是一个非常优秀的人,有许多优秀的发现,他出生于英格兰的一个小村落,母亲改嫁,生活不是特别的幸福,特别喜欢制作各种东西,不断的进行学习,进入了剑桥大学,最终成为一个优秀的物理学家,数学家。
牛顿是非常伟大的物理学家科学家;他出生于1642年,家境贫寒,但他非常热爱读书,很喜欢一些小的工具,小的发明,他发明了运动三定律,万有引力定律。
牛顿他是爵士,也是英国皇家学会会长,英国著名的物理学家,数学家百科全书式的“全才”,他的著作有《自然哲学和数学原理》、《光学》,他发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述,这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。由此可见,他对世界做出的贡献是非常大的。那么牛顿他是个什么样的人呢?他有着哪些经历,接下来小编就给大家具体的介绍一下。
我们觉得牛顿他做出的贡献这么大,那么他那么聪明,是不是从小就是神童、天才呢?其实并不是的,牛顿他小的时候身体非常的瘦弱,头脑也并不是特别的聪明,在他的家乡读书的时候,他的成绩甚至可以说得上是差生,但是他的兴趣却非常的广泛,而且他跟他的朋友们做游戏,他的本领也比他们的高。大海爱制作一些机械模型一类的小东西玩,比如说风车,水车等等,由此我们可以看出牛顿他是一个十分喜欢动手的人,而且他的脑子也比较的灵活。
他为什么能够有后面的成就呢?是因为有一次有一个学习好的学生故意踩了他一脚,并且还说他是个笨蛋,然后牛顿他受不了这种刺激,然后就在心里暗暗的下定决心,以后一定要好好的学习,所以从此以后牛顿他就发奋图书,早起晚睡,经过刻苦的钻研牛顿,他的学习成绩就在不断的提高不久就超过了曾经那个侮辱他的同学。所以从中我们也可以看出牛顿他是一个自尊心很强的人,并且他能够吃苦耐劳下定决心要去做的事情,他就一定会去做到,并不会轻易的放弃。
至于牛顿的生平,他出生于一个小庄园里面,生活并不是特别的富裕,但是在他的学生时代,他进了离家有十几公里远的金阁寺皇家中学读书,牛顿的母亲希望他成为一个农民,但是牛顿并不想他酷爱读书。到了1661年,他进入了剑桥大学的三一学院,在1665年牛顿获得了学位,而大学为了预防伦敦大瘟疫而关闭了,此后两年,牛顿在家中研究微积分,学光学和万有引力定律。他于1727年与世长辞。
以上分享仅代表小编的个人观点。
牛顿是一个特别聪明而且很善于发现的人;他出生于1643年1月4日,在1687年的时候,发表了论文自然定律,这本论文当中对万有引力和三大运动定律进行了一些描述,此后他又提出了牛顿运动定律,在光学上他还发明了反射望远镜,还系统地表述过冷却定律并研究了音速。
很基础的方案.物理的最后一章讲了一点儿狭义相对论的原理及一些常用公式.如果你们高数或者微积分已经学完了,可以试从从麦克斯韦方程组开始试着解释论动体的电动力学论文中提到的1个至2个公式.这个题目要想做好的话,可以用心去做.要想忽悠的话,就算推导时出了点儿错,估计都不会被老师发现,因为没几个人愿意去看那些偏微分方程组.
需要我帮忙吗?
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
建议你先去问下你的导师以及你的学长学姐,其次就是看下文献,物理类的话你可以去参考下现代物理、应用物理、物理化学进展
欧 姆乔治·西蒙·欧姆(Georg Simon Ohm,1787—1845)1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。富兰克林富兰克林(Benjamin Franklin) 美国科学家、物理学家、社会活动家,资产阶级革命时期的民主主义者。1706年1月17日生于波士顿的一个工人家庭。1714年入小学,仅读二年。1718年12岁时开始作印刷学徒工。但他对科学十分向往,勤奋自学,掌握了意大利、西班牙等多种外语和广泛的自然科学知识。由于天才和勤奋,终于使自己成为举世瞩目的伟大科学家和发明家。富兰克林最卓越的贡献是为电学史上树起了一块丰碑。电学是近代科学中较为年轻的一门科学,富兰克林的成就开创了电学史的新纪元。他的主要研究对象是大气电理论。1749年他在大量实验的基础上证明了闪电是一种电力性质,闪电和电火花具有同样的特性,都是瞬时的,都是相似的光和声,都能燃着物体、熔解金属、流过导体、具有集中于物体尖端的特点。他还证明了闪电和电火花都能破坏磁性和杀死生物等。富兰克林用著名的风筝实验,证实了他的观点:闪电就是一种放电现象。1752年7月在费城一次雷雨天气中,他把风筝放入空中,冒着极大的生命危险,把“天电”引入了莱顿瓶,成功地证实了闪电的特性。1753年他在充分研究了“天电”特性并进行大量实验的基础上发现了尖端放电现象,从而发明了避雷针。这是人类在征服大自然的道路上迈出的具有重大意义的一步。富兰克林的“电的单流体说”,以及正电和负电概念的引入,使人们更进一步了解了电的本质,并使电成为可以定量的物理量了。他认为,电的“二流体论 ”是没有根据的,电只有一种,每个物体都具有一定量的电,磨擦不能创造出电,只能使电从一个物体转到另一物体,它们的总电量保持不变,得到电的物体带正电,失去电的物体带负电。他的理论为电荷守恒定律的发现奠定了理论基础。
