表示二进制的“1”而一个标准的空模块表示二进制的“0”。商品条码模块的标准宽度是 ,它的一个字符由两个条和两个空构成,每一个条或空由1~4个标准宽度模块组成。宽度调节法是指条码中,条与空的宽窄设置不同,用宽单元表示二进制的“1” ,而用窄单元表示二进制的“0”,宽窄单元之比一般控制在2~3之间。 系统界面设计本文图像处理软件基本功能包括读取图像、保存图像、对图像进行处理等。图所示为本图像处理软件的界面。图 3. 1 软件主界面软件设计流程图如图所示。图 3. 2 程序设计流程图第四章 条码图像测试 条码图像处理的主要方法(1)256色位图转换成灰度图运用点处理中的灰度处理为实现数字图像的阈值变换提供前提条件。要将256色位图转变为灰度图,首先必须计算每种颜色对应的灰度值。灰度与RGB颜色的对应关系如下:Y= ()这样,按照上式我们可以方便地将256色调色板转换成为灰度调色板。由于灰度图调色板一般是按照灰度逐渐上升循序排列的,因此我们还必须将图像每个像素值(即调色板颜色的索引值)进行调整。实际编程中只要定义一个颜色值到灰度值的映射表bMap[256](长为256的一维数组,保存256色调色板中各个颜色对应的灰度值),将每个像素值p(即原256色调色板中颜色索引值)替换成bMap[p]。(2)灰度的阈值变换利用点运算中的阈值变换理论将灰度图像变为二值图像,为图像分析做准备工作。灰度的阈值变换可以将一幅灰度图像转变为黑白二值图像。它的操作是先由用户指定一个阈值,如果图像中某像素的灰度值小于该阈值,则将该像素的灰度值设置为0,否则灰度值设置为255。(3)中值滤波运用变换域法中的空域滤波法对图像进行降噪处理。中值滤波是一种非线性的信号处理方法,与其对应的滤波器当然也是一种非线性的滤波器。中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。对于奇数个元素,中值是指按大小排序后,中间的数值,对于偶数个元素,中值是指排序后中间两个元素灰度值的平均值。(4)垂直投影利用图像分析中的垂直投影法实现对二值图像的重建,为条码识别提供前提条件。垂直投影是利用投影法对黑白二值图像进行变换。变换后的图像中黑色线条的高度代表了该列上黑色点的个数。(5)几何运算几何运算可以改变图像中各物体之间的空间关系。几何运算的一个重要应用是消除摄像机导致的数字图像的几何畸变。当需要从数字图像中得到定量的空间测量数据时,几何校正被证明是十分重要的。另外,一些图像系统使用非矩形的像素坐标。在用普通的显示设备观察这些图像时,必须先对它们进行校直,也就是说,将其转换为矩形像素坐标。 条码图像测试结果本软件的处理对象为EAN-13码的256色BMP位图,应用数字图像处理技术中的灰度处理、阈值分割、空域滤波、区域生长、投影等方法,对有噪声的条码图像进行了相应处理,其结果如下:图4. 1 原始条码图 图4. 2 灰度窗口变换图4. 3 原条码直方图 图4. 4 灰度窗口变换直方图图4. 5灰度直方图规定化界面 图4. 6灰度直方图规定化直方图图4. 7 中值滤波的界面图4. 8 区域生长 图4. 9 阈值面积消除图4. 10 垂直投影从以上处理结果可以看出,对原始条码图像进行灰度变换、中值滤波、二值化以及小面积阈值消除后得到条码的投影图像,下一步就可以通过图像模式识别的方法将条码读取出来,该部分工作还有待进一步研究。第五章 总结与展望数字图像处理技术起源于20世纪20年代,当时由于受技术手段的限制,使图像处理技术发展缓慢。直到第三代计算机问世以后,数字图像处理才得到迅速的发展并得到普遍应用。今天,已经几乎不存在与数字图像处理无关的技术领域。本论文主要研究了数字图像处理的相关知识,然后通过Visual C++这一编程工具来实现图像处理算法;对文中所提到的各种算法都进行了处理,并得出结论。所做工作如下:(1)运用点处理法中的灰度处理为实现数字图像的阈值变换提供前提条件。(2)运用变换域法中的空域滤波法对图像进行降噪处理。(3)利用点运算中的阈值变换理论将灰度图像变为二值图像,为图像分析做准备工作。(4)利用图像分析中的垂直投影法实现对二值图像的重建,为条码识别提供前提条件。在论文的最后一章,给出了各种算法处理的结果。结果表明通过数字图像处理可以把有噪声的条码处理成无噪声的条码。数字图像处理技术的应用领域多种多样,不仅可以用在像本文的图像处理方面,还可以用于模式识别,还有机器视觉等方面。近年来在形态学和拓扑学基础上发展起来的图像处理方法,使图像处理的领域出现了新的局面,相信在未来图像处理的应用将会更加广泛。参考文献[1] 阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.[2] 黄贤武,王加俊,李家华.数字图像处理与压缩编码技术[M].成都:科技大学出版社,2000.[3] 容观澳.计算机图像处理[M].北京:清华大学出版社,2000.[4] 胡学钢.数据结构-算法设计指导[M].北京:清华大学出版社,1999.[5] 黄维通.Visual C++面向对象与可视化程序设计[M].北京:清华大学出版社,2001.[6] 夏良正.数字图像处理[M].南京:东南大学出版社,1999.[7] 费振原.条码技术及应用[M].上海:上海科学技术文献出版社,1992.[8] 李金哲.条形码自动识别技术[M].北京:国防工业出版社,1991.[9] 何斌.Visual C++数字图像处理[M].北京:人民邮电出版社,2001.[10] 李长江. C++使用手册[M].北京:电子工业出版社,1995.[11] 席庆,张春林. Visual C++ .实用编程技术[M].北京:中国水利水电出版社,1999.[12] 胡学钢.数据结构-算法设计指导[M].北京:清华大学出版社,1999.[13] Kenneth 著,朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998.[14] Davis. C++ [M].北京:清华大学出版社,1999.[15] Richard C++ 5 Power Toolkit[M].北京:机械工业出版社,1999.

