数学本科毕业论文--数学教学与学生创造思维能力的培养摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:1、指导观察2、引导想象3、鼓励求异4、诱发灵感关键词:创造 思维前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学生创造思维能力谈谈自己的一些看法。一、 创造思维及其特征思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果通常并不是首次发现或超越常规的思考。创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是正常人经过培养可以具备的。二、 创设适宜的教学环境教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创造性思维能力的重要前提。1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。三、 怎样培养学生的创造思维能力1、指导观察观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。2、引导想象想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。3、鼓励求异求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§平行线的性质”一节时深有感触,一道例题最初是这样设计的:例:如图,已知a // b , c // d , ∠1 = 115, ⑴ 求∠2与∠3的度数 ,1abcd⑵ 从计算你能得到∠1与∠2是什么关系? 2学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:已知:a//b , c//d 求证: ∠1=∠2让学生写出证明,并回答各自不同的证法。随后又变化如下:变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d ,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。 4、诱发灵感灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。 例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。 总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢!
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
小学教育毕业论文范文
小学教育毕业论文范文,毕业论文对大学生是十分重要的一项内容,如果毕业论文不通过就可能毕不了业了,很多教育专业的同学不知道论文该怎么写,下面我和大家分享小学教育毕业论文范文。
摘要:
小学生是校园的花朵,祖国的未来。小学数学是小学教学的重要教学内容,并且渗透于小学教学的全过程,学生的数学素质与学生对数学课程的学习乐趣息息相关,小学生的数学素质教育显得尤为重要。小学数学不仅是学校许多学科中的一门学科,数学还被称谓为一种文化,小学数学也不是单调孤立的一门学科,它与小学其他各学科之间的联系愈加的紧密,小学数学的基础运算与小学生们的生活也是息息相关,所占地位和影响也是十分地重要。本人从小学数学老师的角度出发,探索研究小学数学课堂教学的有效方法,浅谈一下关于素质教育在小学数学教学中的应用的有效策略。
关键词:
小学数学;素质教育
如何将素质教育融入数学教学之中,使学生的数学能力得到提高,成为数学教育工作者研究和探讨的首要问题。为切实培养小学生的数学素质,根据农村小学学生的特点,我对数学课堂中素质的培养提出自己的一些看法。
一、创造性能力的培养
能力的本质是创造性,创造是社会发展的前提。创造能力的培养贯穿整个小学阶段,如何培养小学生的创造能力呢?我认为最重要的就是精心创设教学情境,激发学生对数学学习的兴趣,其次,在教学内容上应有趣味性,探索性,再联系生活实际中设计出开放性的问题,让每个同学都能参与教学的全过程,在教师的引导下解决问题,使学生的潜力得到提高,促进学生的学习水平和学习能力的发展和提高,这样能够积极的培养小学生的创新意识和创新能力。