牛顿对电学也很感兴趣。1657年他用玻璃球起电机研究了电的吸力和斥力、火花放电等现象。1703年12月5日,英国皇家学会热闹非凡,这一天他们有两件新鲜事。一件是牛顿就任皇家学会主席,一件是牛顿任命他的助手豪克斯比()担任实验师,牛顿希望在皇家学会提倡实验,恢复实验空气。豪克斯比当众表演了精彩的真空放电实验。他用摩擦起电机使真空发出辉光,说明真空也会产生电的现象。
简介 James Clerk Maxwell 公元1831~公元1879 詹姆斯·克拉克·麦克斯韦是伟大的英国物理学家,1831年生于苏格兰爱丁堡。他的智力发育格外早,年仅十五岁时,就向爱丁堡皇家学院递交了一份科研论文。他就读于爱丁堡大学,毕业于剑桥大学。他成年时期的大部分时光是在大学里当教授,最后是在剑桥大学任教。他结过婚,但没有孩子。 一般认为麦克斯韦是从牛顿到爱因斯坦这一整个阶段中最伟大的理论物理学家。1879年他在临近48岁生日之际因病与世长辞。他光辉的生涯就这样过早地结束了。 麦克斯韦生前没有享受到他应得的荣誉,因为他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来。然而他没能看到科学革命的发生。1879年11月5日,麦克斯韦因病在剑桥逝世,年仅48岁。那一年正好爱因斯坦出生。科学史上这种巧合还有一次是在1642年,那一年伽里略去世,牛顿出生。[1]编辑本段个人经历家庭情况 詹姆斯·克拉克·麦克斯韦1831年11月13日生于苏格兰古都爱丁堡,麦克斯韦的父亲约翰是一名不随流俗 詹姆斯·克拉克·麦克斯韦的机械设计师,他对麦克斯韦的影响非常大。他是长老会教友,但思路开阔,思想敏锐,讲求实际,特别能干。家里的事情,不分巨细,他都料理得很好。修缮房屋,打扫庭院,给孩子们制做玩具,乃至裁剪衣服,他样样都能胜任。1847年,麦克斯韦16岁,中学毕业,进入爱丁堡大学学习。这里是苏格兰的最高学府。他是班上年纪最小的学生,但考试成绩却总是名列前茅。他在这里专攻数学物理,并且显示出非凡的才华。他读书非常用功,但并非死读书,在学习之余他仍然写诗,不知满足地读课外书,积累了相当广泛的知识。大学学习 在爱丁堡大学,麦克斯韦获得了攀登科学高峰所必备的基础训练。其中两个人对他影响最深,一是物理学家和登山家福布斯,一是逻辑学和形而上学教授哈密顿。福布斯是一个实验家,他培养了麦克斯韦对实验技术的浓厚兴趣,一个从事理论物理的人很难有这种兴趣。他强制麦克斯韦写作要条理清楚,并把自己对科学史的爱好传给麦克斯韦。哈密顿教授则用广博的学识影响着他,并用出色的怪异的批评能力刺激麦克斯韦去研究基础问题。在这些有真才实学的人的影响下,加上麦克斯韦个人的天才和努力,麦克斯韦的学识一天天进步,他用三年时间就完成了四年的学业,相形之下,爱丁堡大学这个摇篮已经不能满足麦克斯韦的求知欲。为了进一步深造,1850年,他征得了父亲的同意,离开爱丁堡,到人才济济的剑桥去求学。 赫兹是德国的一位青年物理学家。麦克斯韦的《电磁学通论》发表之时,他只16岁。在当时的德国,人们依然固守着牛顿的传统物理学观念,法拉第、麦克斯韦的理论对物质世界进行了崭新的描绘,但是违背了传统,因此在德国等欧洲中心地带毫无立足之地,甚而被当成奇谈怪论。当时支持电磁理论研究的,只有波尔茨曼和赫尔姆霍茨。赫兹后来成了赫姆霍茨的学生。在老师的影响下,赫兹对电磁学进行了深入的研究,在进行了物理事实的比较后,他确认,麦克斯韦的理论比传统的“超距理论”更令人信服。于是他决定用实验来证实这一点。1886年,赫兹经过反复实验,发明了一种电波环,用这种电波环作了一系列的实验,终于在1888年发现了人们怀疑和期待已久的电磁波。赫兹的实验公布后,轰动了全世界的科学界,由法拉第开创、麦克斯韦总结的电磁理论,至此取得了决定性的胜利。麦克斯韦的伟大遗愿终于实现了。科研阶段 1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。