哈哈 我也是大一的 支持哈 为什么要有作业呀

计算机视觉论文网站知乎

当然是中国知网了。

这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果    将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。                                          ————维基百科   通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究:   这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究:    该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解:   这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。   而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:    首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。    于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。    接着,无数条线又整合成一个个轮廓。    最后多个轮廓累加终于聚合我们现在眼前看到的样子。   计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在   (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。   (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。   过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。   另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。   因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。   如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:   如果我们想计算sin(cos(log(exp(x)))),   那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ),   特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。   但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:   给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。    用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。

池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36.   深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括:   受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。   监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科

VNCHINA就非常的好,因为在这个论坛上,有非常多的知名的计算机专家发布的帖子,并且这些帖子都非常的都研究价值,能够让你学到很多。

网页链接

视觉传达毕业设计论文答辩

在一些人物介绍的文章中,我们可能看到过某君在答辩中宣读博士论文的介绍。实际上,至少在当前,博士论文答辩有两种常见形式。第一种是被动答辩型:在答辩中被动地接受专家的质疑,即答辩专家一边翻阅博士论文,一边要求博士生回答问题和质疑。第二种是主动答辩型:在答辩中,由博士生使用PPT来介绍自己的工作,接下来由评委提问。

这里针对主动型答辩,介绍一些关于PPT和汇报的形式上的建议,供参考。对于科学层面和内容深度方面的建议,则需要与导师协商。

1、做好以评委为中心的心理准备

主动答辩的优点是,可以树立以自我为中心,让评委围着自己的工作质疑和提问。然而,这并不表明可以忽视评委。忽视评委会变主动为被动。应当结合主动答辩的优势,同时以评委为中心,就可能实现真正意义上的主动。

论文答辩具有评委职能全、答辩流程严谨和答辩过程长等特点。以第一个特点评委职能全为例,除了一般的答辩委员会成员外,还有至少两名会行使其他它职能的委员。

1. 论文评阅人:答辩委员会成员中至少有一名论文评阅人,该评阅人对论文较为熟悉,可能提出更细致深入的问题。不仅如此,该论文评阅人还会向答辩主席介绍你的工作,这对书写答辩决议有重要影响。为此,准备PPT时,最好参考评阅人的评阅意见。

2. 分学位委员:答辩委员会一般会包含一名分学位委员(即答辩后参与审议你学位的成员),该委员将在分学位审议会上依据你的答辩表现简介你的工作,以便其他分会委员投票时有依据,因此你的答辩能留下可圈可点的印象十分关键。