二、自学能力的培养
孔子曾经说过:“知之者不如好之者,好之者不如乐之者、”学生是学习的主人,教师应在数学课堂上,通过创设生动的教学情境,激发出学生对数学学习的兴趣并且不断深入探究,启发学生思考,自主领悟新的知识。通过多种形式的训练,促进学生自主学习,使课堂活跃起来,不断的确立学生的主体地位,教学中以学为主,构建新型的师生互动的教学关系,提高课堂效率,调动学生的主动性、积极性,使学生转变“要我学”为“我要学”的观念。学生在生活中已经积累了一些合情合理的知识经验,只不过他们没有意识到这些就包含着数学知识,设计一些学生感兴趣的、有一定生活经验的素材,让学生运用数学知识解决问题,认识到数学与生活的紧密联系。新课程的改革要求教师成为教学活动的组织者、学生学习的激发者,把问题交给学生,培养学生勇于尝试的态度和自主学习的能力。
三、更新观念,提高认识,自觉加强教师自身素质修养
学习、提高的途径有很多,报纸、杂志、网络、研修、培训、参与课题研究等,汲取先行者的成功经验,充实、修正自己。只有提高了自身素质修养,才能学高为师,在数学课堂教学中居高临下、游刃有余。要以新世纪民族素质对人才的要求为指导,重新认识小学数学教学,这样才能自觉地把应试教育向素质教育转轨,在小学数学课堂教学过程中,自觉实践素质教育。只有想到时代赋予我们的使命,才能在数学教学中从各个方面想得更深远些。首先,我们要更新教育观念,转变角色,然后,研究、学习现代教育的教法、学法,恰当地处理好教师的“教”与学生的“学”的关系,走出“传道授业解惑”的误区,不能把自己仅仅看成是知识的传授者。我认为,素质教育要求的教师角色应是小学生学习活动的引导者、支持者和合作者。在小学数学课堂教学活动中,我们数学教师要甘于俯身倾听、做学生心灵的朋友;用关心尊重和接纳态度,努力理解他们的想法与感受。对学生的一些数学思想和发现给予支持肯定和鼓励,真正承认学生中蕴藏着巨大的智力因素。做学生获取数学知识的引路人,在平等的、和谐的、互动的新型师生关系中学习数学。
四、构建小学数学素质教学的目标体系,优化教学过程
教学目标体系决定着受教育者身心发展和质量规格水平,是实施素质化教学的前提和评价依据。目前很多教师在确定数学教学目标时存在“三重三轻”的问题,重知识的传授、轻能力的培养,重一个单元一节课的讲授;轻数学的知识体系的掌握,重智力因素的培养,轻非智力因素的培养,以致影响了学生素质的全面提高。应该把丰富的素质内涵及其结构关系作为出发点,以“大纲”为依据,采用建立坐标系的方法,以思想素质、文化素质、审美素质、心理素质、体能素质为横轴;以认知、能力、技能三个领域为纵轴,结合小学数学的特点进行筛选,从而全面具体地构建小学数学素质教育的目标体系。
五、以数学文化为思想,进行兴趣教学,调动小学生学习的主动性
如何使小学数学数学教学变得有乐趣,让小学生们兴趣地学习数学课程?小学数学教师可以以设定情景的方法进行,教师要提高课堂提问问题的能力和水平,把数学课堂问题转换设定为某种情景,促使小学生思考问题解决问题的主动意识,进而激发小学生们对数学运算的兴趣,培养同学们自主地产生问题、思考问题的能力。对于小学数学教育工作,老师要善于发现和总结该阶段年龄学生的心理发展情况,不断地为学生设计课堂情境,使小学生们在乐趣中发现问题、解决问题,进而更容易的完成小学数学教学。
比如,在学习和复习小学乘法公式的课程中,我们可以引入数字游戏,以课堂游戏10分钟为例,恰当的把小学数学运算融入到游戏当中。运用到课堂上数学游戏很多,我们可以玩这样一个游戏:小学数学倍数的游戏。游戏的规则是小学生们按照自己所坐的课堂位置顺序进行读数,第一学生读一,第二个学生读二,第三个学生读三,第四个学生不读四,要读“过”,以此类推,只要是四的倍数的都要读“过”,读错了的学生和没有读“过”的学生要受到大家的惩罚,惩罚大家定,也可以随便罚。学生们活跃玩着这个游戏,教师在一旁引导鼓励,使得学生充分的融入进游戏,学习并快乐着,通过这个游戏过程达到对小学数学乘法公式的掌握的目的。教师进行兴趣教学,活跃了学教学的学习氛围,激发了学生们学习小学数学运算的兴趣,整个数学教学课程变得有趣起来,提高了小学生学习数学的积极性。进行兴趣教学,能够有效地促进小学数学课堂教学的进展,这也直接提高了小学生学习数学课程的效果和效率。
