首页 > 论文发表知识库 > 化学论文乙酸乙酯的研究

化学论文乙酸乙酯的研究

发布时间:

化学论文乙酸乙酯的研究

实验步骤: ①在一个大试管里注入乙醇2mL,再慢慢加入浓硫酸、2mL乙酸,连接好制备乙酸乙酯的装置。 ②用小火加热试管里的混合物。把产生的蒸气经导管通到3mL饱和碳酸钠溶液的上方约2mm~3mm处,注 意观察盛碳酸钠溶液的试管的变化,待有透明的油状液体浮在液面上,取下盛有碳酸钠溶液的试管,并停 止加热。振荡盛有碳酸钠溶液的试管,静置,待溶液分层后,观察上层液体,并闻它的气味。 ③加热混合物一段时间后,可看到有气体放出,在盛碳酸钠溶液的试管里有油状物。 实验注意问题; ①所用试剂为乙醇、乙酸和浓硫酸。 ②加入试剂顺序为乙醇---→浓硫酸----→乙酸。 ③用盛碳酸钠饱和溶液的试管收集生成的乙酸乙酯。 ④导管不能插入到碳酸钠溶液中(防止倒吸回流现象)。 ⑤对反应物加热不能太急。 几点说明: a.浓硫酸的作用:①催化剂 ②吸水剂 b.饱和碳酸钠溶液的作用:①中和蒸发过去的乙酸;②溶解蒸发过去的乙醇;③减小乙酸乙酯的溶解度。 提高产率采取的措施: (该反应为可逆反应) ①用浓硫酸吸水平衡正向移动 ②加热将酯蒸出 提高产量的措施: ①用浓硫酸作催化剂、吸水剂。②加热(既加快反应速率、又将酯蒸出)。③用饱和碳酸钠溶液收集乙 酸乙酯(减少损失)。

乙酸乙酯的制备 一实验目的 1.学习从有机酸合成脂的一般原理及方法 2.巩固蒸馏,洗涤,干燥等基本操作 二.实验原理 乙醇过量 浓H2SO4除催化作用外,还能吸取反应生成的水,有利于脂化反应的进行. 因乙酸乙酯容易挥发和在水中溶解度较大等因素,精制过程中不可能避免的损失,产率一般不会超过70% 三.实验药品及理论产量 无水C2H5OH;6mlCH3COOH; 浓H2SO4 四.物理常数 M mp bp d S(100mlH2O) 乙酸 60 任意混溶 乙醇 46 - - 乙酸乙酯 88 - 乙酸乙酯,乙醇,水能形成多种恒沸混合物,其恒沸物的 组成及沸点如下: 沸点 乙酸乙酯 乙醇 水 - 69 31 - 五.实验装置 回流装置,蒸馏装置. 六.实验步骤流程图 七.实验步骤 1.取料 C2H5OH + 6mlCH3COOH + mlH2SO4 2.回流 保持缓慢回流1/2 h 3.蒸馏 得粗品(含H2O,C2H5OH,CH3COOH,(C2H5)2O等杂质)(约一半体积) 4.洗涤 (1)中和 用饱和Na2CO3洗,除CH3COOH(至pH 6--7) (2)用饱和NaCl洗 除CO32- (3)用5ml饱和CaCl2洗 除C2H5OH (4)干燥 用无水硫酸镁,除H2O (5)蒸馏 精制产品,除乙酸,收集纯产品. 八.注意事项 1.回流温度要适宜,回流时间不宜太短. 2.用CaCl2溶液洗之前,一定要先用饱和NaCl溶液洗,否则会产生沉淀,给分液带来困难. 九.思考题 1.酯化反应有什么特点?在实验中如何创造条件促使酯化反应尽量向生成物方向进行? 2.本实验若采用醋酸过量的做法是否合适?为什么? 3.蒸出的粗乙酸乙酯中主要有哪些杂质?如何除去? 4.本实验能否用氢氧化钠代替饱和碳酸钠溶液洗

因为很专业,所以你最好还是找个比较专业的来帮你!

化学工程与工艺专业论文范文

在平平淡淡的日常中,大家都经常接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。还是对论文一筹莫展吗?以下是我精心整理的化学工程与工艺专业论文,希望能够帮助到大家。

一、化学综合实验教学的思考和改革。

1、实验方法绿色化。

结合我院的实际情况,我们对化学综合实验内容进行了合理的选择。首先,在溶剂、原料及产品的选择方面,尽量使用无毒或低毒试剂、少用或不用剧毒的有机物,如不选用苯、甲苯、二氯甲烷作为溶剂或原料进行实验,不选用高锰酸钾、重铬酸钾、氯酸盐作为氧化剂,不选用硝基苯或苯胺作为产品的实验等,并努力实现半微量或微量反应。

其次,在化学反应方面,积极探索无溶剂反应和超声波、微波催化等新型实验,如使用微波催化合成乙酸乙酯不仅可以降低乙酸、乙醇及催化剂浓硫酸的用量,缩短反应时间,而且收率可达90%以上。最后,在实验“三废”处理方面,主要实行“统一回收、循环使用、综合处理”的原则,最终实现“三废”无害排放。

2、实验内容现实化。

在化学综合实验过程中应增加与日常生活相关,以及对化学、社会发展的紧密联系的内容,以提高学生自我钻研、创新的意识和兴趣。膏霜类化妆品已经完全渗透人们的生活,其配制实验也是学生极为感兴趣的综合性实验之一。化妆品原料种类繁多,性能特点各异,在配方中所起的作用不同,一般而言:油脂和蜡及其衍生物为基础组分;为使形成稳定乳化体,需加乳化剂,如司盘类、吐温类;为保证外观和流变性,应加水溶性高分子聚合物;此外,还应根据实际情况加入保湿剂、营养添加剂、防腐剂、色素、香精及祛痘、美白等其他功能性原料。