当然,其他答辩委员会成员也不能忽视。在任何情况下,准备PPT时,需要以全部评委为中心。为此,需要知晓以下几点:

为了突出以评委为中心,需要精心准备PPT和汇报,让PPT适合讲,避免由于讲得不到位、重点不突出而增加回答质疑的难度。正因为如此,有必要事先了解评委的可能提问形式。

其它需要注意的地方:

除了以上七个问题,还可能有一些其它问题。例如,本文末尾的参考文献【1】给出了一般答辩中遇到的20个常见问题。你可以依据这些可能的问题(有的问题不一定相关)提前做好准备。

2、构建适合宣讲的PPT的页面风格

虽然内涵重于形式,但好的页面风格不仅会留下好的第一印象,而且更容易表达你的思想。这里给一些建议,供参考,更多建议可阅读PPT六条注意事项。

1 突出每一页幻灯片的主题并将其用作标题

尽量不要使用内容提要的大纲作为标题。每一页幻灯片应有一个与本页内容密切相关的主题作为标题出现。例如,介绍某一条结果时,以主要结果作为标题。不同主题的内容应分配到不同页面之中。一个大的主题则可以分配到不同页面之中。这如同论文的大纲,可以起到导航作用,评委看到标题就大致了解你当页的内容了。

2 可以用短语替代长句子

为了避免一页的文字太多,可使用包含关键词的短语句来交代你的意思。这些短语单独出现时并不要求满足语法规则,但你演讲时,需要采用完整的满足语法逻辑的句子。

3 优化排版

优化排版后,不仅视觉效果好,而且更容易理解。建议排版时考虑如下几个方面:

4 控制图形、表格与公式等对象的数目

除非用于对比或关联,一页幻灯片尽量不超过一幅图形(可以包含子图)。一幅图占的页面尽量不到半页。一页幻灯片不能有太多数学公式,只放关键的公式,可以用文字或口语介绍其推导、意义和作用。

5 条目可定位

如果使用条目排列内容,建议不用大点作为条目符号。用数字或字母序号容易定位,这样,评委提问时,可以明确指出是第几条,否则还需要数数。例如,上面关于优化排版的五个条目并未使用数字类序号,这样不利于定位。James Hayton【3】给出的三种条目风格(图1)值得借鉴。

图1 条目的三种风格【3】

6 使用不同语气区分不同来源

使用不同语气区分对通用知识、文献知识和自己的贡献的交代。例如:

3、前三页幻灯片:首页、简介与内容提要

评委会聚精会神听最先出现的三页幻灯片。如果起始的三页幻灯片效果不好,就会对余下的演讲不抱希望。

1 首页与开场白

首页幻灯片的质量会给评委留下第一印象。好的开场白让你接下来更顺畅。起调不宜太高,就像唱歌起调太高会唱不下去一样。念首页幻灯片时,尽量不要看屏幕,而需要面对评委。一般不会记不住题目、导师姓名和自己的姓名。

博士论文答辩报告

用醒目的字体给出论文题目

学生:姓名

导师:姓名+职衔

学科:(一级学科名)

单位:(院系或对等机构名称)

日期+地点

建议的开场白:一边用诚恳的表情环视一圈答辩委员会成员,一边念“各位答辩委员会老师,你们好!我论文的题目是...,我的导师是...老师(职衔高的应将“老师”改为“职衔”,如“我的导师是...院士”)。现在向各位评委老师汇报我的具体工作”。

不建议的口语:“欢迎各位老师参加我的汇报或答辩”。(欢迎词应该是主持人说的)

2 论文工作简介

论文工作简介可概括本论文面对的问题是什么,问题的来源是什么。概括论文开展了什么工作,必要时指出目标是什么。图2是论文工作简介示例。

图2 论文工作简介(D Goldenberg,年份不详)

建议:论文简介所包含的信息应尽可能简练,以一分钟的时间交代完,最后接一句口语“下面是具体内容介绍,先看内容提要”,并翻到下一页内容提要。

3 内容提要

第三页是内容提要。不超过7个条目。核心内容的标题应尽量揭示主题或重要结论(不能写成第n章)。用数字序号(而不是点号)区分不同条目。在每一条目对应的内容出现的起始位置,应重复出现内容提要一页,并将对应条目的颜色加深。