我们只要引导学生发现数学的美,就可以进入数学的殿堂,在数学的海洋里自由的畅扬。数学素质具有社会性、独特性和发展性,未来的人的数学素质与人的生存息息相关,数学课堂中素质教育的应用及培养至关重要。
《教师教学风格对小学生学习习惯形成的影响》
摘要:本文以教师独特的.教学语言表达方式和课堂教学技巧为依据,分析了理智思辨型、情感感染型和情境渲染型三种类型的教学风格对小学生学习习惯形成的不同影响。并且针对这些影响提出关于教学风格的现实有效的改善措施,即要突破个体教学风格的单一化,注入其多侧面发展的新理念;根据教学客体的不同特点,有针对性地选择相应的教学风格;不断改善个体教学风格的不足,扬长避短。
关键词:教学风格;学习习惯;小学生
在教学这样一个双边活动中,教师的教学风格对教学效果有着至关重要的作用。陶先生说:"教育就是培养良好习惯。"而教师各异的教学风格会对不同阶段学生习惯的形成产生不同影响。有科学研究表明:6至12岁即小学阶段是养成良好习惯的关键期。所以,反思现存的课堂教学,探索更加适于形成小学生良好惯的教学风格是有一定的现实指导作用的。
1、小学生学习习惯的现状
小学生课前学习习惯的现状。从实际调查发现有有一少数小学生根本无学习计划,对于执行学习计划的重要性认识不够,大部分学生将学习计划流于形式。小学生课堂学习习惯的现状。由于小学生年龄较小,自制力较差,听课时往往易受到外界环境的影响。所以,小学生课堂上始终专心听讲的人数比例并不高。同时,也有大部分学生只是一味地接受,缺乏质疑的习惯。小学生复习及作业习惯的现状。在完整的学习过程中能够坚持每天复习的学生比例并不高。致使盲目地去完成作业,甚至还存在少部分不完成作业的情况。
2、不同类型的教学风格对小学生学习习惯形成的影响
在《教育大辞典》中,教学风格是指在"教学过程中,所体现的教师个人特点的教学风度和格调,是教师教学思想、教学艺术的综合表现[1]"。然而"学生是教师教学的形象载体[2]",教学过程中应以学定教,以教促学。通过长期对小学课堂教学的观察,以相关研究理论为基础,得出了不同教师的教学风格对小学生学习习惯形成的不同影响。以教师独特的教学语言表达方式和独特的课堂教学技巧为依据,细以教师课堂教学语言中语调的起伏变化,情感的运用和课堂教学技巧中所采用的以理服人、以情感人及潜移默化的调控手段为标准,对教学风格进行了分类总结。
2、1理智思辨型的特点及其影响。在课堂教学中,一些老教师知识渊博且经验丰富。其主要特点是:课堂教学中教学语言语调高昂、层次分明、逻辑严谨,比较注重理论知识,能够深入浅出。这类教师的教学能用思维的逻辑力量吸引学生的注意力。而他的严肃稳定,则对于自律性差的小学低年级学生在初步养成良好的课前预习、专心听讲、勤记笔记,有效完成作业等学习习惯方面产生了一定积极影响。不过以教师为主体的课堂使得学生学习习惯的形成处在强式状态下,没有使习惯内化。教师在课堂教学中不注意充分发挥教学手段的作用,教学组织形式也缺乏灵活多样性。
2、2情感感染型的特点及其影响。这类型教师在课堂教学中是感情充沛,以情促知的。教学语言语调起伏明显、表达优美动听、富有感染力和鼓动性。教师善于用情感调控课堂,态度温和谦恭,对学生的不良习惯能晓之以理、动之以情。这样一位情感感染型的老师,对于改变小学生分散的注意力是非常有利的。从学生的课堂表现和课下的讨论可以看出,此类教师不仅能激发学生对知识的兴趣,从"要我学"转变为"我要学",而且能促使学生养成上课集中注意力和自主学习的良好习惯。但是这种类型的教师常会成为"班妈",使学生过于依赖当天课上的掌握而忽略课下自己复习巩固,不易形成及时复习巩固的良好习惯。
2、3情境渲染型特点及其影响。课堂教学要求知识之间的"无痕过渡",在"小步快跑"等技巧的基础上创设情境,让小学生在玩中学、在乐中学。而这正要求教师在准确了解学生的年龄特征、接受能力等基础上,更好地组织教学的每个环节,使学生能真正成为课堂的主体,知识的主人。所谓因时适宜,因情适宜。此类教师善于用情境渲染调控课堂,其教学语言语调曲折,表达生动形象。课堂教学中长于及时鼓励与情境性真实感染,课堂气氛活跃,能使小学生保持旺盛的求知欲、持久的注意力和积极的主动参与性。
3、教学风格的有效改善措施