完成一个具有优良性质的膏霜类化妆品的设计,需要掌握原料的性质特点、性质影响因素及相互影响;实验方案的设计、改良和优化;产品性质评价等多方面的内容。膏霜类化妆品设计方案与学生日常生活密切相关,学习兴趣浓,在实验过程中可以体味到科研实践的价值,很好地调动了学生的科研积极性。学生在实验完成后,积极主动地对实验进行总结和分析,对比不同方案优化实验方案,受到多方面的锻炼,实验思路、动手能力得到了有效的培养。

3、实验学科交叉化。

化学综合实验应综合体现有关知识:理论知识和实验知识;单元实验方法和实验操作技能;基础实验知识和科研创新能力训练;实验室实验能力和工业化生产能力训练等。化学合成属无机化学和有机化学的内容,是验证、巩固和加强理论知识,培养学生正确选择化合物的合成方法、条件优化以及一般的分离和鉴定方法,如重结晶、熔点测定等,应该注重合成方法的适用范围、实际条件、应用领域等。

化合物分析包括分析化学和仪器分析,培养学生的基本分析方法和原理、化合物结构解析的基本知识、分析方法的有关计算,应该注重分析方法的合理选择和初步具备对数据的评价能力。化学工程与工艺专业的学生除了掌握化合物合成和分析等自然科学领域的有关知识外,还应具备工程技术科学领域的有关知识和技能。在化学综合实验过程中渗入化工原理实验,回答过程和设备的问题,使学生熟悉工艺流程和操作设备,掌握单元操作的过程规律和典型设备,学会利用理论知识分析操作变量对过程的影响,调整操作参数以完成指定工艺要求,还应启发学生积极思考过程实验装置和操作规范所蕴含的科学依据,为工业化生产奠定基础。如在合成分析纯乙酸乙酯的实验中,使用的化工原料是什么?反应原理是什么?影响因素有哪些?工业上如何除去反应过程中生成的水?产品如何进行纯化,使用何种设备?设备的设计应该满足什么条件?产品纯度如何检测?在回答所有问题时,学生必需掌握合成、设备、分析等有关学科内容,实现学科交叉,对分析纯乙酸乙酯的从合成到工业化产品就有了非常深刻的认识。通过化学综合实验使学生初步具备查阅文献、选择合成方法、拟定实验方案、建立产品分析方法和基本工程操作能力,培养观察、分析和解决问题的能力,为研究性实验和创新性实验打下基础。为了满足实验需要,还应补充其他教学内容,如文献检索、波谱解析、试验设计方法等。

4、实验项目科研化。

化学综合实验除承接基础实验的提升外,还应为科研创新性实验的开展奠定基础,因此必然需要在综合实验中渗透科研的方法和技能。化学综合实验一般在第三学期,开设时间为两周,对一个实验项目不能进行特别深入的研究,因此选题就显得尤为重要,应该注意选题的难度控制和选题的意义。根据我院情况,题目来源主要有:教师科研项目中可分割的、难度适宜的试验部分;教研组开发的综合实验;学生提出可实行的实验项目等。科研实验对于本阶段的学生来说有一定难度,因此教师要从文献的查阅、实验方案的确定、实验条件优化、实验仪器操作、数据采集和处理分析等各个环节对学生进行指导,提高学生的动手能力,培养其实践和创新的能力,有利于提高其综合素质,培养其交流协作能力和团队精神。

二、结语。

化学综合实验教学的目的是夯实学生基本理论,培养学生掌握实验技能,提高学生动手能力,使学生具有较强的独立解决问题的能力和良好的专业素质,还要重视对学生实事求是的工作作风,严谨的科学态度和具有创新性的科学思维方法的培养。因此,我们必须不断精选和更新实验内容,重视和加强实验教学研究工作,探索新的实验方法,增加现代的实验技术和手段,努力提高学生的综合素质,以期为社会培养出合格的应用型人才。

一、精心选择教材和教学内容。

我校化学工程与工艺专业英语课程的参考教材是华东理工大学胡明、刘霞编写的《化学工程与工艺专业英语》。笔者选取该教材里具有代表性的五个单元作为基础部分,让学生掌握化学化工常见专业词汇,了解专业英语构词规律,掌握专业英语中常见句式和翻译技巧。同时,从ACS、ScienceDirect、RSC、JohnWiley等数据库出版的化学化工方向的专业杂志中,精选近三年的文献作为学生的参考教材,进行大胆的尝试。常见的化学化工英文文献有三种:全文、快报和综述。这三种文献的写作风格和各组成部分(题目、摘要、关键词、引言、各级标题、结果与讨论、结论、参考文献等)都有各自的特色。在第一次讲述一篇美国人发表在JournaloftheAmericanChemicalSociety上面的文献时,同学们都很好奇,课堂气氛顿时变得活跃起来。

很多学生反映,这是他们首次接触到英文文献。好奇之余,也暴露了一些问题。比如,在短短的三页文献上有太多不认识的英文专业词汇、较多的长难句和定语后置等,给阅读带来了极大的不便,论文的写作风格与教材上面的单元有较大差别,同学们一时间难以适应等。随着教学时数的增长,同学们逐渐适应了英文科技文献写作的风格和格式。比如,美国人写的科技文章(美式英语)和英国人写的科技文献(英式英语)的写作风格就有较大的差别。

二、激发学生学习的兴趣,营造宽松、愉悦的课堂氛围。

兴趣是最好的老师,是学业成功最重要的心理动力。因此,要让学生充分认识到学习专业英语的重要性和必要性。在第一次上课时,笔者就试图从以下几个方面培养学生学好专业英语课程的兴趣和紧迫感:

(1)让学生了解中国化学工业和世界化学工业的状况。中国化学工业在深化改革中取得重大的发展,但是与世界发达国家相比还有一定的差距,在技术方面还远远落后于发达国家,这就需要同学们发扬“师夷长技以制夷”的爱国主义精神。

(2)让学生了解中国化学工业日益成为世界化学工业发展中一支充满生机和活力的重要力量。许多跨国公司把中国作为投资和贸易合作的对象,如:巴斯夫、陶氏、联合利华、杜邦等。毕业生要想在这些公司谋得一席之地,就必须具有良好的语言能力和丰富的专业知识。