编辑本段主要研究领域 麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的 路德维希·玻尔兹曼研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论遇见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。 麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。编辑本段土星光环背景 早在1787年,拉普拉斯进行过把土星光环作为固体研究的计算。当时他曾确定,土星光环作为一个均匀的刚性环,它不会瓦解的原因要满足两个条件,一是它以一种使离心力与土星引力相平衡的速度运转,二是 詹姆斯·克拉克·麦克斯韦光环的密度与土星的密度之比超过临界值,从而使环的内层与外层之间的引力超过在不同半径处离心力与万有引力之差。他之所以有如此推论,是因为,一个均匀环的运动在动力学上是不稳定的,任何轻微的破坏平衡的位移都会导致环的运动被破坏,使光环落向土星。拉普拉斯推测,土星光环是一个质量分布不规则的固体环。 到了1855年,理论仍然停留在此,而这中间,人们又观测到了土星的一个新的暗环,和现在环中更进一步的分离现象,还有光环系统自从被发现以来二百年间整体尺度的缓慢变化。因此,一些科学家们提出了一个假说,来解释土星光环在动力学上的稳定性,这个假说是:土星光环是:由固体流体和大量并非相互密集的物质构成的。麦克斯韦就根据这一假说进行了论述。他首先着手的是拉普拉斯留下的固体环理论,并确定了一个任意形状环的稳定性条件。麦克斯韦依据环在土星中心造成的势,列出了运动方程式,获得了对匀速运动的势的一阶导数的两个限制,然后由泰勒展开式又得到关于稳定运动二阶导数的三个条件。麦克斯韦又把这些结果换成关于质量分布的傅立叶级数的前三个系数的条件。因而他证明了,除非有一种奇妙的特殊情形,几乎每个可以想象的环都是不稳定的。这种特殊的情形是指一个均匀环在一点上承载的质量介于剩余质量的倍到倍之间。但是这种特殊情况的固体环在不均匀的应力下会瓦解掉,所以固体环的理论假说是不能成立的。麦克斯韦突破 麦克斯韦早在1849年在爱丁堡的福布斯实验室就开始了色混合实验。在那个时候,爱丁堡有许多研究颜色的学者,除了福布斯、威尔逊和布儒斯特外,还有一些对眼睛感兴趣的医生和科学家。实验主要就是在于观察一个快速旋转圆盘上的几个着色扇形所生成的颜色。麦克斯韦和福布斯首先做出的一个实验是使红、黄、蓝组合产生灰色。他们的实验失败了,而其中的主要原因是:蓝与黄混合并不象常规那样生成绿色,而是当两者都不占优势时产生一种淡红色,这种组合加上红色不可能产生任何灰色。 麦克斯韦起初想到他的母校爱丁堡大学去谋职,因为那里他的老师福布斯已退职,需要一个自然哲学教授。同时应选的有三个人,校方决定用考试来决定录用谁。在笔试方面;麦克斯韦的学问理所当然是第一,但是在口才上,麦克斯韦再次吃了亏。考试结果,麦克斯韦是最后一名,他的讲课能力实在太差了。当时甚至爱丁堡的一家杂志都发表评论文章,为爱丁堡大学失去这样一个人才而惋惜。不过被选上的人也不差,那就是他中学和大学的同学泰特。麦克斯韦离开阿伯丁,又因此离开家乡爱丁堡,他被聘为伦敦皇家学院的教授,妻子也一同前往。麦克斯韦于是开始了新的生活,在伦敦皇家学院,他完成了可以使他最终在物理学史上发射出光芒的电磁学理论。编辑本段电磁情缘 回顾电磁学的历史,物理学的历程一直到1820年的时候都是以牛顿的物理学思想为基础的。自然界的“力”——热、电、光、磁以及化学作用正在被逐渐归结为一系列流体的粒子间的瞬时吸引或排斥。人们已经知道磁和静电遵守类似引力定律的平方反比定律。在19世纪以前的40年中,出现了一种反对这种观点的动向,这种观点赞成“力的相关”。1820年,奥斯特发现的电磁现象马上成了这种新趋势的第一个证明和极为有力的推动力,但当时的人又对此捉摸不定和感到困惑。奥斯特所观察到的电流与磁体间的作用有两个基本点不同于已知的现象:它是由运动的电显示出来的,而且磁体既不被引向带电流的金属线,也不被它推开,而是对于它横向定位。同一年,法国科学家安培用数学方法总结了奥斯特的发现,并创立了电动力学,此后,安培和他的追随者们便力图使电磁的作用与有关瞬时的超距作用的现存见解调和起来。 麦克斯韦的电学研究始于1854年,当时他刚从剑桥毕业不过几星期。他读到了法拉第的《电学实验研究》,立即被书中新颖的实验和见解吸引住了。在当时人们对法拉第的观点和理论看法不一,有不少非议。最主要原因就是当时“超距作用”的传统观念影响很深。另一方面的原因就是法拉第的理论的严谨性还不够。