3、1突破个体教学风格的单一化,注入其多侧面发展的新理念。通过以上分析得出:要循序渐进地使学生养成良好的学习习惯,就必须有效地改善教师教学风格,革新以往单一而局限的教学风格,使课堂教学更好地为小学生学习习惯的养成提供良好的环境。以其丰富性去适应教学过程中遇到的多种矛盾及特点各异的教学对象。这就要求教师要了解自己教学风格的优缺点,并不断地进行自我反思,增加知识储备,使个体主导性教学风格更加丰满。
3、2根据教学客体的不同特点,有针对性地选择相应的教学风格。每一种教学风格都有其特点、结构、功能和适应范围。教师要根据教学客体的不同特点,选择与其相适应的教学风格,即体现多侧面发展。这里的教学客体包括:不同年龄特点和不同学情的学生,不同性质的学科,不同目标的教学环节等。教师要有的放矢,统筹安排,根据教学客体的特点,恰当的选择和使用教学风格。
3、3不断改善个体教学风格的不足,扬长避短。为了更好地让不同的教学风格有针对性地应用于教学实践中,我们必须在发扬本身优势的同时,以人之长补己之短,做到真正的完善。
4、结束语
教师的教学风格是在发展中形成的,同时也是在发展中进步的,其对于小学生学习习惯形成的影响显而易见。所以,通过改善教师的教学风格来更好地把培养小学生学习习惯的目标落实到实际课堂中是有一定价值的。
参考文献:
[1][捷]J、A、夸美纽斯、大教学论[M]、傅任敢,译、北京:人民教育出版社,1984、
[2]李如密、教学风格综合分类的理论探讨[J]、教育研究,1995、
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
建立简化模型
模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
主要就是说一些教育方法网上有
小学数学教学案例的研究 一、小学数学教学案例的内涵 一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,同时也可能包含解决这些问题的方法。教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界。 二、小学数学教学案例的特征 1、素材真实性 案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考。 2、选材典型性 小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突。 3、情节具体性 小学数学教学案例的叙述要具体、特殊,要能够把数学教学与学生的数学思维活动生动地描述出来。例如,反映某一个数学教师与学生围绕一个特定的数学教学目标和特定的数学教学内容的双边活动,不应是对活动总体特征所作的抽象化的、概括性的说明,而应是对双边活动的具体情节展示叙述,做到翔实、有趣。 4、时空广延性 小学数学教学案例的描述要把事例置于一个时空框架之中,也就是要说明事情事件发生的时间、地点等。案例的描述要放在一个现实的生活场景之中,使人有身临其境之感。 5、目标全面性 小学数学数学案例对行为等的叙述,要能反映教师和学生教与学的特性,涵盖教学目标的全部,揭示出人物的内心世界。如数学认知的思维活动,对教学的态度、情感,学习数学的动机、需要等。 三、小学数学教学案例的功能 小学数学教师写作案例具有以下功能: 1、记录功能——案例写作为小学数学教师提供了一个记录自己教学经历的机会。案例写作实际上是对教师职业一些困惑、喜悦、问题等等的记录。如果我们说一个数学教师展示其自身生命价值的主要所在,是在课堂、在学校、在与学生的交往的话,那么,案例在一定程度上就是教师生命之光的记载。在案例中,有教师的情感,同时也蕴涵着无限的生命力。案例能够折射出教育历程的演变,它一方面可以作为个人发展史的反映,另一方面也可以作为社会背景下教育的变革历程。 2、导向功能——案例写作可以促使小学数学教师更为深刻地认识到自己工作的重点和难点。能够成为案例的事实,往往是小学数学教师工作中魂牵梦绕的难题,或者是刻骨铭心的事件。如果你对案例写作已经成为一种习惯,一种工作方式,那么随着案例材料的增多,你就会逐渐发现你自身工作的难点在哪里,今后努力的方向是什么。 3、反思功能——案例写作可以促进小学数学教师对自身行为的反思,提升教学工作的专业水平。如果把反思当成数学教学工作的有机组成部分,而不是一时冲动或岁末特有的行为,就可以极大地促进小学数学教师的专业发展,促进其向专业化水平迈进。 4、传播功能——案例为教师间分享经验、加强沟通提供了一种有效的方法。