(3)让学生认识到专业英语在本科最后两年学习中的重要性。专业英语知识掌握的好坏,将直接影响着我校化工专业学生学习化工热力学(双语和英语)的效果。此外,本科生毕业论文(设计)的环节要求学生翻译一篇和毕业论文相关的英文文献(译文字数不少于3000字),撰写毕业论文的英文摘要,熟悉本专业的几种主要外文期刊。

最后,在研究生面试时,很多高校和研究所都要求翻译一篇或者几段英文文献。尝试将课堂交给学生,营造宽松、愉悦的教学氛围。不论什么课,如果只是老师一味地讲解,学生没有参与到其中,那么课堂气氛一定很沉闷。有些老师希望通过提问的方式促进师生之间的互动,但又发现,中国的学生,尤其是大学高年级的本科生,很少有学生在课堂上愿意主动回答问题。笔者采取的做法如下:明确地告诉学生,本课程的平时成绩占35%,每个同学至少在课堂上回答一次问题才能得到平时成绩,回答问题次数越多,平时成绩越高。这样一来,就使得本来很沉闷的教学课堂,气氛一下子变得非常活跃,甚至出现多个学生争抢回答一个问题的现象。

三、以公平为原则,改革单一的考核模式。

专业英语考试的重点应放在考察学生综合利用专业英语知识从英文资料中获取信息的能力。其关键在于学生能否理解英文文献资料。笔者认为,能够用自己的语言,将一篇文献中的工作描述出来,并且能让同学们听懂,就可以称之为“理解”。基于这种观点,笔者采取了全新的考核方式。在第一次课的时候,就将同学们分成不同的小组(5人一组),老师给出几十篇英文文献,要求每个小组从中选择一篇,并以之为基础,制作PPT。当本学期课程快结束时,由其中一个学生上台讲解他们制作的幻灯片(时间约6min)。

讲解完毕后,该小组的其他成员和其他小组的学生均可补充,并回答同学们和老师提出的问题。最后,根据学生在报告中所体现的对文献的理解程度和回答问题的情况给出考核成绩。这种模拟学术报告及问答的过程,不仅对学生专业英语的应用能力进行了考察,还锻炼了他们制作幻灯片和现场演讲的能力。通过这种考核方式,学生不仅学到了知识,而且也锻炼了人际交往和团队协作的能力,为以后的应聘求职奠定了良好的基础。

四、结语。

所谓“授人以鱼,不如授之以渔”,在有限的化工专业英语教学课时内,笔者采用这样的教学方法对我校化工专业连续三届学生进行教学,取得了良好的教学效果。学生不但掌握了基本的化学化工类专业词汇,还掌握了较为完整的专业英语知识、扩大了学生的适应面,为学生日后的应聘求职和研究生生涯奠定了一定的基础。

自1994年我校开设化学工程与工艺专业以来,十多年间,我校化工专业蓬勃发展,培养了千余名合格的毕业生。我校化工专业分两个专业方向培养,分别是煤化工专业方向和高分子化工方向,大三第二学期由同学们自愿选报专业方向。据统计,报高分子化工专业方向的学生不足11%,为了了解同学们的想法,我们对学生进行了一次问卷调查,调查结果显示,同学们选择专业方向的主要依据是考虑到就业的便利。近年来我国,尤其是西部,陕西、山西、宁夏等地煤化工行业较热,结合我院生学来源,超过一半的学生在考虑就业时倾向回原籍工作,于是参照往届同学的经验,大多选择了煤化工方向,无暇顾及到自身的兴趣。

不少同学对这两个方向都不甚了解,对我国化工行业了解甚少,选报哪个方向都无所谓。还有相当一部分学生反映对专业的培养计划不了解,培养计划在实施过程中课程的设置和安排不尽合理,课程安排有前松后紧的现象。这些不解和困惑都在很大程度上影响到同学们的学习热情,从侧面反映出我校化学工程与工艺专业建设上亟待解决一些问题。

基于以上分析,我认为我校要培养满足市场需求的化工专业人才应该从下面几点来开展工作。

1、调整培养计划,进行培养规范的整体设计

专业规范对提高高等教育质量具有重要的现实意义,它是高等学校以专业人才培养模式改革研究为基础,在改革实践过程中对有关专业的课程体系、知识体系、实践教学体系和相应的参考指标进行整体设计,专业规范对专业人才设定培养规格,拟定培养目标。在高等院校进行教育教学改革过程中,对人才培养规范进行整体设计,是开展专业建设与深化改革的重要入手点[1]。

应对当前的就业形势,制定化工专业的专业规范非常有必要。自1999年以来,高校外延发展迅速,新增高校、新增专业多了,人才培养难度更大,要求更高。另外,高等教育大众化阶段教育质量呈多元化,亟需制定专业规范,一般高校工科专业人才培养规格的定位决定了人才培养模式的基本框架。

2、加速进行我校化学工程与工艺专业的认证工作

化学工业是国民经济的支柱性行业,为了让高校能更好的为社会服务,高等院校为化工行业提供主要人力资源,教育部自2006年启动了化工专业认证试点工作,目前已有6个专业点进行了试点工作[2]。化工行业对人才的评价标准和要求,主要体现在以下几个方面:

(1)有良好的职业道德,了解本行业的相关法律法规,体现出较好的人文素养。

(2)数学、自然科学基础较好,工程基础知识扎实,掌握一定的经济管理知识;掌握化学工程、化学工艺学科的基本理论、基本知识,了解本专业的前沿发展现状和趋势;具备运用现代信息技术获取专业信息的能力。

(3)具备化学与化工实验技能,有工程实践经历,具备计算机应用能力,接受过科学研究与工程设计方法的基本训练,能够运用所学知识和技术手段分析并解决工程问题。

(4)具有较强的组织管理能力,表达流利,人际交往能力突出,有较强的团队协作精神。

(5)具有终身学习能力和国际视野。与以上标准相对照,我校在培养化工人才方面还存在着明显的缺陷和不足。还有很多工作要做。

结合行业要求分析,我校化工专业目前存在的问题主要有:

(1)教师队伍中普遍经历单一,缺乏工程师经历。

(2)实践教学环节不完善,学生工程实践能力较弱,创新创业能力不足,学校与工业界联系不够紧密。

(3)缺乏对学生的团队精神的系统训练。

(4)毕业生的调查与跟踪机制不够完善等。除此之外,缺乏科学的学生考评机制,缺乏毕业生跟踪与反馈体系。因此要针对这些问题,以专业认证为契机,有目的的开展工作。

3、灵活设定培养方向

专业方向的设置是高校人才培养的基础,开设什么样的专业方向,关系到培养什么样的专业人才,培养出来的人才是否符合社会的需求,这个问题关系到一个专业的前途命运。在充分利用我校资源的同时,在专业方向设置上体现差异,强化特色,做到以质量求生存,以特色求发展。在开设专业方向的问题上,要避免与周围同区域、同等水平的院校趋同,以减少资源的浪费,避免在人才培养上出现重复和过度竞争,充分体现差异[3]。

4、优化各级结构,提高培养质量

当前,大学生毕业后难就业已经成为社会主要关注的问题,也是每所高校所面临的最为严峻的挑战。要解决这个问题除了国家宏观上的'一些制度和政策的支持外,高校还应该根据市场所需人才,有针对性的提高培养质量。提高培养质量,既要从宏观上把握高等教育的结构,明确学校、院系和学科的定位,满足地方经济社会的发展对高等教育的要求,另外,要从微观上、从学校本身把握高等教育的内部结构,理顺专业结构、学科结构与理论结构,使我们培养的人才和社会需求相一致[4]。

我国的高等教育逐渐从精英教育转向大众化教育阶段,大学之间的功能也由以前的趋同转向为逐渐分化,这就使得学校的专业定位显得尤为重要。我校化工专业应根据主要生源地的用人需求,将培养的方向和层次准确定位,针对培养什么样规格的人才,满足哪些领域的社会需求等这些问题开展广泛的研究,谨慎决定。此外,认真处理好专业建设中适应与对口的关系,在一般的学校,学生是直接面对市场就业的,应该将专业设置得窄一点,对口性更强一点[4]。

通过以上论述可以看出,要想扩大我校化工专业在西部地区的办学影响力,还需要我们多了解学生的思想动态,提升认识水平,根据市场的需求,提高培养质量,能够很好的在地方经济建设中发挥主要作用,扎扎实实做好专业建设工作。相信在不远的将来,我校化学工程与工艺专业一定会成为西部最具影响力的王牌专业,为我国化工行业培养出更优秀的人才。

1、化学工程与工艺专业的煤化工特色专业建设原则

以市场为导向

随着能源需求量不断增大,我国对开发能源的技术人才也有了更高的要求。我国教育部在1996年将“煤化工”等专业列为化学工程与工艺专业,促进我国煤化这一特色专业发展。加强煤化工特色建设,可以扩大煤化工产业,推广清洁能源,这也是市场经济的必然需求。煤化工特色建设,要以市场为导向,将学生的就业与市场相结合,从而保证学生在面对社会选择的时候,有足够的自信,具备扎实的专业基础和技术水平,提高就业机会。

发扬创新精神

只有发扬创新精神,才能够彰显特色。特色专业是经过改革后被确定的内容,它本身就具有探索和创新,但煤化工专业发展中,以往的教学经验仍然会对创新有所阻碍,因此在建设有特色的煤化工专业时,要用发展的眼光看问题,创新教育观念和人才培养机制,促进煤化工特色建设。

稳定发展原则

化学工程与工艺专业的煤化工特色建设,始终坚持煤化工人才培养方向,也有着自身的特色,毕业后学生主要面对钢铁冶金系统,能源方向,因此在建设特色专业是,也要立足根本,找准发现,坚持稳定发展的原则。煤化工建设要以市场为导向,在发展中会面临内部和外部的变化,因此稳定发展,才能适应不确定的变化,适应社会和市场的要求。

2、建设煤化工特色的对策

创新教育观念

专业建设是高校办学理念的表现形式,其特色建设的发展方向、过程等都离不开一定的理念指导[1]。煤化工特色专业的发展与市场分不开,煤化工专业与能源安全与供应、钢铁冶金行业发展与节能减排实现有着很大的关系。随着能源问题出现,可持续发展的理念不断摄入,煤化工专业发展也要将观念进行创新,以便适应社会的要求。可以通过实现教育活动,将教育观点和教学理念进行谈论和创新,在实际工作中,如果出现了教学理念偏差,要及时用正确的思想观念给予指导。创新教育观念是培养煤化工人才的必然要求,通过定期考核,加强教育工作者的思想意识,将这种观念融入教育,这也是促进我国煤化工产业的重要措施。

创新课程体系

煤化工特色专业要突出特色,因此要有明确的教学目标,以便在基础教学中突出特色,从而培养有特色的专业性人才。化学工程与工艺专业的课程体系要突出煤化工特色,根据高校制定人才培养目标,科学设定课程体系,使本专业的教学能够有序进行。课程体系是特色专业实施的基础和关键,因此要保证其合理性、科学性和可持续发展。煤化工专业是一门传统的学科,但特色建设赋予了它新的生命力,因此这门学科的课程体系要与国内外最新的教育理念相吻合,从而能够在以往的经验中,发挥教学成果的理念,整合课程资源,促进特色专业发展。煤化工特色建设课程体系要反应时代的特征,但也要与学校的特色向结合,建设出使用社会发展的化学工程与工艺专业的课程体系。煤化工课程体系要突出特色,例如开展“焦化特色课程”、“清洁能源课程”等,充分发挥本专业的特色。将基础必修课和辅修课程想结合,促进煤化工特色专业发展。

理论与实践相结合

化学工程与艺术是实践性较强的专业,在建设特色煤化工专业时,要将理论与实践向结合,培养学生的综合能力[2]。教师在教学时,可以结合计算机开展辅助教学,将最前沿的煤化工专业知识传授给学生,让学生形成较强的专业意识。高校还应加强与企业的合作,为学生提供更多的实践机会,让学生参与到企业生产实践中,培养学生的动手能力,在实践中,学生能够更好地解决问题。将理论与实践向结合,才能够促进煤化工特色专业建设,学生在实践中,专业能力得到锻炼,整体的素质也会不断提高。