内容提要

1. 引言

2. 核心内容1的标题

3. 核心内容2的标题

n. 结论与展望

口语建议:以“报告分为如下几个部分”开始,接着念完各条目,最后是“下面介绍第一个方面引言”。

4、特别注意引言的要求

引言的目的是交代问题的来龙去脉并给后面介绍核心内容进行铺垫。书面论文的引言需要从引言的逻辑结构介绍三部分内容(论文引言的逻辑结构)。对于PPT演讲,也需要突出这种逻辑结构。

第一部分是研究背景及其意义。以第三者的角度从背景引出需求,从需求牵引研究主题。这部分内容可以用一页PPT展示。如果研究主题涉及比较重要的专业术语或概念,则可用另起一页对具体术语或概念进行适当讲解,必要时采用示意图。注意,这部分不要提本文研究内容。所谓重要性,要么是对更宽广的领域有价值(横向价值),要么对推动一件事情的发展有价值(纵向价值),要么本身重要(提出一个原创主意)。

第二部分是研究动态。围绕研究背景中的需求和研究主题,交代研究动态。首先介绍如何来综述文献。接下来是文献综述的主体:可以按研究历史、研究方法、理论或作者分类;通过总结、综合和评估来分析文献。最后给文献综述下结论,用于总结你从文献中获得的主要发现,并强调其意义;通过总结遗留的问题和需求,把它和你的主要研究问题联系起来。

第三部分是本文工作。按顺序交代:为了满足背景中的需求,现有研究遗留了什么需要进一步研究的内容;本文将研究其中的什么内容;本文的研究目标;本文的研究思路(或理论框架)。本文工作介绍尽量不要超过2页,其中研究思路最好是单独一页。

本文研究思路(或理论框架)

你的研究就像要在地图上找到一个要到达的目标,你给一个卫星地图,在上面清晰地标明了路径和关键切换路口,哪里该换乘什么交通工具,哪里有崎岖。

可以指明你采用了什么方法(现有的、改进的、自创的),经过什么主要步骤,突破什么关键问题,获得什么结果,分析什么,等。

研究思路一定要简单明了,让评委获得了一个概要,接着往下听就轻松多了。介绍研究思路时可以减缓语气。

引言的介绍常见的不足是,引言的三部分内容各自为政,没有形成逻辑关系,没有理清问题的来龙去脉和建立上下文关系。具体而言:

5、核心内容重组建议

研究方法、研究结果和研究结果的分析是核心内容。书面学位论文有足够的篇幅展开这些内容,但PPT不能太长,尤其不能事无巨细地在这里介绍。为此,需要重新组织内容。

组织核心内容的标准形式与建议

第一类安排方式:第一部分交代方法、第二部分交代结果、第三部分讨论结果。这种方式中规中矩,适合这三部分内容权重接近的论文。

第二类安排方式:按解决的问题进行分类。这种方式适合解决了几个不同的重要问题的论文。

第三类安排方式:先交代完成做了哪些工作,接着按顺序交代主要贡献。这种方式适合包含几个特别重要的、特别新颖的贡献的论文。

其它建议:

6、强调结尾的艺术

你在介绍核心部分的内容时,由于复杂程度高,难免会有一些失误或者卡壳,但这些不足可以通过好的结尾(通俗地说)“捞回来”。结尾是你的结论与展望,此时,你可以像背书一样念为此精心准备的PPT,以避免卡壳和失误。

结论、展望与致谢

首先概括论文工作:概括论文针对什么问题、做了什么工作、有什么最重要的结果、是否实现了目标等。

清晰地提炼创新点:以条目形式罗列主要创新点,数目不要超过4条,并指出这些创新点有什么重要性或作用。创新点是指带来了什么样的新知识,可以是创造了什么新知识、完善了什么现有知识和拓展了什么现有的知识。见对知识做出贡献的三种类型(讨论稿)。

给出展望:指出论文工作的不足、提出了什么值得进一步需要开展的工作、个人有什么打算。

最后可列出致谢对象:可以在最后一页列出致谢对象作为结尾。此时不一定需要念致谢,可以等待答辩委员主席宣布答辩决议后致谢。

结束建议:结尾时面向评委,结束语不要拖泥带水,不要侃侃而谈。

建议结束语:我的汇报完了,谢谢各位老师!