教师工作主要体现为一种个体化劳动过程,平时相互之间的交流相对较少。案例写作是民书面形式反映某位或某些教师的教育教学经历。它可以使其他教师有效地了解同事的思想行为,使个人的经验成为大家共享的财富。同时,通过个人分析、小组讨论等,认识到自己所从事工作的复杂性,以及所面临问题的多样性和歧义性,并且可以把自己原有的缄默的知识提升出来,把自己那些只可意会不可言传或不证自明的知识、价值、态度等,通过讨论和批判性分析从感性认识提升到理性认识。 四、小学数学教学案例的编制 1、编制原则 (1)客观性原则。一个案例就是关于某一个实际情境的描述,它不能用“摇椅上杜撰的事实”来代替,也不能用“从抽象的、概括化理论中演绎出的事实”来代替。坚持实事求是,尽量依据时间发展顺序客观记录事例。杜绝掺假现象,不会“合理构想”。不搞“文字游戏”,不因文字篇章的需要而扭曲或改变事实。 (2)独特性原则。在撰写案例活动中,倡导教师开展创造性的工作,不人云亦云,不见风使舵,要有个性的观察、个性的实践、个性的反思、个性的表述。 (3)价值性原则。撰写案例的目的在于推动教学的改革。因此,所选事例的先进性与实用性价值程度,与案例本身的实际意义成正比。所以,要站在时代的高度面向教学实际需要选择事例。 2、编制格式分析有关案例不难发现案例的一般格式与写法。目前专家撰写的案例主要格式是“案例+分析”,其变式主要有“提示——案例——分析”与“提示——案例——访谈录——分析”。“提示”,主要简介“案例”与“分析”中将要涉及的基本教育理论,可以促进理论知识与教学实例的融合。“访谈录”以对话的形式记录对有关教师进行的访谈,以外化教师的缄默知识,便于他人更加全面、深刻地了解案例产生的背景、过程和做法。教师撰写的案例主要格式是“片断+反思”,其变式主要有“背景——片断——反思”与“片断——评析——反思”。可见,案例主要由两大部分组成,即“案例+反思”。案例是为了一个主题而截取的教学行为片断,这些片断蕴涵了一定的教育理论。它源于实践,但高于实践。案例以真实的教师和事件为基础,但又不是简单而机械的课堂实录,它是教师对自身典型教学事件的描述,它可以描述一节课或一个片断,也可以围绕一个主题,把几节课的相关片断叠加。从案例内容的表述形式看,主要有“叙事式”和“对话式”;从案例内容的编排方式看主要有“单一式”、“对照式”和“递进式”。反思一方面是基于案例,做到理论联系实际,实例印证理论;另一方面要高于案例,要从案例的分析中生发出新的问题,提出新的观点。
这个具体的还是要根据学校的要求的,因为每一个学校的要都是不一样的,而且同一学校的不同专业的的要求那些都是不一样的,所以你最好根据学校的要求为佳。一般工科的论文字数在10000~~30000字左右吧,
一般毕业论文大专5000字-8000,本科,硕士3-5W看各学院要求的,没有统一标准,需要帮助写作的话可以找脚印论文网,多少字都不是问题。
一般而言,专科毕业论文正文字数一般应在5000字以上,非211、985的学校的本科毕业论文正文字数在8000字左右(工程类需要制图的专业则会超过这个数字),但是一些要求较高的学校或者是重点学校则要求论文字数在1万左右或以上。总而言之,各个学校在论文字数上的规定都会有细微的差异。
硕士毕业论文字数一般是3-5万之间,学校不一样,专业不一样,字数也就不一样,一般指导老师都会给出一个大概的字数条件。
扩展资料:
要求
1、在文本末尾的参考书目表中,参考文献应按照其在文本中出现的顺序,按阿拉伯数字顺序排列。一定要按照它们在文本中出现的顺序给它们编号。
2、请将文章后参考书目中的中文参考文献改为中英对照。
3、请在发表论文的期刊和会议记录的参考目录中填写英文期刊和会议记录的全名。
4、各类参考文献应严格按照“第二种各类参考文献书写方法”中的标点符号书写。
大学本科毕业生的毕业论文,如果写得好,可以作为学士学位的论文。
毕业论文是大学生在大学的最后一个学期,运用所学的基础课和专业课知识,独立地探讨或解决本学科某一问题的论文,它是在撰写学年论文取得初步经验后写作的,它的题目应该比学年论文大一点、深一点。
其基本标准应该是:通过毕业论文,可以大致反映作者能否运用大学三四年间所学得的基础知识来分析和解决本学科内某一基本问题的学术水平和能力。当然,它的选题一般也不宜过大,内容不太复杂,要求有一定的创见性,能够较好地分析和解决学科领域中不太复杂的问题。大专毕业论文篇幅一般在五千字左右,本科毕业论文篇幅一般在六干字以上。