法拉第是实验大师,有着常人所不及之处,但唯独欠缺数学功力,所以他的创见都是以直观形式来表达的。一般的物理学家恪守牛顿的物理学理论,对法拉第的学说感到不可思议。有位天文学家曾公开宣称:“谁要在确定的超距作用和模糊不清的力线观念中有所迟颖,那就是对牛顿的亵渎!”在剑桥的学者中,这种分歧也相当明显。汤姆逊也是剑桥里一名很有见识的学者之一。麦克斯韦对他敬佩不已,特意给汤姆逊写信,向他求教有关电学的知识。汤姆逊比麦克斯韦大7岁,对麦克斯韦从事电学研究给予过极大的帮助。在汤姆逊的指导下,麦克斯韦得到启示,相信法拉第的新论中有着不为人所了解的真理。认真地研究了法拉第的著作后,他感受到力线思想的宝贵价值,也看到法拉第在定性表述上的弱点。于是这个刚刚毕业的青年科学家决定用数学来弥补这一点。1855年麦克斯韦发表了第一篇关于电磁学的论文《论法拉第的力线》。编辑本段力线理论《论物理的力线》 1862年,麦克斯韦完成了论文《论物理的力线》,麦克斯韦的物理力线理论就在于把磁场中的转动这一假说从寻常的物质推广到以太。他考虑了深置于不可压缩流体中涡旋的排列。在正常情况下,压强在各方向是相同的,但转动引起的离心力使每一涡旋发生纵向收缩并施加经向压强,这正模拟了法拉第力线学说中所提的应力分布。由于使每一涡旋的角速度同局部磁场强度成正比,麦克斯韦得出了同已有的关于磁体、稳恒电流及抗磁体之间力的理论完全相同的公式。根据流体的观察实验,麦克斯韦认为各涡旋之所以能沿同一指向自由转动,是因为各涡旋由一层微小的粒子同与它相邻的涡旋格开,这种粒子与电完全相同。 然而麦克斯韦并未满足自己已有的成果而举足不前,他仍然向电磁学领域的更深处前进。1863年,他在别人的帮助下完成了他的第三篇论文《论电学量的基本关系》,这是麦克斯韦电学研究中迈出的重要一步,在以往却常常被人忽视。在这篇论文里,他推广傅立叶在热的理论中开始的程序,宣布了同质量、长度、时间度有关的电学量和磁学量的定义,以便于提供对那种二元的电学单位制的第一个最完整透彻的说明。他引入了成为标准的记号,把量纲关系表示为用括弧括起来的质量、长度、时间量度的幂(音mì)的乘积,带有各自的无量纲的乘数。在这一年,麦克斯韦已经找到了在电磁量与光速之间的一个纯唯象性质的环节。《电磁场的动力学理论》 1865年他发表了第四篇论文《电磁场的动力学理论》,为解决与光速之间的纯唯象问题提供了一个新的理论框架。它以实验和几个普遍的动力学原理为根据,证明了不需要任何有关分子涡旋或电粒子之间的力的专门假设,电磁波在空间的传播就会发生。在这篇论文中,麦克斯韦完善了他的方程式。他采用拉格朗日和哈密顿创立的数学方法,由该方程组直接导出了电场和磁场的波动方程,其波动的传播速度为一个介电系数和导磁系数的几何平均的倒数,这一速度正当等于光速。这一结果又再一次与麦克斯韦四年以前的推算结果完全一致。至此电磁波的存在是确定无疑的了。由此,麦克斯韦大胆的断定,光也是一种电磁波。法拉第当年关于光的电磁论的朦胧猜想,经过麦克斯韦精心地计算而变成为科学的推论,法拉第与麦克斯韦的名字,从此像牛顿与伽利略的名字一样,联系在一起,在物理学上闪烁着永久的光芒。麦克斯韦在一封信上曾谈及他的这篇论文,他说:“我在完成一篇包含光的电磁理论,在我确信相反的理论产生以前,我认为这个理论是强大的武器。”从1865年开始,麦克斯韦辞去了皇家学院的教席,开始潜心进行科学研究,系统地总结研究成果,撰写电磁学专著。编辑本段电磁专著《电磁学通论》 经过了八年的艰苦努力,1873年麦克斯韦的一部电磁学专著终于问世了,书名叫作《电磁学通论》。在《电磁学通论》中,麦克斯韦比以前更为彻底地应用了拉格朗日的方程,推广了动力学的形式体系。这一时期前后,英国和欧洲大陆的数学家中间普遍倾向于更广泛地在物理学问题中使用分析动力学的方法,麦克斯韦的做法与数学家的方法不谋而合。而且他的方法和见地新颖,使很多人为之吸引。通过把这种流行的研究倾向动用于电磁学,他使时尚变成了他特有的结果。麦克斯韦采用风格极为新式的关于项的对称性与矢量结构的论证,以最普遍的形式表示出电磁系统的拉格朗日函数。麦克斯韦对拉格朗日方法的运用,就其几乎是通往物理学理论的一条新途径来说,这是第一次尝试。过了很多年,其他物理学家才充分地运用这一方法来研究电磁学领域。影响 《电磁学通论》是一部经典的电磁理论著作,在这本大部头的著作中,麦克斯韦系统地总结了人类在19世纪中叶前后对电磁现象的探索研究轨迹,其中包括库仑、安培、奥斯特、法拉第等人的不可磨灭的功绩,更为细致、系统地概括了他本人的创造性努力的结果和成就,从而建立起完整的电磁学理论。这部巨著有着非同小可的历史意义,可与牛顿的《数学原理》(力学)、达尔文的《物种起源》(生物学)相提并论。从安培、奥斯特,经法拉第、汤姆逊最后到麦克斯韦,通过几代人的不懈努力,电磁理论的宏伟大厦,终于建立起来。这本书的出版,理所当然地成了物理学界的一件大事,当时麦克斯韦只有42岁,已经回到剑桥任实验物理学的教授。人们早已通过他以前的几篇卓有见地的论文而熟识了他,他的朋友和学生以及科学界的人士对他的这本书更是期待已久,争相到各地书店去购买,以求先睹为快,所以书的第一版很快就被抢购一空。编辑本段四元方程组研究背景 他由于列出了表达电磁基本定律的四元方程组而闻名于世。在麦克斯韦以前的许多年间,人们就对电 纪念邮票和磁这两个领域进行了广泛的研究,人们都知道这两者是密切相关的。适用于特定场合的各种电磁定律已被发现,但是在麦克斯韦之前却没有形成完整、统一的学说。麦克斯韦用列出的简短四元方程组(但却非常复杂),就可以准确地描绘出电磁场的特性及其相互作用的关系。这样他就把混乱纷纭的现象归纳成为一种统一完整的学说。麦克斯韦方程在理论和应用科学上都已经广泛应用一个世纪了。优点 麦克斯韦方程的最大优点在于它的通用性,它在任何情况下都可以应用。在此以前所有的电磁定律都可由麦克斯韦方程推导出来,许多从前没能解决的未知数也能从方程推导过程中寻出答案。 这些新成果中最重要的是由麦克斯韦自己推导出来的。根据他的方程可以证明出电磁场的周期振荡的存在。这种振荡叫电磁波,一旦发出就会通过空间向外传播。根据方程,麦克斯韦就可以表达出电磁波的速度接近300000公里(186000英里)/秒,麦克斯韦认识到这同所测到的光速是一样的。由此他得出光本身是由电磁波构成的这一正确结论。 因此,麦克斯韦方程不仅是电磁学的基本定律,也是光学的基本定律。的确如此,所有先前已知的光学定律可以由方程导出,许多先前未发现的事实和关系也可由方程导出。在此基础上,麦克斯韦认为光是频率介于某一范围之内的电磁波。这是人类在认识光的本性方面的又一大进步。正是在这一意义上,人们认为麦克斯韦把光学和电磁学统一起来了,这是19世纪科学史上最伟大的综合之一。 可见光并不是唯一的一种电磁辐射。麦克斯韦方程表明与可见光的波长和频率不同的其它电磁波也可能存在。这些从理论上得出的结论后来被海因利茨·赫兹公开演示证明了。赫兹不仅生产出而且检验出了麦克斯韦预言存在的不可见光波。几年以后,伽格利耶尔摩·马可尼证明这些不可见光波可以用于无线电通讯,无线电随之问世。今天我们也用不可见光为电视通讯。X线、γ线、红外线、紫外线都是电磁波辐射的其它一些例子。所有这些射线都可以用麦克斯韦方程来加以研究。编辑本段天文学和热力学贡献 虽然麦克斯韦成名主要是在于他对电磁学和光学做出的巨大贡献,但是他对许多其它学科也做出了重要的贡献,其中包括天文学和热力学。他的特殊兴趣之一是气体运动学。麦克斯韦认识到并非所有的气体分子都按同一速度运动。有些分子运动慢,有些分子运动快,有些以极高速度运动。麦克斯韦推导出了求已知气体中的分子按某一速度运动的百分比公式,这个公式叫做“麦克斯韦分布式”,是应用最广泛的科学公式之一,在许多物理分支中起着重要的作用。编辑本段卡文迪许实验室 麦克斯韦的另一项重要工作是筹建了剑桥大学的第一个物理实验室——著名的卡文迪许实验室。该实验室对整个实验物理学的发展产生了极其重要的影响,众多著名科学家都曾在该实验室工作过。卡文迪许实验室甚至被誉为“诺贝尔物理学奖获得者的摇篮”。作为该实验室的第一任主任,麦克斯韦在1871年的就职演说中对实验室未来的教学方针和研究精神作了精彩的论述,是科学史上一个具有重要意义的演说。麦克斯韦的本行是理论物理学,但他却清楚地知道实验称雄的时代还没有过去。他批评当时英国传统的“粉笔”物理学,呼吁加强实验物理学的研究及其在大学教育中的作用,为后世确立了实验科学精神。
外国著名科学家 牛顿,法拉第,伽利略,安培,赫兹,普朗克,爱因斯坦,伦琴,居里夫妇,霍金,孟德尔,杨振宁。 美国物理学家,发明家,政治家,社会活动家。1706年1月17日生于波士顿,1790年4月17日卒于费城。父母都是英国移民,以制造蜡烛和肥皂为业。他于12岁到印刷所里当学徒,从那时起,长期未脱离印刷工作。1727年富兰克林组织一个社团,这是1743年创立的美利坚哲学会的前身。1731年他在费城创办了北美第一个公共图书馆。1737~1753年任费城邮政局长。约在1744年开始从事电学的研究。1751年创办了费城学院(后来的宾夕法尼亚大学)。1753年,获科普利奖章。同年,他还 获得 哈佛 大学、耶鲁大学 的荣誉学位 。 1756年当选为英国皇家学会会员,1769年当选为美利坚哲学会会长。1772年他还当选为法兰西科学院的外国院士。 他是美利坚合众国的创始人之一。在美国独立战争中他积极参加反英斗争。当选为第二届大陆会议代表,并参加起草了《独立宣言》。1776~1785年出使法国,促成了美、法同盟的建立。1787年当选为制宪会议的代表,参加起草了美国宪法。他积极主张废除奴隶制度。 富兰克林是第一个在纯科学领域中享有国际声誉的美国科学家,是美国电学研究的先驱者。他对电学的研究结果统一了当时混乱的电学知识。他最主要的贡献就是对说明各种电现象的理论(如电荷的产生、电荷的移转、静电感应等)作了比较系统的阐述。最初,他热衷于发明设计小器件,这给他以后的电学实验研究打下坚实的基础。1745年起他在不到10年的时间内,利用一些简单的工具、器械进行了各种大胆的新的电学实验。通过实验,富兰克林首先提出电学史上一项重要的假说:电的单流质理论。富兰克林第一次用数学上的正负概念来表示两种电荷的性质;同时还发现了尖端放电现象。更重要的是,富兰克林提出了电的转移理论。以后,这个理论发展为电荷守恒定律,这是自然界最基本的定律之一。1747年,富兰克林对莱顿瓶进行了研究,阐明了电容器的原理。在1749~1751年间,富兰克林仔细观察和研究了雷、闪电和云的形成,提出了云中的闪电和富兰克林的风筝实验摩擦所产生的电性质相同的推测。1750年提出了关于避雷针的建议。这一建议首先于1852年在法国马利大学得到应用。1752年他在费城进行了震动世界的电风筝实验,证明了他的“闪电和静电的同一性”设想。富兰克林还研究了带电体之间的相互吸引和排斥;不规则带电导体中的电荷分布;感应起电现象等。富兰克林创造了许多电学方面的专门名词。富兰克林相当广泛地研究和观察自然现象。他还阐述了热传导理论;研究过利用蒸发取得低温的方法;近代通风的方法;各种植物的移植;传染病的防治;墨西哥湾流速和温度的测量以及北美洲风暴运动的方向等等。富兰克林著名的发明有摇椅、双焦距眼镜、宾夕法尼亚火炉、高架取书架等等。 富兰克林在哲学上拥护自然神论,承认自然界的存在及其客观性。他也是最先有意识地用劳动时间来确定生产价值的人。富兰克林预言美国人口是按几何级数增加的,平均每25年增长 1 倍。这预言已为美国政府在上一世纪的人口普查所证实。富兰克林电学著作和论文有:《电的实验与观测》、《对于导电物质的性质与效应的见解和推测》、《在美国费城所进行的关于电的实验与观测》、《论闪电与静电的同一性》等。 另西门子---发电机 本茨----汽车(内燃机趋动) 贝尔----电话 马可尼---无线电报 诺贝尔---炸药 爱迪生----电灯 汤姆逊(1856—1940)英国物理学家。1897发现物质结构的第一种基本粒子一电子。 富尔顿(1765—1815)美国发明家。1807年,富尔顿制成蒸汽汽船。 本茨(1844一1929)德国工程师。1868年,制成世界上第一辆三轮内燃机汽车。 伏打(1745-1829)意大分物理学家。1800年,他制成伏打电堆,不久又发明伏打电池,使人们第一次获得了稳定而持续的电流。 奥托(1832一1891)德国工程师。1876年,制成第一台四冲程循环的煤气内燃机。使汽车和其后飞机的问世成为可能。 戴姆勒(1834一1900)德国机械工程师。1883年制成的第一台汽油机,1886年又制成世界上第一辆四轮内燃机汽车。 帕森斯(1854—1931)英国发明家。1884年制成第一台多级反动式汽轮机。 狄塞尔(1858-1913)德国工程师。1897年制造了第一台柴油机。 贝塞麦(1813—1898)英国工程师。1856年发明转炉炼钢法。 爱迪生(1847—1931)美国发明家。他一生完成1300多项发明,对人类产生了巨大影响。1897年,他成功地研制出白炽灯。 莫尔斯(1791—1872)美国发明家。1837年,发明电报机,1844年5月24日,拍发出世界上第一封电报。 贝尔(1847—1922)美国发明家。1876年发明电话。 马可尼(1874—1937)意大利工程师。1895年发明无线电报。1899年3月28日,他成功地实现了无线电通信。 诺贝尔(1833-1896)瑞典发明家。1867年发明安全炸药。
1)第一定律
2)第二定律内容:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式:F合=ma(单位:N(牛)或者千克米每二次方秒)N=(kg×m)/(s×s)牛顿发表的原始公式:F=mv/t(见自然哲学之数学原理)
动量为p的物体,在合外力为F的作用下,其动量随时间的变化率等于作用于物体的合外力。用通俗一点的话来说,就是以t为自变量,p为因变量的函数的导数,就是该点所受的合外力。
即:F=dp/dt=d(mv)/dt (d不是 delta(△),而是微分的意思。但是在中学学习的一般问题中,两者可以不做区别)而当物体低速运动,速度远低于光速时,物体的质量为不依赖于速度的常量,所以有F=m(dv/dt)=ma这也叫动量定理。
在相对论中F=ma是不成立的,因为质量随速度改变,而F=d(mv)/dt依然使用。由实验可得在加速度一定的情况下F与m成正比,在质量一定的情况下F与a成正比(只有当F以N,m以kg,a以m/s^2为单位时,F合=ma成立)
3)第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)
表达式:F=-F'
牛顿
艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。
在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。
在经济学上,牛顿提出金本位制度。
1. 第一运动定律:一切物体在没有受到外力作用的时候,总保持匀速直线运动或静止状态,也就是惯性定律了。说明一切物体都有惯性。
2. 牛顿第二运动定律:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。也就是公式。
3. 牛顿第三运动定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
介绍:
艾萨克·牛顿爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。
拓展:
1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。
人物评价:
他在1688年发表的著作《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律。
现如今我们生活中依旧会出现很多有趣的小发明,但在历史上则有着一些彻底改变未来世界的大发明,而这些发明家也自此名垂千古。最著名的发明:微积分 如果你费好大劲总算上完了高等数学课程,那你或许就不会是艾萨克。牛顿爵士的热心崇拜者,因为你遇到的难题基本上就是他的错——是他发明了微积分。如果你现在学习物理,无论是谈到重力问题(一个苹果从树上下落的故事,不管真假,确是一个有力的例证),还是光线和光学原理,你还得从艾萨克。牛顿爵士的研究成果开始。牛顿第一个提出“光是由粒子构成的”,这原理让他研制出了反射望远镜(如今以他的名字命名)。此外,牛顿还在声、热原理研究方面作出了贡献。最酷的事实:人们很容易认为科学家就是一群不问世事的实验室“耗子”,不过牛顿是个例外:他曾给英格兰国王当了将近两年的法官,干着处决假币伪造者的买卖。他这段法律生涯快结束的时候,手下还有10个待处决的罪犯。 牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。其中,第一定律说明了力的含义:力是改变物体运动状态的原因;第二定律指出了力的作用效果:力使物体获得加速度;第三定律揭示出力的本质:力是物体间的相互作用。 牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性。其适用范围是经典力学范围,适用条件是质点、惯性参考系以及宏观、低速运动问题。牛顿运动定律阐释了牛顿力学的完整体系,阐述了经典力学中基本的运动规律,在各领域上应用广泛。 艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,着有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。
牛根据前人研究总结出牛顿运动三定律(只有第三条是他自己的,前两条是伽利略的)万有引力定律(什么苹果掉下来之类的故事)微积分! 其实这个才是牛顿对经典力学的最大贡献。通过微积分牛顿一手从牛顿力学三定律出发构建了整个牛顿力学体系。也就建立了决定论/机械论的宇宙观。只要给定初态,以后宇宙的演化就是决定的。(牛顿本身的理论体系就是完整的,虽然后来拉格朗日和哈密顿各自提出了另一个等价体系,并且计算上更方便) 插曲(和莱布尼茨关于发明权的竞争)。天体力学 从理论上解释了开普勒三定律伽利略相对性原理(就是常用那个v'=v+v0) 绝对时间 绝对空间 上帝的第一推动力 弹力性质的研究 胡克定律(和胡克关于发明权的竞争,著名的站在巨人的肩膀上的真实版本,真相令人极为受打击)划时代的巨著 自然哲学之数学原理(哈雷的工作对于他的出版的推动)。牛顿和莱布尼茨以及胡克的两场著名的口水,个人认为他们的确都是独立同时得到自己的结果,但牛顿为了争发明权过于不择手段。穿插的几个小逸事其实算不上牛顿对经典力学的贡献。
一、选题选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。二、设计设计是在论文写作选题确定之后,进一步提出问题并计划出解决问题的初步方案,以便使科研和写作顺利进行。护理论文设计应包括以下几方面:(1)专业设计:是根据选题的需要及现有的技术条件所提出的研究方案;(2)统计学设计:是运用卫生统计学的方法所提出的统计学处理方案,这种设计对含有实验对比样本的护理论文的写作尤为重要;(3)写作设计:是为拟定提纲与执笔写作所考虑的初步方案。总之,设计是护理科研和论文写作的蓝图,没有“蓝图”就无法工作。三、实验与观察从事基础或临床护理科学研究与撰写论文,进行必要的动物实验或临床观察是极重要的一步,既是获得客观结果以引出正确结论的基本过程,也是积累论文资料准备写作的重要途径。实验是根据研究目的,利用各种物质手段(实验仪器、动物等),探索客观规律的方法;观察则是为了揭示现象背后的原因及其规律而有意识地对自然现象加以考察。二者的主要作用都在于搜集科学事实,获得科研的感性材料,发展和检验科学理论。二者的区别在于“观察是搜集自然现象所提供的东酉,而实验则是从自然现象中提取它所愿望的东西。”因此,不管进行动物实验还是临床观察,都要详细认真.以各种事实为依据,并在工作中做好各种记录。有些护理论文写作并不一定要进行动物实验或临床观察,如护理管理论文或护理综述等,但必要的社会实践活动仍是不可缺少的,只有将实践中得来的素材上升到理论,才有可能获得有价值的成果。四、资料搜集与处理资料是构成论文写作的基础。在确定选题、进行设计以及必要的观察与实验之后,做好资料的搜集与处理工作,是为论文写作所做的进一步准备。论文写作资料可分为第一手资料与第二手资料两类。前者也称为第一性资料或直接资料,是指作者亲自参与调查、研究或体察到的东西,如在实验或观察中所做的记录等,都属于这类资料;后者也称为第二性资料或间接资料,是指有关专业或专题文献资料,主要靠平时的学习积累。在获得足够资料的基础上,还要进行加工处理,使之系统化和条理化,便于应用。对于论文写作来说,这两类资料都是必不可少的,要恰当地将它们运用到论文写作中去,注意区别主次,特别对于文献资料要在充分消化吸收的基础上适当引用,不要喧宾夺主。对于第一手资料的运用也要做到真实、准确、无误。五、论文写作提纲拟写论文提纲也是论文写作过程中的重要一步,可以说从此进入正式的写作阶段。首先,要对学术论文的基本型(常用格式)有一概括了解,并根据自己掌握的资料考虑论文的构成形式。对于初学论文写作者可以参考杂志上发表的论文类型,做到心中有数;其次,要对掌握的资料做进一步的研究,通盘考虑众多材料的取舍和运用,做到论点突出,论据可靠,论证有力,各部分内容衔接得体。第三,要考虑论文提纲的详略程度。论文提纲可分为粗纲和细纲两种,前者只是提示各部分要点,不涉及材料和论文的展开。对于有经验的论文作者可以采用。但对初学论文写作者来说,最好拟一个比较详细的写作提纲,不但提出论文各部分要点、而且对其中所涉及的材料和材料的详略安排以及各部分之间的相互关系等都有所反映,写作时即可得心应手。六、执笔写作执笔写作标志着科研工作已进入表达成果的阶段。在有了好的选题、丰富的材料和详细的提纲基础上,执笔写作应该是顺利的,但也不可掉以轻心。一篇高质量的学术论文,内容当然要充实,但形式也不可不讲究,文字表达要精炼、确切,语法修辞要合乎规范,句子长短要适度。特别应注意的是,一定要采用医学科技语体,用陈述句表达,减少或避免感叹、抒情等语句以及俗言俚语,也不要在论文的开头或结尾无关联系党政领导及其言论或政治形势。论文写作也和其他文体写作一样,存在着思维的连续性。因此,在写作时要尽量排除各种干扰,使思维活动连续下去,集中精力,力求一气呵成。对于篇幅较长的论文,也要部分一气呵成,中途不要停顿,这样写作效果较好。
1672年的2月8日,牛顿应邀在皇家学会宣读他的论文《关于光和颜色的理论》,并在19日的《哲学会报》上发表,从而首次将自己在以往的发现公之于众。在论文里,牛顿首次提出了自己发现太阳光谱的经过。通过一系列论证得出结论:白光是由7种不同颜色的光组成,颜色的形成和光线的折射有关。
wjs6666 ,你好: 1666年牛顿将其前两年的研究成果整理成一篇总结性论文——《流数简论》英文名为Tract on Fluxions 当时虽未正式发表,但在同事中传阅。《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。