建立健全质量保障体系

完善的质量体系建设是有特色的化学工程与工艺专业的保障,在科学的监督机制中,促进煤化工专业发展。高校要保证特色专业有效进行,就要对其投入更多的科研、资金及教学条件,这些物质保障是实施特色专业的前提。化学工程与工艺专业的煤化工特色建设中,会面临很多问题,如课程实施不佳,教师专业能力不强等,这些因素都会阻碍课程目标的实现。做好特色专业,离不开完善的质量保障体系。为了保证教学质量,因此要制定质量责任制,包括学生评价、教学反馈、教务系统质量检测等,确保教学目标的实现。

3、结语

化学工程与工艺专业的煤化工是高校的特色专业,因此要坚持以市场为导向和创新性原则,在稳定发展的基础上,促进本专业特色发展。煤化工特色建设要创新教育观念,将理论与实践相结合,健全教学质量监督机制,突出特色,促进教学目标的实现,为社会培养更多的煤化工专业人才。

碳酸亚乙烯酯性质研究论文题目

原理是利用反应过程中产生的羟基自由基。氧化废水中的有机物,将大分子断链为小分子,同时降解对碳酸亚乙烯酯废水中的难降解有机物。碳酸亚乙烯酯(VinyleneCarbonate)又称1,3-二氧杂环戊烯-2-酮、乙烯碳酸酯是一种有机物,化学式为C3H2O3,具有呈无色透明液体的性质,是一种锂离子电池新型有机成膜添加剂与过充电保护添加剂,还可作为制备聚碳酸乙烯酯的单体。

碳酸亚乙烯酯(vinyl acetate)是一种重要的基础化学原料,其生产过程中存在许多难度。首先,由于乙醇的易挥发性以及它与水的混合物的低分子量,因此乙醇在生产过程中很容易蒸发损失。其次,由于vinyl acetate本身是一种有机物质,所以它在生产过程中易形成回流物料和尾气污染。此外,由于vinyl acetate具有十分强大的气味和剧毒性、易燃性、易引起人体皮肤刺激和眩晕感等不良影响,因此必须采取相应的安全保障措施来保证工作人员的安全。

乙酸正丁酯的制备论文格式

乙酸正丁酯的制备方法如下:

1、先加碳酸钠溶液,则硫酸和乙酸分别和碳酸钠溶液反应获得醋酸钠和硫酸钠。

2、由于醋酸钠和硫酸钠都是离子化合物,具备都能沉淀在水中,而乙酸正丁酯是难沉淀在水中的有机物,因此可以用分液的方法分离出来(上层为乙酸正丁酯)。

3、为了获得比较洁净的乙酸正丁酯,则可以加氧化钙,然后提纯。这个时候还可以防止少量的水被提纯出来。

羧酸与醇在少量酸性催化剂(如浓硫酸)存在下,加热,脱水生成酯。这个反应叫酯化反应。常用的酸催化剂有:浓硫酸,磷酸等质子酸,也可用固体超强酸及沸石分子筛等。酯化反应是可逆反应,即在达到平衡时,反应物和产物各占一定比例。

乙酸正丁酯,简称乙酸丁酯。无色透明有愉快果香气味的液体。较低级同系物难溶于水;与醇、醚、酮等有机溶剂混溶。易燃。急性毒性较小,但对眼鼻有较强的刺激性,而且在高浓度下会引起麻醉。乙酸正丁酯是一种优良的有机溶剂,对乙基纤维素、醋酸丁酸纤维素、聚苯乙烯、甲基丙烯酸树脂、氯化橡胶以及多种天然树胶均有较好的溶解性能。

浓硫酸在这里的作用是充当脱水剂和吸水剂的,这样有利于反应向正向进行。你不用浓硫酸,生成的水会不利于正向反应的。

高中阶段用乙酸和正丁醇酯化即可,大学阶段最好使用乙酰氯或者乙酸酐和正丁醇反应。后者产率高。满意请采纳,谢谢^_^

乙酸正丁酯的制备毕业论文

1、乙酸正丁酯,简称乙酸丁酯。无色透明有愉快果香气味的液体。较低级同系物难溶于水;与醇、醚、酮等有机溶剂混溶。易燃。急性毒性较小,但对眼鼻有较强的刺激性,而且在高浓度下会引起麻醉。乙酸正丁酯是一种优良的有机溶剂,对乙基纤维素、醋酸丁酸纤维素、聚苯乙烯、甲基丙烯酸树脂、氯化橡胶以及多种天然树胶均有较好的溶解性能。2、制备方法:在250mL的三口烧瓶上,中口装上分水器,分水器上口装上回流冷凝管.三口瓶一侧口装上200℃温度计。在三口瓶中加入冰乙酸29mL,正丁醇。催化剂及沸石少许。仪器装好后,通入冷却水,加热回流反应。在回流反应过程中,在分水器中不断有水滴生成,要不断分出生成的水,以免流回反应器影响反应的进行。到分水器中无水滴出现,反应液温度恒定不再上升,停止加热,整个反应过程约lh左右。稍冷后放净分水器中的水,去掉分水器,改为蒸馏装置,收集℃的馏分,即为产物。

乙酸正丁酯的制备方法_百度文库 乙酸正丁酯的制备方法 - 一、实验目的 掌握乙酸正丁酯的制备方法,重点学习分水器的使用及操作。 二、实验原理 反应: CH3COOH + CH3CH2CH2CH2OH ... 3页 浏览:262次 ... 2011-6-15 乙酸正丁酯的制备方法.pdf 2页 浏览:143次乙酸正丁酯的制备 7页 浏览:486次更多文库相关文档>>

CH3COOH+CH3CH2CH2CH2OH加热回流催化剂=CH3COOCH2CH2CH2CH3+H2O为提高产品收率,一般采用以下措施:1、使某一反应物过量; 2、在反应中移走某一产物(蒸出产物或水); 3、使用特殊催化剂 用酸与醇直接制备酯,通常有三种方法.第一种是共沸蒸馏分水法,生成的酯和水以沸臃物的形式蒸出来,冷凝后通过分水器分出水,油层回到反应器中.第二种是提取酯化法,加入溶剂,使反应物、生成的酯溶于溶剂中,和水层分开.第三种是直接回流法,一种反应物过量,直接回流.制备乙酸正丁配用共沸蒸馏分水法较好.为了将反应物中生成的水除去,利用酯、酸和水形成二元或三元恒沸物,采取共沸蒸馏分水法.