其它学术论文字数要求1.学年论文。它是大学生在大学读了三年基础课,具备了一些基本知识之后,初次锻炼运用已有知识去分析和解决一个学术问题的能力。论文的题目不宜太大,篇幅不宜太长,涉及问题的面不宜过宽,论述的问题也不求过深。初学论文写作,主要是取得撰写论文的经验,初步掌握撰写论文的方法,为今后撰写毕业论文和学位论文奠定基础。在大学的前两年,基本上是听讲、看书、接受前人已有知识;而写论文,就不是听讲、看书、作笔记和汇总前人的知识了,而是要求自己运用前人的知识去解决一些前人没有解决的问题了。由于写学年论文是大学生初次学做的一件新工作,所以,撰写学年论文是在有经验的教师指导下进行的。2.硕士论文。这是攻读硕士学位研究生的学位论文,其学术水平比学士论文要高。它必须能够反映出作者所掌握知识的深度,有作者自己的较新见解。国家学位条例第五条规定,高等院校和科学研究机构的研究生,或具有研究生毕业同等学历的人员,只有在本学科上掌握坚实的基础理论和比较系统的专门知识,具有从事科研工作和专门技术工作的独立能力者,才可通过论文答辩,取得硕士学位。这就是说,硕士论文强调作者在学术问题上应有自己的较新见解和独创性,其篇幅一般要长一些,撰写前应阅读较多的有关重要文献。3.博士论文。它是非常重要的科研成果。它要求作者必须在某一学科领域中具有坚实而深广的知识基础,必须有独创性的成果;它应有较高的学术水平和学术价值,能够对别人进行同类性质问题的研究和其他问题的探讨有明显的启发性、引导性,在某一学科领域中起先导、开拓的。
法学专业毕业论文格式要求
论文格式就是指进行论文写作时的样式要求,以及写作标准,那么,法学论文的格式是怎么样的呢?以下是我为大家带来的法学专业毕业论文格式要求,希望大家喜欢。
一、性质地位
毕业论文是教学计划中的最后一个重要教学环节,是加强学生理论联系实际、培养学生严谨勤奋的工作态度和求实创新的科学作风、锻炼学生独立工作能力、提高学生全面素质的有效手段,也是对学生掌握和运用所学基础理论、基本知识、基本技能和从事科学研究能力的综合考核,是达到培养目标的必要步骤。
因此,毕业论文具有十分重要的地位。
二、时间安排
1、毕业论文的时间为8周;
2、一般在毕业前一学期,社会调查完成之后进行。
三、选题原则
1、毕业论文选题应当在法学专业范围之内,并符合法律专业的特点;
2、毕业论文选题应当分为规定性命题和自选命题两种。选题时应当结合我国司法实践,选择应用性强或当前司法实践亟待解决的实际问题作为毕业论文的主要方向和主要内容;
3、鼓励学生对当前改革中出现的问题进行探讨。
四、写作要求
1、论文应中心突出、结构严谨、层次分明、论述清楚、文笔流畅,符合规范的格式;
2、论文应达到一定的字数
本科:8000字以上
专科:6000字以上
3、论文应是在调查研究的基础上写出的、有学生自己观点和见解的学术性论文。在毕业论文写作过程中要虚心学习,尊重导师,严谨为学,诚实为人。收集资料、占有材料均要实事求是,摘录要符合作者原意,不能断章取义,资料要注明出处。通过毕业论文写作应培养严谨的学术作风。
4、学员应独立完成毕业论文,论文写作应有计划地进行,论文内容应包括:
前言含简要说明选题的意义,主要创新观点、见解、对策和结论;
论证分析部分这是论文的主要部分。要求思路清楚、逻辑严密、文字通顺、结论科学。全文应论点层次分明,要分章节或大小标题,标题要简洁醒目;论文不能只是材料的堆积,要言之有物,运用材料说明问题,论据充分、材料丰富且运用得当;论文要按照理论联系实际的原则分析问题和解决问题,最后得出合乎逻辑的结论。
对策建议创新见解要在这里总结、表述清楚。
结束语。
参考资料目录(包括:专著、著作、学术论文等)。
五、写作计划
论文应制定写作计划,包括:论文大纲,大小标题,基本论点和论点句;进度计划(社会调查计划,资料调研计划,时间进度表)。
学员撰写论文可以参照以下程序:
1、准备阶段:
完成“毕业论文写作指导”的学习;
了解毕业论文写作过程及要求。
2、选题阶段:
收集、阅读、分析资料和文献;
在导师指导下选题、命题和构思论文。
3、读书报告阶段:
在选好题目的基础上,调查研究、大量阅读文献、收集资料(含社会调查)、阅读消化、调查研究。要求每位学生阅读20篇以上文献资料,其中包括专著、著作、学术论文等;