不建议的结束语:欢迎各位老师批评指正。

不能采用的结束语:千万别以会议主持人的口气“命令”各位评委提问。例如,结尾时不要说“现在请评委老师提问”。提问应由答辩主席来宣布。

7、掌握时间与时间分配

各单位对答辩人汇报PPT的时间可能有所规定。例如,清华大学研究生工作手册“二、博士学位论文答辩程序及有关要求”第3(4)条“规定,由答辩人报告学位论文的主要内容的时间为约30-45分钟。

如果答辩流程规定了宣讲PPT的时间范围,那么建议取最短时间。例如,如果答辩流程规定用30-45分钟宣讲PPT,那么尽可能按30分钟演讲时间来准备PPT。

那么如何分配各部分时间呢?

由于核心内容的组织存在前述的三种不同情况(见核心内容的重组建议),因此很难统一地规定各部分所占的时间。凯特.海默恩(Kate Hemeon)将内容分成研究目标、文献综述、整体思路、研究方法、发现和建议几个部分,提出的相应的时间分配为【4】:

如果按上面的构成分配时间,那么再加上开场白和其它一些时间,总的时间应控制在40分钟以内。

在时间分配上,不管得到什么建议,需要将主要时间留在那些能打动评委,让他们记住要点和能突出你的特点和贡献的内容上,而不应机械地为了平衡各部分要素来分配时间。

在回答问题时也需要注意控制自己回答问题的时间。尽可能言简意赅地完成一个问题的回答,避免绕圈子和将自己绕进去。

艺术设计专业?似乎没有纯粹的艺术设计专业吧!美术学院一般都有明确的专业划分,例如视觉传达专业,环境艺术设计专业,动画专业,多媒体专业,影视专业,广告学专业,装饰专业等等。 毕业答辩的前提是你已经写好了你的毕业论文,老师是根据你的毕业论文的观点和你的毕业作品来提出一些相应的问题。因为论文是你的写的,当然你回答起来会很容易。如果不是你写的,是找人代笔的,那就不好说了。总之,毕业答辩本科很容易,硕士稍微难些。似乎艺术设计学是研究生的专业。 总之你做好充分准备就行,不难,祝你成功。

你好 研究生团队 可以帮你搞定 谢谢,采纳 毕业设计(论文)是学生毕业前最后一个重要学习环节,是学习深化与升华的重要过程。它既是学生学习、研究与实践成果的全面总结,又是对学生素质与能力的一次全面检验,而且还是对学生的毕业资格及学位资格认证的重要依据。为了保证我校本科生毕业设计(论文)质量,特制定“同济大学本科生毕业设计(论文)撰写规范”。一、毕业设计(论文)资料的组成A.毕业设计(论文)任务书;B.毕业设计(论文)成绩评定书;C.毕业论文或毕业设计说明书(包括:封面、中外文摘要或设计总说明(包括关键词)、目录、正文、谢辞、参考文献、附录);D.译文及原文复印件;E.图纸、软盘等。二、毕业设计(论文)资料的填写及有关资料的装订毕业设计(论文)统一使用学校印制的毕业设计(论文)资料袋、毕业设计(论文)任务书、毕业设计(论文)成绩评定书、毕业设计(论文)封面、稿纸(在教务处网上下载用,学校统一纸面格式,使用A4打印纸)。毕业设计(论文)资料按要求认真填写,字体要工整,卷面要整洁,手写一律用黑或蓝黑墨水;任务书由指导教师填写并签字,经院长(系主任)签字后发出。毕业论文或设计说明书要按顺序装订:封面、中外文摘要或设计总说明(包括关键词)、目录、正文、谢辞、参考文献、附录装订在一起,然后与毕业设计(论文)任务书、毕业设计(论文)成绩评定书、译文及原文复印件(订在一起)、工程图纸(按国家标准折叠装订)、软盘等一起放入填写好的资料袋内交指导教师查收,经审阅评定后归档。三、毕业设计说明书(论文)撰写的内容与要求一份完整的毕业设计(论文)应包括以下几个方面:1.标题标题应该简短、明确、有概括性。标题字数要适当,不宜超过20个字,如果有些细节必须放进标题,可以分成主标题和副标题。2.论文摘要或设计总说明论文摘要以浓缩的形式概括研究课题的内容,中文摘要在300字左右,外文摘要以250个左右实词为宜,关键词一般以3~5个为妥。设计总说明主要介绍设计任务来源、设计标准、设计原则及主要技术资料,中文字数要在1500~2000字以内,外文字数以1000个左右实词为宜,关键词一般以5个左右为妥。3.目录目录按三级标题编写(即:1……、……、……),要求标题层次清晰。目录中的标题应与正文中的标题一致,附录也应依次列入目录。4.正文毕业设计说明书(论文)正文包括绪论、正文主体与结论,其内容分别如下:绪论应说明本课题的意义、目的、研究范围及要达到的技术要求;简述本课题在国内外的发展概况及存在的问题;说明本课题的指导思想;阐述本课题应解决的主要问题,在文字量上要比摘要多。 正文主体是对研究工作的详细表述,其内容包括:问题的提出,研究工作的基本前提、假设和条件;模型的建立,实验方案的拟定;基本概念和理论基础;设计计算的主要方法和内容;实验方法、内容及其分析;理论论证,理论在课题中的应用,课题得出的结果,以及对结果的讨论等。学生根据毕业设计(论文)课题的性质,一般仅涉及上述一部分内容。结论是对整个研究工作进行归纳和综合而得出的总结,对所得结果与已有结果的比较和课题尚存在的问题,以及进一步开展研究的见解与建议。结论要写得概括、简短。 5.谢辞谢辞应以简短的文字对在课题研究和设计说明书(论文)撰写过程中曾直接给予帮助的人员(例如指导教师、答疑教师及其他人员)表示自己的谢意,这不仅是一种礼貌,也是对他人劳动的尊重,是治学者应有的思想作风。6.参考文献与附录参考文献是毕业设计(论文)不可缺少的组成部分,它反映毕业设计(论文)的取材来源、材料的广博程度和材料的可靠程度,也是作者对他人知识成果的承认和尊重。一份完整的参考文献可向读者提供一份有价值的信息资料。一般做毕业设计(论文)的参考文献不宜过多,但应列入主要的文献可10篇以上,其中外文文献在2篇以上。附录是对于一些不宜放在正文中,但有参考价值的内容,可编入毕业设计(论文)的附录中,例如公式的推演、编写的程序等;如果文章中引用的符号较多时,便于读者查阅,可以编写一个符号说明,注明符号代表的意义。一般附录的篇幅不宜过大,若附录篇幅超过正文,会让人产生头轻脚重的感觉。

艺术设计毕业论文答辩常见问题有些艺设计毕业论文答辩常见问题有哪些1、毕业设计选的日的和意义是什么?2、毕业设计有何创新之处?3、设计的思路,设计的步骤,以及目前处理方法有哪些?4、作为名艺术设计专业的学生,你是如何理解“环境艺术设计(视觉传达设计)这个概念?2.尺度是空间环境设计中众多要素中最要的一个方面,它是我们对空间环境及环境要系在大小的方面进行评价和控制的度量那么尺度在整个空间设计中起到怎样的作用?如何用尺度去规范空间设计3、谈谈平面设计中的视觉元素。、谈谈论室内设计中的人情味

计算机毕业论文题目视觉动漫应用

广州的CGWANG吧,听我朋友说这里动漫游戏培训在国内是最牛的。可以看看他们学生的毕业作品,选择培训机构一定要对比学生作品,没有什么作品的学校肯定是人的。

题目列出来就不错了。内容估计要花钱买吧

1 三维角色动画演示设计研究 2 从时代文化特点看网络游戏角色设计 3 网络游戏设计的数字文化环境特征 4 漫画创作的流行文化特点 5 二维动画计算机后期合成技术探索 6 二维动画设计中的背景透视技巧研究 7 动画背景制作风格与技术探索 8 影片《千与千寻》二维动画分镜头技术解析 9 迪斯尼动画片中的角色运动规律分析研究 10 循环动画在电子读物中的应用 11 日本动画中的角色体系 12 中国古典题材游戏的人物设定 13 欧美奇幻文化对网游造型的影响 14 休闲游戏人物设定研究 15 时间表在原画设计中的应用 16 仿真数字人物的制作 17 三维游戏角色贴图的研究 18 三维动画中的角色运动设计 19 三维动画短剧的设计与制作 20 二维动画制作中的场景转化 21 游戏中的场景设定 22 三维动画中的骨骼设定

计算机毕业网专业计算机毕业设计网站五年老站

  • 索引序列
  • 计算机视觉毕业论文答辩
  • 计算机视觉论文参考文献
  • 计算机视觉论文网站知乎
  • 视觉传达毕业设计论文答辩
  • 计算机毕业论文题目视觉动漫应用
  • 返回顶部