乙酸光谱研究的论文

乙酸钾用于插层高岭土,插层速率较快,复合物的稳定性相对较高,且乙酸钾无毒,便于操作,易于工业化生产,因而,高岭土-乙酸钾复合物是最具有利用前景和最可能先实现工业化生产的复合物之一。因此,本节采用研磨法和浸泡法制备高岭土-乙酸钾插层复合物,讨论了插层时间、浓度、水量、温度以及高岭土-乙酸钾配比等因素对插层的影响,并对高岭土-乙酸钾插层复合物(Kao-KAc)进行了表征,对今后工业生产和科研具有重要的参考价值。

一、实验用主要原料

高岭土:萍乡硬质高岭土,≤200目。乙酸钾:分析纯,含量≥。无水乙醇:分析纯,含量≥。

二、制备Kao-KAc的工艺流程

分别采用了浸泡法、研磨法等不同的工艺,对高岭土样品的预处理、浓度、温度等作了较多的研究。总体来看,制备高岭土-乙酸钾的工艺流程为:高岭土样品的预处理→配料混合→反应→过滤与洗涤→烘干→试验产品。

对高岭土样品的预处理,以往的常用做法是分选出粒度<5μm的样品并进行钠饱和处理或150℃~200℃的烘干处理。本实验中,经过对几种方法进行的对比试验,发现钠饱和处理或150℃~200℃的烘干处理对插层反应速率影响不大,细磨到-200目的样品其插层效果也很好。因此,除个别试验外均采用200目筛下的样品直接配料。

反应物配料后,要充分搅拌使之混合均匀。

在反应过程中可用静置或搅拌、室温或加温等反应条件,以考察不同条件下的插层效果,最终选择出经济、实用、高效的插层方法。

过滤可采用离心沉淀、抽滤、滤纸过滤等方法,本论文所做实验大多数均用定量或定性滤纸过滤,因此除特别说明外,为滤纸过滤。

洗涤是制备插层复合物的关键步骤之一,洗涤的目的是为了除去高岭石表面吸附的多余的插层剂分子,其关键在于洗涤剂的选择。由于大多数有机插层复合物不稳定,洗涤剂选择不当,则不能除去多余的插层剂分子或使插层的分子脱嵌。以往的试验有很多采用风干或加温烘干的方法以除去多余的插层剂,往往残留插层剂较多,表征效果往往不甚理想。对高岭土-乙酸钾复合物来说,经试验用酒精洗涤效果很好,且酒精的回收和再利用在工业上也容易实现。

烘干的关键在于温度的控制,插层复合物在一定温度范围内稳定,超过某一温度将发生脱嵌。有一些复合物的稳定性极差,如水合肼以及脲插层的复合物,经风干或50℃以下烘干,将发生严重脱嵌。高岭石-乙酸钾复合物的稳定性较好,在100℃以下很稳定,超过150℃才有明显的脱嵌作用发生,因此该复合物的烘干操作比较容易,可用较高的温度快速烘干而得到样品。

三、制备Kao-KAc的方法

研磨法:高岭土和乙酸钾按不同比例混合均匀,温和研磨15min左右至黏稠状,加适量水搅拌均匀,静置一定时间后用酒精洗涤,滤干后在50℃下烘干24h。

浸泡法:用水作溶剂制备一定浓度的乙酸钾溶液,将高岭土样品置于其中,充分搅拌,使样品尽量分散混匀。放置一定时间后,加无水乙醇洗涤。过滤,将固体在60℃下干燥24h。

四、结果与讨论

1.插层工艺条件选择

(1)插层时间选择

高岭石是层状结构的硅酸盐,其层状晶体结构是由硅氧四面体片和铝氧八面体片沿c轴方向堆叠而成。高岭石层间插入有机分子后,层间距将增大。XRD的d001值可直接反映出这种变化。

乙酸钾插层高岭石后,高岭石的晶体c轴方向上的层间距d001从膨胀扩展到左右。可以根据高岭石插层前后d001衍射峰强度变化的比值(RI)来衡量插层反应进行的程度,即插层率:

RI=Ic/(Ic+Ik)

式中:Ic和Ik,分别表示插层复合物中膨胀高岭石的d001衍射峰强度和插层复合物中残留未膨胀高岭石的d001衍射峰强度。

1)研磨法:按高岭土,乙酸钾,混合均匀后研磨至黏稠状,分别放置不同的时间,用XRD法检测。插层不同时间复合物的XRD图谱见图3-1。

图3-1 研磨法反应不同时间插层复合物的XRD图谱

(a)高岭石原样;(b)天;(c)1天;(d)3天;(e)7天;(f)28天

根据衍射峰强度,计算出不同插层时间的插层率(RI)。由时间-插层率关系曲线图(图3-2)可知,随着放置时间的延长,初始阶段高岭土的插层率迅速增大,放置到一定时间后,插层率的变化开始变缓,并基本趋于稳定。插层时间以3d以上较好,3d以内插层率升高较快,超过3d以后插层率变化较慢,7d达到。时间太长,插层率反而有一定程度降低,如插层28d的插层率反而降到。

图3-2 研磨法插层时间-插层率曲线

2)浸泡法:高岭土3g,乙酸钾饱和溶液7ml,将高岭土分散于溶液中,搅拌10min后分别放置不同的时间。插层不同时间复合物的XRD图谱见图3-3。

图3-3 浸泡法反应不同时间插层复合物的XRD图谱

(a)高岭石原样;(b)1d;(c)4d;(d)10d;(e)25d;(f)38d

根据衍射峰强度,计算出插层率(RI),插层率随时间变化的关系见图3-4。可以看出,用乙酸钾溶液插层时间超过4d左右较为合适,随着浸泡时间的延长,高岭石的插层率不是升高,反而先快速降低,而后趋于一稳定值80%左右。这与以往文献报道的规律互为佐证。可见,为提高插层率仅依靠延长插层时间有其局限性。

图3-4 浸泡法插层时间-插层率曲线

(2)乙酸钾浓度的选择

有机物插层高岭土时存在着浓度阀值,为考察乙酸钾插层高岭土的合适浓度,根据乙酸钾在水中的溶解度(表3-1)配制了不同浓度的乙酸钾溶液。

表3-1 乙酸钾在水中的溶解度[1]

由于乙酸钾室温下在水中的溶解度约为,因此分别配制10%、20%、30%、40%、50%以及饱和乙酸钾溶液,插层时间为3d。XRD图谱见图3-5,浓度与插层率关系曲线图见图3-6。

图3-5 乙酸钾不同浓度插层的XRD图谱

(a)高岭土原样;(b)10%;(c)20%;(d)30%;(e)40%;(f)50%

图3-6 乙酸钾浓度-插层率曲线图

插层结果表明,乙酸钾插层高岭石存在最低浓度阀值,其值约为8%;乙酸钾浓度在50%以下插层效果不明显;乙酸钾浓度达到饱和时插层效果较好,与50%浓度溶液相比,插层率由增加到,插层速率较快。可见,用乙酸钾溶液浸泡高岭石插层时用饱和溶液为最优选择。研磨法只加入少量水或不加水利用乙酸钾的吸湿性使混合体呈浆状,其插层率较高的原因正是能够保证乙酸钾溶液能处于饱和状态所致。

(3)水量的选择

水在插层中起着关键的作用,没有水插层作用难以进行,少量的水对插层有利,大量的水则减缓了插层作用。水量少时乙酸钾为浆状,水多时为乙酸钾溶液,按水在乙酸钾和水中所占百分比考察水量与插层率的关系,不同水量的插层率见图3-7和表3-2。样品的制备方法为:高岭土3g,乙酸钾,混合均匀后研磨15min,分别加入不同的水量,搅拌均匀,静置3d。

图3-7 水量-插层率曲线图

表3-2 不同水量的插层率

由图上显示的规律可知,水量控制在5%~10%插层效果最好,10%~30%之间插层率变化不大,超过30%插层率快速降低。在水量为10%~30%时插层率基本不变的原因是由于水为30%时为乙酸钾饱和溶液,水量在此变化区间,混合物始终保持着乙酸钾饱和溶液状态;水量继续增加则为非饱和溶液,水对插层的不利作用则凸现出来,插层率随水量增加而急剧降低。同时也可看到,在乙酸钾溶液状态中,插层率最大可达84%;而在乙酸钾过量成浆状的混合液中,在适量水5%~10%的情况下,插层率可达90%左右,而且插层速度快。由此可见,为达到好的插层效果,至少应保证反应物始终处于乙酸钾饱和溶液状态。

(4)温度的选择

温度是影响反应速率的主要因素之一。在一定的范围内,加温可大幅度提高插层效率。乙酸钾饱和溶液在不同温度下插层8h的XRD见图3-8,温度与插层率的关系见图3-9。

图3-8 不同温度下插层的XRD图谱

(a)20℃;(b)60℃;(c)80℃;(d)100℃;(e)120℃

图3-9 插层温度-插层率关系曲线图

由图3-9可知,在室温至100℃的范围内,温度对插层率的影响较小,插层率的变化幅度不大,以60℃为较好条件。当插层温度超过100℃时插层率大幅度降低,这是由于乙酸钾在100℃以上时不稳定,会发生脱嵌作用。从经济效益和操作简便性看,以室温下插层为最优温度条件。

(5)高岭土与乙酸钾的配比试验

确定插层中乙酸钾合适的加入量是工业化生产的关键参数之一,乙酸钾的合适用量应是加入较少的乙酸钾达到较高的插层率和较快的插层速度。选取不同配比的高岭土和乙酸钾,研磨10min后加适量水至正好浆状,再研磨10min使之混匀。然后用XRD评价插层效果。乙酸钾不同加入量的插层效果见图3-10,不同比例与插层率的关系见图3-11。可以看出,高岭土和乙酸钾的配比不同,插层率也有较大变化。随着乙酸钾比例的升高,插层率也相应增高,插层率在乙酸钾加入量为高岭土重量的40%~60%之间发生突变,在加入量60%以下插层率较低;在乙酸钾加入量为60%之后插层率变化不大,插层率随乙酸钾含量增加略有提高,处于相对稳定状态。由以上分析可得到最佳的乙酸钾加入量为高岭土重量的60%。

图3-10 不同的乙酸钾-高岭土比例的插层XRD图谱

(a)4∶10;(b)6∶10;(c)8∶10;(d)10∶10;(e)15∶10

的红外光谱分析

高岭石、乙酸钾和高岭土-乙酸钾复合物的红外光谱的振动峰特征及其属性列于表3-3。

在高岭石晶体中,内羟基与内表面羟基的数量比为1∶3。由于两类羟基在晶格中所处的环境不同,在红外图谱中,它们所对应的位置也就不同。内表面羟基因为直接暴露于层间,易受层间环境变化的影响,在插层前后强度和位置有较大变化。而内羟基由于位于高岭土层状结构单元内部,受层间环境变化的影响比较小,在插层前后仅有微弱变化。

图3-12为高岭土和高岭土-乙酸钾插层复合物的羟基伸缩振动区的红外图谱。在图3-12中,高岭石在羟基振动区有4个峰。其中,3694、3667、3647cm-1吸收峰对应于内表面羟基的伸缩振动峰,3694cm-1为同相振动,后两个为异相振动。而3620cm-1则归属于内羟基的伸缩振动。

图3-11 乙酸钾和高岭土的不同比例与插层率曲线图

表3-3 高岭石、乙酸钾和高岭土-乙酸钾复合物的红外光谱

图3-12 高岭土和高岭土-乙酸钾复合物高频区的红外光谱

(a)高岭土原样;(b)高岭土-乙酸钾复合物

高岭石经插层后,在高岭土-乙酸钾插层复合物中,内表面羟基的同相伸缩振动峰(3693cm-1)与内羟基的伸缩振动峰(3620cm-1)的相对强度和位置与高岭土相应振动峰的强度和位置相比,发生了变化,特别是强度发生了明显变化。内表面羟基的两个异相振动峰在插层前后均很微弱。内表面羟基的3个振动峰插层后分别位移至3693、3668、3651cm-1,与内羟基的伸缩振动峰的位移相比,变化幅度较大。而内羟基的强度与位置基本无变化。红外分析还表明,复合物在3500~2500cm-1之间出现一个很宽的谱带,在3449cm-1之间存在一个水的OH振动峰,一般认为主要是水与乙酸钾一起插入高岭石层间,水含量增加所致。

图3-13为高岭土及高岭土-乙酸钾插层复合物中低频区的红外图谱。在中低频区,复合物的红外光谱中1032cm-1为Si-O伸缩振动峰,913cm-1为Al-OH的振动峰。792cm-1、753cm-1OH为平动振动峰,这些平动振动峰解释为羟基基团靠近或远离八面体层的运动。542cm-1为Si-O-Al的弯曲振动峰。471cm-1为骨架内Si-O-Al的弯曲振动峰。436cm-1为Si-O振动峰。在高岭土-乙酸钾插层复合物,新增加多个峰,在1583、1415cm-1处有2个强峰,1345cm-1处的振动峰则较弱。其中,1583cm-1处为CH3COO-的反对称伸缩振动峰,1415cm-1处为CH3COO-的对称伸缩振动峰。而1345cm-1处为C-O振动和O-H的面内变形的振动耦合的结果。这3个振动峰的存在以及前述3605cm-1处的内表面羟基与乙酸根的氢键(OH)振动峰说明复合物层间有乙酸根存在。

红外分析表明,乙酸钾已经插入高岭土层间,对高岭石的内表面羟基产生了显著影响,并可能与高岭石的内表面羟基形成了氢键。内羟基的微弱变化是由于乙酸钾分子中的H原子插入高岭石层间的复三方空洞后对内羟基引起的扰动所造成。插层复合物中水的HOH变形转动峰说明水可能以不同形式存在,可能有吸附水、与硅氧面或与内羟基面形成氢键的插层水,插层物中水的存在形式需要借助其他测试如差热等详细分析才能辨别。

的稳定性

(1)Kao-KAc在不同介质中的稳定性

对同一样品分别用水、乙醇、乙醇与水的混合液洗涤样品,用XRD检测淋洗效果,不同洗涤液洗涤后的插层率见表3-4。

图3-13 高岭土和高岭土-乙酸钾复合物中低频区的红外光谱

(a)高岭土原样;(b)高岭土-乙酸钾复合物

表3-4 插层复合物在不同介质中的稳定性

由此可看出,高岭土-乙酸钾插层复合物在无水乙醇中非常稳定。而水的存在,则会使插层复合物遭到破坏,甚至彻底分解。

(2)Kao-KAc的热稳定性

乙酸钾的热分析(图3-14)表明,60℃左右的吸热峰为乙酸钾的晶化,其后至200℃以下的吸热峰伴随失重属于脱水作用,290℃的吸热峰则是由于乙酸钾的熔化引起,436~517℃之间的强放热峰伴随着失重为乙酸钾的燃烧[3]。

图3-14 乙酸钾的热分析曲线[3]

高岭土-乙酸钾插层复合物的热分析(图3-15)表明,高岭土-乙酸钾插层复合物200℃以下的曲线与乙酸钾的相类似,但乙酸钾的晶化温度稍高。℃的吸热峰为乙酸钾的熔化。从℃~550℃之间曲线较为复杂,高岭石脱羟基的吸热反应和乙酸钾燃烧的放热反应叠加在一起,强烈的脱羟基作用发生在℃,比高岭土原样强烈脱羟基的温度(℃)低约130℃。由热分析可看出,高岭土-乙酸钾复合物在67℃以下基本稳定,结构不变。℃发生脱水后结构有变化,将形成不同相的高岭土-乙酸钾复合物。到℃之后乙酸钾熔化将发生脱嵌。因此,高岭土-乙酸钾插层复合物若要保持结构和性质不变,应在60℃以下环境存放。

图3-15 高岭土-乙酸钾复合物的热分析曲线

的形貌特征

Kao-KAc的扫描电镜照片(图3-16、图3-17)显示,经乙酸钾插层后,复合物的形貌与高岭石原样相比变化不大,但片层结构明显,并且薄片状高岭石的数量增加,说明插层时有相当一部分片状高岭石从大颗粒上剥离。

图3-16 Kao-KAc的扫描电镜照片

图3-17 Kao-KAc的扫描电镜照片

的分子结构

根据高岭土-乙酸钾插层复合物层间距约为以及红外光谱分析结果,乙酸根在高岭石层间的结构如图3-18所示,水参加了插层,乙酸根与水分子形成氢键,而后通过水分子中的氧原子与内表面羟基形成氢键。

图3-18 高岭石层间乙酸钾-水分子结构模型

综合以上分析,将乙酸钾插入高岭石层间,插层率可高达90%左右。要得到好的插层效果,乙酸钾加入量至少要保证反应混合物中为乙酸钾饱和溶液,乙酸钾过量的浆状体可获得较高插层率,可达90%以上。少量的水对插层有利,水以5%~10%为最优条件;过量的水使插层率降低,大量水的存在会破坏高岭土-乙酸钾插层复合物,插层剂存在插层最低浓度阀值。红外光谱分析显示,乙酸钾插入高岭石层间,并与高岭石内表面羟基形成氢键,水有可能以吸附或插层水的形式存在于复合物中。

姐姐,你是伍平凡老师教的吧

有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。

  • 索引序列
  • 化学论文乙酸乙酯的研究
  • 碳酸亚乙烯酯性质研究论文题目
  • 乙酸正丁酯的制备论文格式
  • 乙酸正丁酯的制备毕业论文
  • 乙酸光谱研究的论文
  • 返回顶部