写出3000字以上的读书报告(最后与论文一并交指导教师)。
4、撰写论文初稿阶段:
学生在读书报告基础上,撰写提纲并进行写作论文初稿。
5、论文修改完善阶段:
学生在指导教师的指导下对论文做进一步的充实、修改与完善。
6、论文提交阶段:
根据导师最后提出的定稿意见做最后的完善;
检查论文的格式和文字等细节;
按照论文的统一格式排版并将最终的论文定稿打印、装订;
提交的论文为一式三份;
提交论文定稿的电子版给导师。
7、论文评审与答辩阶段:
由相关部门组成毕业论文评审、答辩小组组织毕业论文评审、答辩。
答辩在江苏大学或符合条件的校外教学站进行;
给出毕业论文综合成绩。
六、指导教师
1、指导教师及主持答辩的教师必须是具有中级(含中级)以上专业技术职称的法学教师、法学研究人员或具有同等资历并从事法律实务工作五年以上的`人员,其资格由我校成人教育学院负责审核;
2、指导教师只能指导相关专业的毕业论文,不得跨专业指导;
3、一位指导教师指导学生人数不得超过10名,指导每个学生不得少于10个学时;
4、指导教师应认真履行职责,指导学生完成毕业论文的全过程。一般应包括指导学生选题、收集资料、撰写提纲、撰写初纲、提出修改意见,直至定稿和写出评语。
七、论文格式
1.论文要求一律用a4白纸打印。
2.封面: 论文一律用统一封面,论文封面格式另行规定。
3.任务书: 内容包括论文要求、主要内容、进度安排等。任务书由学校统一印制。
4.摘要与关键词: 论文要有150-200字的摘要,并列出论文3-5个关键词(中、英文对照)。
5.正文: 论文统一用a4纸,计算机打印。正文标题用二号黑体字,行文用小四号宋体字。论文正文打印格式及尺寸要求:版芯尺寸为15cm×23cm,统一用小四号宋体字打印。
6.脚注: 论文中引用资料时要加以脚注。法学专业论文脚注统一使用小五号宋体字,脚注按:著者姓名、文献名、卷册序号、出版单位、出版时间、页码次序标注。
7.参考文献: 论文正文后须附参考文献,著明论文所依据的文献资料情况,文献著录格式主要有下列几种:
专(译)著:作者.书名(,译者).出版地:出版者,出版年.起~止页码;
连续出版物:作者.文题.刊名,年,卷号(期号):起~止页码;
论文集:作者.文章标题:编者,文集名.出版地:出版者,出版年.起~止页码;
互联网资料:作者.文章标题,完整网址,年代。
8.鸣谢: 本页内,学生可以表达对论文指导教师和在论文写在过程中给予帮助和支持的其他人的感谢。
9.装订: 毕业论文按如下顺序排列和装订:
封面;
目录;
中英文摘要与关键词页;
论文正文;
参考文献页;
鸣谢页;
封底。
读书报告另行装订。
八、成绩评定
毕业论文成绩分优、良、中、及格、不及格五个等级。
1、优:能很好地综合运用所学知识进行分析问题,论文选题恰当,能以正确的观点和方法提出问题,对研究的问题论述清楚,分析透彻,论据充分,资料丰富,层次清楚,文笔流畅;对所研究的问题有创建性发挥和见解;答辩时口头表达清晰,回答问题正确无误。
2、良:能很好地综合运用所学知识进行分析问题,论文选题恰当,能以正确的观点和方法提出问题,对研究的问题论述清楚,分析透彻,论据充分,资料丰富,层次清楚,文笔流畅;答辩时口头表达清晰,回答问题正确无误。
3、中:能较好地综合运用所学知识进行分析问题,论文选题恰当,能以正确的观点和方法提出问题,对研究的问题论述清楚,分析透彻,论据比较充分,资料比较丰富,层次清楚,文笔通顺;答辩时口头表达清晰,回答问题基本正确。
4、及格:基本能运用所学知识进行分析问题,论文选题尚可,能以正确的观点和方法提出问题,对研究的问题论述清楚,论据能说明问题,资料符合规定,层次基本清楚;答辩时口头表达基本清晰,回答问题没有明显错误。
5、不及格:有下列情况之一者论文不及格:
未完成预定的论文写作内容;
抄袭他人的论文或文章;
没有掌握必要的基础理论和专业知识;
论文分析有明显错误;
论文结构不合理;
质量较差;
字数少于规定要求;
打印装订不合格;
答辩时不能阐明论文内容,又不能回答提问;
(10)其他。
成绩评定方法与原则是:
1、指导教师应根据学生写作态度和论文质量给出建议成绩;
2、经过口头答辩,由答辩小组根据毕业论文与答辩情况给予成绩;
3、最终成绩由江苏大学成人教育学院负责审定。
九、附则
1、本大纲由江苏大学继续教育学院负责解释;
2、本大纲未尽事宜,由江苏大学成人教育学院另行规定。
这个论文,按照这个要求,我能帮你写一份的
1、 符合规定字数要求,本科毕业论文一般5000字左右。2、 切忌抄袭。3、 题名、摘要与关键词:题名、摘要与关键词。摘要应反映文章的主要观点。关键词一般不超过5个。4、 章、条:章、条标题一般不超过15个字。章、条的划分编号和排列均采用阿拉伯数字分级编号,即一级标题的编号1,2 …… 二级标题的编号为, ……;, ……; 三级标题的编号为, ……;如此类推。5、 正文:可以是计算机打印稿,仿宋体,正文为四号字体,用A4纸打印,文件采用WORD格式。文章中有表格的,应使表格科学、简洁、自明。表头不允许有斜线,必须做成三线表。正文中引用参考文献的,序号应按先后顺序连续编码,并置于方括号中作为右上角注出。6、 参考文献:按正文顺序依次列出。文献类型代码:专著[M]、期刊[J]、报纸[N]、论文集[G]、会议录[C]、学位论文[D]、报告[R]、标准[S]、专利[P]。参考文献标注格式示例:[1]周晓虹.大学教育与管理心理学[M] .南京:南京大学出版社,—56.[2]李长安.运用直觉破案一例[J].中国刑事警察.1992(6):13-20. [3]教育部就义务教育和教育经费投入等答记者问[N] .人民日报,2003-11-03.
不同学校要求不同,我本科10000,硕士30000字
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
建立简化模型
模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.
数学本科毕业论文--数学教学与学生创造思维能力的培养摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:1、指导观察2、引导想象3、鼓励求异4、诱发灵感关键词:创造 思维前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学生创造思维能力谈谈自己的一些看法。一、 创造思维及其特征思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果通常并不是首次发现或超越常规的思考。创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是正常人经过培养可以具备的。二、 创设适宜的教学环境教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创造性思维能力的重要前提。1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。三、 怎样培养学生的创造思维能力1、指导观察观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。2、引导想象想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。3、鼓励求异求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§平行线的性质”一节时深有感触,一道例题最初是这样设计的:例:如图,已知a // b , c // d , ∠1 = 115, ⑴ 求∠2与∠3的度数 ,1abcd⑵ 从计算你能得到∠1与∠2是什么关系? 2学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:已知:a//b , c//d 求证: ∠1=∠2让学生写出证明,并回答各自不同的证法。随后又变化如下:变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d ,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。 4、诱发灵感灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。 例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。 总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢!