关于“北斗卫星”的说明文开头宏观介绍北斗卫星,具体可以这样写:
1、基本情况:
中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。
2、国际合作:
全球范围内已经有137个国家与北斗卫星导航系统签下了合作协议。随着全球组网的成功,北斗卫星导航系统未来的国际应用空间将会不断扩展。
北斗卫星导航系统的基本组成:
(1)北斗系统由空间段、地面段和用户段三部分组成。
(2)空间段由若干地球静止轨道卫星、倾斜地球同步轨道卫星和中圆地球轨道卫星组成。
(3)地面段包括主控站、时间同步/注入站和监测站等若干地面站,以及星间链路运行管理设施。
(4)用户段包括北斗及兼容其他卫星导航系统的芯片、模块、天线等基础产品,以及终端设备、应用系统与应用服务等。
以上内容参考:百度百科-北斗卫星导航系统
中国开展卫星导航与定位研究最早始于上世纪60年代,随后由于受到文化大革命的干扰,研究一度中断直到70年代末才恢复。 1983年,一个名为“双星快速定位系统”的卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。应用领域中国发展“北斗”系统有军民两种用途。与美国相类似,该系统的核心是用于军事目的,但是也可以为民用和商业领域提供多种服务。中国的主要考虑是,一旦爆发冲突,美国很可能关闭GPS系统或者加大民用码的误差。因此,中国认为保护国家利益需要发展不受制于外国的独立的卫星导航与定位系统。中国希望“北斗”系统无论在技术还是应用上,最终都能与GPS相抗衡。卫星定位导航功能在军用和民用上都具有重要用途。美国利用GPS的导航与定位功能所具备的精确制导能力被证明是打赢“信息化战争”必不可少的条件。在有可能与台湾发生的冲突中,精确制导能力更为重要,中国希望通过此种能力减少附带损伤。解放军还可以通过“北斗”系统的双向通信功能随时与己方部队联络并监控他们所处的位置。卫星导航与定位技术还可以运用到解放军的对潜通讯上,潜艇可不再需要上浮即可接收卫星信号。解放军海军的下一代弹道导弹潜艇可通过使用“北斗”系统获得更准确的目标定位信息,增强潜射导弹的精确制导能力。事实上,世界上第一代导航与定位系统——美国海军的“子午仪”系统,其最初的设计目的就是为了增强弹道导弹核潜艇的精确制导能力。中国的研究人员也在进行类似的研究。GPS不断扩大的市场占有率也刺激了中国在商业领域使用“北斗”系统的兴趣。根据评估,到2008年整个GPS的市场前景将达到220亿美元。除了运输业和个人移动通讯领域的运用,一些大型企业还需要GPS为它们提供精确的授时服务。卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。
2000年,首先建成北斗导航试验系统,使中国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。2019年4月20日,第44颗北斗导航卫星发射成功。2019年5月17日23 时48分,中国在西昌卫星发射中心用长征三号丙运载火箭,成功发射了第四十五颗北斗导航卫星。扩展资料在现代化高速发展的中国,不仅是军事用途中,需要强大的导航系统,即使是在民用上,同样也不会例外。尤其是对于沿海地区的渔民而言,导航系统更是意义非凡。“北斗”系统的全面发展与普及,将为中国带来更加强大的民用导航体系。在经济社会中,不仅是在渔业中需要使用到导航系统。在人们的日常生活中,需要使用到导航系统的时候,也并不算少。从目前的一些相关资料上来看,中国导航系统的需求异常强大。“北斗”系统全面普及之后,必将促进中国经济的进一步发展。参考资料来源:百度百科—北斗导航定位卫星系统 0 1 May513514009来自百度知道认证团队 2019-09-21随着导航定位产业的发展,我国自主研制的北斗导航定位系统已在我国国民经济各方面发挥了重要作用,北斗系统从研制之初,就按“三步走”的战略发展,先后建成了北斗一号、北斗二号、北斗三号系统。1994年,启动北斗一号系统工程建设,2000年,发射2颗地球静止轨道卫星,建成系统并投入使用,采用有源定位体制,为中国用户提供定位、授时、广域差分和短报文通信服务,2003年,发射第3颗地球静止轨道卫星,进一步增强系统性能。2004年,启动北斗二号系统工程建设,2012年年底,完成14颗卫星(5颗地球静止轨道卫星、5颗倾斜地球同步轨道卫星和4颗中圆地球轨道卫星)发射组网。北斗二号系统在兼容北斗一号系统技术体制基础上,增加无源定位体制,为亚太地区用户提供定位、测速、授时和短报文通信服务。2017年11月5日,北斗三号第一、二颗组网卫星在西昌卫星发射中心成功发射,开启了北斗卫星导航系统全球组网的新时代,截至2019年,北斗三号已经成功发射了20颗卫星,已经形成了覆盖全球的服务能力。扩展资料:2020年,北斗3号的组网建设任务就将完成,届时,有着中国芯的北斗系统就可以全天时全天候为世界各地的每一个角落的用户提供高精度的导航定位。北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。参考资料:百度百科-北斗卫星导航系统 0 2 推荐于 2017-11-26中国开展卫星导航与定位研究最早始于上世纪60年代,随后由于受到文化大革命的干扰,研究一度中断直到70年代末才恢复。 1983年,一个名为“双星快速定位系统”的卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。应用领域中国发展“北斗”系统有军民两种用途。与美国相类似,该系统的核心是用于军事目的,但是也可以为民用和商业领域提供多种服务。中国的主要考虑是,一旦爆发冲突,美国很可能关闭GPS系统或者加大民用码的误差。因此,中国认为保护国家利益需要发展不受制于外国的独立的卫星导航与定位系统。中国希望“北斗”系统无论在技术还是应用上,最终都能与GPS相抗衡。卫星定位导航功能在军用和民用上都具有重要用途。美国利用GPS的导航与定位功能所具备的精确制导能力被证明是打赢“信息化战争”必不可少的条件。在有可能与台湾发生的冲突中,精确制导能力更为重要,中国希望通过此种能力减少附带损伤。解放军还可以通过“北斗”系统的双向通信功能随时与己方部队联络并监控他们所处的位置。卫星导航与定位技术还可以运用到解放军的对潜通讯上,潜艇可不再需要上浮即可接收卫星信号。解放军海军的下一代弹道导弹潜艇可通过使用“北斗”系统获得更准确的目标定位信息,增强潜射导弹的精确制导能力。事实上,世界上第一代导航与定位系统——美国海军的“子午仪”系统,其最初的设计目的就是为了增强弹道导弹核潜艇的精确制导能力。中国的研究人员也在进行类似的研究。GPS不断扩大的市场占有率也刺激了中国在商业领域使用“北斗”系统的兴趣。根据评估,到2008年整个GPS的市场前景将达到220亿美元。除了运输业和个人移动通讯领域的运用,一些大型企业还需要GPS为它们提供精确的授时服务。卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。
北斗导航系统是覆盖我国本土的区域导航系统。覆盖范围东经约70°一140°,北纬5°一55°。gps是覆盖全球的全天候导航系统。能够确保地球上任何地点、任何时间能同时观测到6-9颗卫星(实际上最多能观测到11颗)。基本数据北斗导航系统是在地球赤道平面上设置2颗地球同步卫星颗卫星的赤道角距约60°。gps是在6个轨道平面上设置24颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。航卫星为准同步轨道,绕地球一周11小时58分。定位原理北斗导航系统是主动式双向测距二维导航。地面中心控制系统解算,供用户三维定位数据。gps是被动式伪码单向测距三维导航。由用户设备独立解算自己三维定位数据。“北斗一号”的这种工作原理带来两个方面的问题,一是用户定位的同时失去了无线电隐蔽性,这在军事上相当不利,另一方面由于设备必须包含发射机,因此在体积、重量上、价格和功耗方面处于不利的地位。定位精度北斗导航系统三维定位精度约几十米,授时精度约100ns。gps三维定位精度p码目前己由16m提高到6m,c/a码目前己由25-100m提高到12m,授时精度日前约20ns。用户容量
中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度米/秒,授时精度10纳秒。2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规范(版)》和《北斗系统空间信号接口控制文件(版)》两个系统文件。2014年11月23日,国际海事组织海上安全委员会审议通过了对北斗卫星导航系统认可的航行安全通函,这标志着北斗卫星导航系统正式成为全球无线电导航系统的组成部分,取得面向海事应用的国际合法地位。中国的卫星导航系统已获得国际海事组织的认可。
是真的。因为高杏欣从小性格较为孤僻,对很多事物感到不满和憎恶,她在论文中表达出了她的卖国想法,确为卖国行为,受到大家的谴责。
学霸高杏欣:一篇论文引全国怒骂,父亲因她免职,卖国是假的,很有可能是她自己不满意自己父亲的做法,故意用这个事来报复自己的父亲。
个人查阅资料所得:古人对北斗七星不仅是偏爱,简直就是崇拜,这与华夏古老的农耕文明密不可分。为了更好开展农畜生产,从上古时期开始,先民们便观察天文星象,探索物候变化,而华夏文明的主要源头在黄土高原一带,炎帝、黄帝均发源于此,该地区夜空高照的正是北极星和北斗七星(天枢、天璇、天玑、天权、玉衡、开阳、摇光),北斗七星自然成为被观察、研究的首选对象,久而久之,成为先民最爱。
北斗七星,又称 "犁头 "或 "七星",是北半球一个突出的星座,长期以来一直被认为是中国文化和帝国文化的一个重要象征。
在中国古代,北斗七星往往与皇帝有关,被认为是皇权和权威的象征。皇帝经常被称为 "北极星",因为他被认为是帝国的中心和指导力量,就像北极星是北斗七星星座的中心和指导力量一样。
北斗七星还与中国人的天命信仰密切相关,天命信仰认为皇帝是由神灵选择来统治的,他通过天命掌握权力。皇帝的合法性被认为与北斗七星的运动有关,如果皇帝失去了天命,人们相信北斗七星会离开它的位置,皇帝就会失去权力。
北斗七星也是科举制度中的一个重要标志。作为北极星的皇帝会选择聪明和有才华的官员来帮助他治理帝国,就像北斗七星被神灵选中来指导皇帝一样。
除了其象征意义外,北斗七星也是导航和计时的重要工具。中国的天文学家和航海家利用北斗七星的位置来确定万象,并测量时间。
总之,北斗七星在帝国文化中发挥了重要作用,它与皇帝和他的权力、天命和科举制度有关。它也是导航和计时的重要工具。
1. 调整纸张大小为B5。2. 将具体的文字内容准备好(中英文摘要目录正文结论参考文献致谢附录等等),按照一定的顺序排序(学校给出的顺序)。3. 调整字体格式。· 封面套用学校给的格式即可,然后将其他的字体全选,统一调整为正文所需字体字号(一般为宋体小四,首行缩进2字符,行距为固定值20磅,大纲级别正文文本)· 接下来是各级标题格式了。一般情况下,摘要、章节标题,结论、附录、参考文献之类的都是一级标题,其余的是二级三级标题,以此类推。这里仅以一级标题举例。方案一: 选中摘要二字,按照要求调整格式。然后对后面的内容,统一用格式刷刷过去便是了。需要注意,格式刷有时候会忽略一些段落特征,比如首行缩进或者行距,所以用完需要检查。方案二:有一个东西叫做样式与格式(格式——样式与格式)选中标题1(一级标题)右侧的小标,修改格式为模板要求格式(左下角格式,字体段落之类的都可以修改,不再赘述)。然后后面的一级标题就可以直接选中,然后点标题1,就直接改好了,不会出错。二级标题和三级标题等以此类推。4.图表格式。· 先是图表标题,表标题在表格上方,图标题在图片下方,左下角需标明数据来源。· 修改字体字号,一般为宋体五号或者小于五号。单元格对齐方式为居中对齐,行距固定值18磅。表4-1指的是第四章第一个图表,其余图表需要按照顺序排序。
无线通信息技术的发展及在数字化社区中的应用1、无线通信技术的发展过程回顾通信发展的历史,我们发现了一个非常有趣有过程:1832年莫尔斯发明了电报,它传送的信息是由众所周知的点划码组成的,即人类最早的通信是采用数字方式进行的。以后贝尔又发明了电话,并由此造就一个电信产业。一个多世纪以来,以电话服务为主的电信业走了一条成功之路,取得了极大的发展。然而随着人类社会的发展,电信业务也从早期的电报、电话发展到今天多种业务并存的局面,通信的规模也发生了翻天覆地的变化。随着科学技术的发展,现代通信又进入了数字时代。20世纪90年代信息革命的浪潮,建设信息高速公路的号角声,信息和知识爆炸式的增长,特别是因特网商用化后的迅猛发展,使传统的电信业受到巨大的震动和冲击。带给我们的启示是,问题的核心在于“信息”。在信息和知识已成为社会和经济发展的战略资源和基本要素的时代中,人们更加需要随时随地获取信息,原来点对点的固定电话通信方式已远不能满足需求了。人类需要宽带的无线通信技术,来满足多媒体化、普及化、多样化、全球化和个性化的信息交流。无线通信是指采用电磁波进行信息传递的通信方式。早在1897年,马可尼使用800KHZ中波信号进行了从英国至北美纽芬兰的世界上第一次横跨大西洋的线无电报通信试验,开创了人类无线通信的新纪元。在无线通信初期,受技术条件的限制,人们大量使用长波及中波进行通信。20世纪20年代初人们发现的短波通信,直到20世纪60年代卫星通信兴起前,它一直是远程国际通信的重要手段,并且目前对应急通信和军用通信依然有一定实用价值。20世纪40年代到50年代产生了传输频带较宽、性能较稳定的微波通信,成为长距离大容量地面干线无线传输的重要手段。模拟调频传输容量高达2700路,亦可同时传输高质量彩色电视信号;尔号逐步进入中容量至大容量数字微波传输。80年代中期以来,随着频率选择性色散衰落对数字微波传输中断影响的发现及一系列自适应衰落对抗技术与高状态调制与检测技术的发展,使数字微波传输产生了一个革命性变化。特别应该指出的是20世纪80年代到90年代发展起来的一整套高速多状态自适应编码调制解调技术与信息号处理及信号检测技术,对现今卫星通信、移动通信、全数字HDTV传输、通用高速有线/无线接入,乃至高质量磁性记录等诸多领域的信号设计与信号处理及应用,发挥了重要作用。随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段;第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS.第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行,频段扩展至900MHZ~,而且除公众蜂窝电话通信系统外,无线寻呼系统、无绳电话系统、集群系统、无中心多信道选址移动通信系统等各类移动通信手段适应用户市场需求同时兴起并各显神通。第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。对于第三代移动TMT-2000纷纷参与标准的制定,经多次融合努力在1999年10月25日至11月5日芬兰赫尔辛基召开的ITU-R TG8/1第18次会议上5类RTT技术标准共6种方案成为最终结果。中国的TD-SCDMA方案也已成为其中之一。应该指出,UTRAWCDMA DS及TIA cdma2000MC的相应起步样机已经诞生,包括以GSM、csmaOne后向兼容为基础的第二代半过渡设备(G)EDGE、cdma IS-95B HDR(峰值速率,64QAM调制)及cdma2000-1X等亦已推出。此外,为接续Internet移动游览应用的无线应用协议(WAP)与无线连接技术蓝牙(Blue tooth)已经产生。从网络的角度来看,接入网可分成有线接入网和无线接入网、光缆同轴混合接入网、铜线电缆、对绞线、电话(一般为铜线)接入网等等;无线接入技术是近些年迅速发展起来的新技术领域,它从概念上产生了一个重大的飞跃,即不需要缆线类物理传输媒质而采用无线传播手段来代替部分接入网甚至入网的全部,从而达到降低成本、提高灵活性和扩展传输距离的目的。无线接入网品种繁多,如移动卫生系统,蜂窝移动通信系统,集群通信系统,一点到多点微波通信系统,微波蜂窝的无线本地接入系统(PHS、PAS、PACS、DECT)等。短距离之内的接入技术主要有蓝牙(Blue tooth)、红外线、DECT、和共享无线接入协议(SWAP)/HomeRF等系统。继广域网(WAN、Wind、Area Network或城域网,MAN,Metropolitan Area Network)、局域网(LAN,Local Area Network)之后,最近人们又提出了“无线个域网”(WPAN、Wireless Personal Area Network)。这一新概念将小范围应用提升至网络理论的高度。在短短的时间,WPAN成为一个受人瞩目的新热点,WPAN的研究组成立不到1上,就演变为IEEE的专门工作组(即WPAN Working Group,于1999年3月成立),可见其受重视的程度。比较而言,Blue tooth系统更具有代表性,它正根据WPAN的概念向前发展。事实上,Blue tooth和WPAN的概念相辅相成,Blue tooth已经是WPAN的一个雏形。从它最初由Ericsson,IBM,Inter,Nokia和Toshiba公司作为原始发起组织而推出,1年多时间已吸引了近2000个国际上有影响的公司参与。1999年底,美国的4家公司3COM,Lucent,Microsoft和Motorola,与上述5公司一样作为Blue tooth的发起组织,使它在与SWAP、等类似应用标准的竞争中脱颖而出,发展前景更加明朗。为了推动Blue tooth的发展,Blue tooth的标准是非专利的,Blue tooth已成为目前通信领域的一个新热点,预计不远的将来就可成为小范围无线多媒体通信的国际标准。总之,无线通信技术前景一片光明。2、我国无线通信技术的发展当前,中国是世界各国通信技术运营商和设备制造商关注的焦点,大家都希望在中国的市场上占有自己的发展空间和市场份额。移动通信在中国发展十分迅速,中国移动通信的走向一直为世人所瞩目。1987年11月,我国广东正式开通了第一个TACS制式模拟蜂窝移动通信系统,实现了移动电话用户“零”的突破。1994年底,广东又首先开通了GSM数字蜂窝移动通信系统,至1995年,全国已15个省、市也相继开通了GSM移动通信网。迄今为止,全国各省、自治区、直辖市面上都建设了GSM网,实现了国内和国际的全自动温游。目前我国正在积极准备在21世纪初期开展第三代移动通信的商用试验。从1987年至今,我国移动电话用户数的增长很快,尤其是GSM网更是以人们始料不及的速度在迅猛发展。这主要是因为GSM系统在技术和经济方面均比TACS系统有较大的优势,更重要的是我国在GSM运营领域引入了竞争机制,促进了GSM网的发展。我国的移动通信用户已超过了8000万,位居世界第二。近10年来,我国在移动通信领域的科研、设备生产等方面也取得了可喜的进步。国产移动通信设备—交换系统、基站和手机等都已经投入生产,并陆续投放市场,第三代移动通信系统的开发和研究也正与世界同步。可见,中国无线通信在运营业与制造业上已取得了第一阶段的成功。3、今后无线通信技术的趋势21世纪的电信技术正进主一个关键的转折时期、未来十年将是技术发展最为活跃的时期。信息化社会的到来以及IP技术的兴起,正深刻的改变着电信网络的面貌以及未来技术发展的走向。未来无线通信技术发展的主要趋势是宽带化、分组化、综合经、个人化、主要特点体现为以上几个方面:(1)宽带化是通信信息技术发展的重要方向之一。随着光纤传输技术以及高通透量网络节点的进一步发展,有线网络的宽带化正在世界范围内全面展开,而无线通信技术也正在朝着无线接入宽带化的方向演进,无线传输速率将从第二代系统的向第三代移动通信系统的最高速率2Mbit/s发展。(2)核心网络综合化,接入网络多样化。未来信息网络的结构模式将向核心网/接入网转变,网络的分组化和宽带化,使在同一核心网络上综合传送多种业务信息成为可能,网络的综合化以及管制的逐步开放和市场竞争的需要,将进一步推动传统的电信网络与新兴的计算机网络的融合。接入网是通信信息网络中最具开发潜力的部分,未来网络可通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,接入核心网实现用户所需的各种业务。在技术上实现固定和移动通信等不同业务的相互融合,尤其是无线应用协议(WAP)的问世,将极大地推动无线数据业务的开展,进一步促进移动业务与IP业务的融合。(3)信息个人化是下世纪初信息业进一步发展的主要方向之一。而移动IP正是实现未来信息个人化的重要技术手段,在手机上实现各种IP应用以及移动IP技术正逐步成为人们关注的焦点之一。移动智能网技术与IP技术的组合将进一步推动全球个人通信的趋势。(4)移动通信网络结构正在经历一场深刻的变革,随着网络中数据业务量主导地位的形成,现有电路交换网络向IP网络过渡的趋势已不可阻挡,IP技术将成为未来网络的核心关键技术,IP协议将成为电信网的主导通信协议。随着移动通信通用分组无线业务(GPRS)的引入,用户将在端到端分组传输模式下发送和接收数据,打破传统的数据接入接式。以IP为基础组网,开始了移动骨干网IP应用的实践。4、无线通信技术在数字社区中的应用无线通信技术的发展为实现数字化社区提供了有力的保证,数字化社区提供了有力的保证。数字化社区的特点是信息的交流非常的广泛和方便,无论是实验室、办公室还是家庭,计算机及其外设的应用越来越普及,社区中的设备也都有电脑控制。如果它们之间的通信仍然采用有线方式的话,这将给使用带来很大的不便。Blue tooth技术为我们建立一个全无线的工作环境和生活环境,Blue tooth标准已制定了和计算机以及与Internet、PSTN、ISDN(Integrated Services Digital Network)、LAN、WAN、xDSL(xDigital subscriber loop)等网络的接口协议,其目标是用单一的Blue tooth标准来建立起和众多国际标准的连接。目前它用1Mb/s的速率已完全可以胜认这些工作,将来根据的发展计划,可以将速率提高到20Mb/s以上。我们可以使用无线电缆来连接办公室和家庭中的电子设备,甚至包括键盘、鼠标等也采用无线传输。我们拥有一个无线公务包,以便携计算机和掌上计算机为代表,采用无线方式和其他设备或网络相连接,使我们拥有一个可流动的办公室。Internet和移动通信的迅速发展,使人们对电脑以外的各种数据源和网络服务的需求日益增长。数字照相机、数字摄像机等设备装上Blue tooth系统,既可免去使用电缆的不便,又不可不受内存溢出的困扰,随时随地可将所摄图片或影像通过同样装上Blue tooth系统的手机或其他设备传回指定的计算机中。PDA(Personal Digital Assistant)装上Blue tooth系统后,采用无线方式收、发E-mail甚至浏览网页将更为方便。Blue tooth的硬件电路可以做到微型化,在Headset上应用非常合适。装上Blue tooth系统的Headset可以使它和手机进行无线连接,也可以使人在小范围内自由走动地打电话、收听音乐,在较大的范围内召开电话会议。微型化、低功耗和低成本的特性给Blue tooth在人们日常生活中的应用开拓了近乎无限的空间。例如,Blue tooth构成的无线电电子锁比其它非接触式电子锁或IC锁具有更高的安全性和适用性,各种无线电遥控器(特别是汽车防盗和遥控)比红外线遥控器的功能更强大,在餐馆酒楼用膳时菜单的双向无线传输或招呼服务员提供指定的服务(如添茶、加饮料等)将更为方便等。利用蓝牙做出来的传感器可以随时监视家庭中的冰箱存量的变化,从而随时反映出用户所需要的物品,如果再连接到Internet上的话,可以实现网上购物。未来的信息家电将以Internet和家庭网络为基础、以无线连接实现双向传输,是具有一定智能的3C(Computer、Communication和Consumer)相融合的信息产品。以蓝牙技术设计的数字手机、家庭及办公室电话、小型PBX等电话系统,实现了真正意义上的个人通信。蓝牙提供了低成本、低功耗的无线接入式,顺应了现代通信技术和应用的发展潮流,在信息家电和移动通信等方面具有巨大的发展潜力。蓝牙技术自提出以来,在短短的2年内已风靡全球。根据市场调查和预测,1999年蓝牙技术的产品全球销量几乎为零,2000年猛增到3670万美元,2001年将在到亿美元,2006年可达到到亿美元;2002年,全球使用蓝牙技术的计算机外围设备将达到亿台,使用蓝牙技术笔记本电脑将达到2500万部;2003年全球90%以上的笔记本电脑将使用蓝牙技术,2006年全球将推出亿台使用蓝牙技术的信息家电。回顾无线通信的发展历程,个人通信的移动性与无缝隙覆盖多媒体综合业务需求将愈来愈突出。频谱延伸至毫米波、亚毫米波的电磁“无线光纤”乃至激光与粒子通信范畴的无线通信将有愈来愈广阔的活动舞台及光明的发展前景。市场是发展的驱动力。尽管我国的移动通信和互联网发展十分迅速,但我国目前的移动电话和网络用户普及率还很低,面对我国12亿人口,我国在网络规模和容量方面有很大的发展空间。同时,竞争局面的形成,促使运营企业积极拓展新业务、新应用,向用户提供丰富的选择,以满足用户多方面、多层次的需求。因此,在移动通信和互联网上的应用开发也有很大的发展潜力。我们要积极促进无线领域的科技进步、技术创新,为实现科教兴国战略,增强中华民族的综合国力,为全球信息化及经济全球化环境下的国际社会与全人类的发展而积极贡献力量。
卫星通信双线极化天线馈源阵列分析的论文
摘要 :本文介绍了一种用于Ku频段卫星通信的双线极化天线馈源阵列,该馈源阵列可应用于单反射面或双反射面的卫星通信天线中,实现对通信卫星的小角度、高速、高精度电子波束扫描和跟踪,降低卫星天线对机械伺服结构精度和动态跟踪的要求,从而大幅降低伺服系统成本,拓展动中通卫星天线在民用领域的应用。
关键词 :馈源阵列;动中通;微带天线
1引言
星地动中通天线系统满足了用户通过卫星在动态移动中传输宽带数据信息的需求,使车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星,不间断传送语音、数据、图像等信息[1][2]。目前,动中通天线主要用Ku频段与固定轨道卫星进行通信[3],需同时覆盖上行/下行频段,其中上行频段为,下行频段、,上行和下行频段为双正交的线极化。为保证卫星与地面移动设备间的流畅通信,动中通天线要实时指向通信卫星,同时为避免天线发射时对邻近卫星的干扰,移动设备在运动中天线的跟踪误差要小于°,并且馈源也要进行旋转跟踪,接收和发射间的极化隔离度要大于30dB[4][5]。国内外已有多家企业推出了动中通天线产品,如以色列RaySat公司的多组片天线、美国TracStar的IMVS450M产品等[6]。为满足天线对卫星的高精度实时跟踪对准的要求,上述动中通天线中均包含有自动跟踪系统,在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。在载体运动过程中,测量出载体姿态的变化,通过数学运算变换为天线的误差角,通过伺服机构调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星保持在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。高精度的伺服系统始终是传统动中通天线系统的关键部分。通常情况下,由于动中通天线具有较大的口径(一般约为)及重量,造成了高精度伺服系统具有较高的成本。目前,应用于动中通天线的高精度伺服系统成本动辄数万、甚至超过十万,占整个动中通天线系统成本的很大部分,限制了动中通卫星天线在民用领域的广泛应用[5]。
2双线极化天线馈源阵列
为了克服现有的动中通天线跟踪伺服系统所需精度高、成本高等缺点,我们开发了一种双线极化天线馈源阵列,可应用于单反射式或卡塞格伦式卫星通信天线中,结合后端的多通道数字波束形成(DigitalBeamForming,DBF)技术实现天线系统的机电融合跟踪,最终通过“大角度低精度机械跟踪”与“小角度多通道DBF精确跟踪”相结合,在实现天线系统对卫星的高精度跟踪对准的同时,降低对伺服系统的精度要求,从而降低伺服系统的成本。此馈源阵列为中心对称式结构,阵列的中心放置在单反射式或卡塞格伦式天线的焦点处,当对阵列中不同单元进行馈电时天线将辐射不同指向的高增益波束,此时再结合后端的高精度DBF技术可实现小角度范围内高精度的波束指向控制。馈源阵列采用基于微带印刷电路板的“法布里-帕罗”天线形式,阵列由三层结构组成,其中底层为带金属地板的微带反射板,中间层为微带形式的天线结构,顶层为一块起增强定向性作用的纯介质板。
底层结构
馈源阵列的底层为一侧附铜并开有8个馈电孔的介质板,SSMA以及空心铜柱通过馈电孔焊接在底层介质板上,发射天线馈口和接收天线馈口分别有4个馈电孔。图2为底层电路板结构示意图。
顶层结构
顶层介质板是将覆铜板全部刻蚀掉的介质板,构成了“法布里-帕罗”的上层结构。图3为顶层电路板结构示意图。
中间层结构
中间层电路板两侧分别刻蚀了发射天线、接收天线及其附属馈电线路,其中,为焊接方便,焊盘均在一侧。为隔绝表面波对天线方向图的影响,天线阵列由格状金属条带分割,电路板两侧均有金属条带,并由金属化通孔相互导通。图4为中间层电路板结构示意图。中间层电路板上的微带阵列单元采用一对交叉的金属偶极子结构分别实现收/发的功能,两金属偶极子分别印刷于中间层微带介质板的正面与背面,分别工作于收/发(下行/上行)频段,并且交叉偶极子结构可对应实现收/发所要求的两正交线极化。阵列单元通过同轴底馈的方式实现馈电,其中偶极子的两臂分别与同轴接口的内芯以及外壁通过一段印刷细导线相连,这里采用细导线以减小馈电结构对收/发间隔离的影响。为进一步减小馈电结构对收/发间隔离所带来的影响,在设计中将同一位置处的两偶极子结构通过一段印刷细导线相连,通过其长度、粗细等参数可利用合适的对消手段来实现收/发之间的高隔离。通过在阵列单元周围引入一圈密集的金属化通孔结构,并且在电路板上设计金属附加结构以隔离介质中的表面波,从而降低阵列单元间的互耦。
馈源阵列的装配
馈源阵列的三层电路板由数个尼龙螺柱进行固定,图5是馈源阵列的立体分解及整体装配示意图。在馈源阵列结构中,通过调节金属偶极子的'臂长,可调节天线的工作频率。通过调节顶层介质基板与中间层电路板间的距离,可方便地调节辐射增益以适应不同反射面尺寸及焦距的需求。
3仿真及实测效果
馈源阵列的端口1、端口3、端口5、端口7为接收端口,端口2、端口4、端口6、端口8为发射端口。图6是馈源阵列的仿真和测试回波损耗结果图。由图6可见,接收端口和发射端口回波分别在和范围内小于-10dB,达到了良好匹配。图7是馈源阵列在工作频点的仿真及实测接收方向图。由图7可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低10dB(仿真)/18dB(实测)。图8是馈源阵列在工作频点的仿真及实测发射方向图。由图8可见,工作于时,天线在天顶方向的增益为15dB,副瓣比主瓣低11dB(仿真)/10dB(实测)。
4结束语
本馈源阵列采用微带印刷电路板结构,简单紧凑、工艺成熟、加工简单、成本较低且适用于大规模生产。相比于传统的波导口、波导喇叭等馈源结构,可在较小的面积内实现多个单元以及收/发通道,从而利于实现更高精度的波束指向控制。同时,馈源阵列采用的对消技术可在天线结构端实现同一位置处接收/发射通道之间30dB的隔离度,减轻了后端器件的压力。从实际应用来看,天线馈源阵列与主反射面配合,实现了动中通卫星天线对Ku频段通信卫星的小角度、高速、高精度电子波束扫描和跟踪。采用这种技术,大幅降低了天线对伺服系统精度和动态反应速度的要求,把伺服系统的成本降低了一个数量级,有助于推动卫星天线在天地一体化通信中的规模应用。
参考文献
[1]徐烨烽.创新引领、精进发展、规模应用-谈动中通天线发展新趋势[J].卫星与网络,2013,09:39-40.
[2]LouisJ.,IppolitoJr著.孙宝升译.卫星通信系统工程[M].北京:国防工业出版社,2012,3.
[3]MiuraA.,Yamamotos,Huan-bangLi,[J].,2002,51(5):1153-1164.
[4]刘昌华.移动载体卫星通信系统天线跟踪技术的研究[硕士学位论文].西安电子科技大学,2009,3-4.
[5]汤铭.动中通伺服系统的设计[J].现代雷达,2003,25(4):51-54.
[6]阮晓刚,汪宏武.动中通卫星天线技术及产品的应用[J].卫星与网络,2006,3:34-37.
通信业已经走进了千家万户,成为了大家日常生活不可分割的一部分,如今一些高校也设立了专门的通信专业。下面我给大家带来通信专业 毕业 论文题目参考_通信方向专业论文题目,希望能帮助到大家!
通信专业毕业论文题目
1、高移动无线通信抗多普勒效应技术研究进展
2、携能通信协作认知网络稳态吞吐量分析和优化
3、协作通信中基于链路不平衡的中继激励
4、时间反转水声通信系统的优化设计与仿真
5、散射通信系统电磁辐射影响分析
6、无人机激光通信载荷发展现状与关键技术
7、数字通信前馈算法中的最大似然同步算法仿真
8、沙尘暴对对流层散射通信的影响分析
9、测控通信系统中低延迟视频编码传输 方法 研究
10、传输技术在通信工程中的应用与前瞻
11、城市通信灯杆基站建设分析
12、电子通信技术中电磁场和电磁波的运用
13、关于军事通信抗干扰技术进展与展望
14、城轨无线通信系统改造方案研究
15、无线通信系统在天津东方海陆集装箱码头中的运用
16、分析电力通信电源系统运行维护及注意事项
17、 无线网络 通信系统与新技术应用研究
18、基于电力载波通信的机房监控系统设计
19、短波天线在人防通信中的选型研究
20、机场有线通信系统的设计简析
21、关于通信原理课程教学改革的新见解
22、机载认知通信网络架构研究
23、无线通信技术的发展研究
24、论无线通信网络中个人信息的安全保护
25、短波天波通信场强估算方法与模型
26、多波束卫星通信系统中功率和转发器增益联合优化算法
27、HAP通信中环形波束的实现及优化
28、扩频通信中FFT捕获算法的改进
29、对绿色无线移动通信技术的思考
30、关于数据通信及其应用的分析
31、广播传输系统中光纤通信的应用实践略述
32、数字通信信号自动调制识别技术
33、关于通信设备对接技术的研究分析
34、光纤通信网络优化及运行维护研究
35、短波通信技术发展与核心分析
36、智慧城市中的信息通信技术标准体系
37、探究无线通信技术在测绘工程中的应用情况
38、卫星语音通信在空中交通管制中的应用
39、通信传输系统在城市轨道交通中的应用发展
40、通信电源 系统安全 可靠性分析
41、浅谈通信电源的技术发展
42、关于电力通信网的可靠性研究
43、无线通信抗干扰技术性能研究
44、数能一体化无线通信网络
45、无线通信系统中的协同传输技术
46、无线通信技术发展分析
47、实时网络通信系统的分析和设计
48、浅析通信工程项目管理系统集成服务
49、通信网络中的安全分层及关键技术论述
50、电力通信光缆运行外力破坏与预防 措施
51、电力通信运维体系建设研究
52、电力配网通信设备空间信息采集方法的应用与研究
53、长途光缆通信线路的防雷及防强电设计
54、电网近场无线通信技术研究及实例测试
55、气象气球应急通信系统设计
56、卫星量子通信的光子偏振误差影响与补偿研究
57、基于信道加密的量子安全直接通信
58、量子照明及其在安全通信上的应用
59、一款用于4G通信的水平极化全向LTE天线
60、面向无线通信的双频带平面缝隙天线设计
铁道信号专业毕业论文题目
1、CTCS应答器信号与报文检测仪-控制主板软硬件设计
2、基于ACP方法的城市轨道交通枢纽应急疏散若干问题研究
3、全电子高压脉冲轨道电路接收器的硬件研究与设计
4、实时断轨检测系统中信号采集与通信子系统研究
5、基于模型的轨旁仿真子系统验证及代码自动生成
6、基于全相位FFT的铁道信号频率检测算法研究
7、基于机器视觉的嵌入式道岔缺口检测系统应用
8、铁路信号产品的电磁兼容分析与研究
9、铁路高职院校校内实训基地建设研究
10、铁道信号电子沙盘系统整体规划及设计
11、基于Web的高职院校考试系统的设计与实现
12、铁道信号沙盘模拟显示系统研究
13、联锁道岔电子控制模块的研制
14、基于ARM的故障监测诊断系统设计(前端采集和通信系统)
15、客运专线列控车载设备维修技术及标准化研究
16、驼峰三部位减速器出口速度计算方法研究
17、CTCS-2级列控系统应答器动态检测的研究
18、石家庄铁路运输学校招生信息管理系统的设计与实现
19、铁道信号基础设备智能网络监测器设计
20、基于光纤传感的铁道信号监测系统软件设计
21、铁道信号基础设备在线监测方法研究
22、有轨电车信号系统轨旁控制器三相交流转辙机控制模块的研究
23、基于故障树的京广高速铁路信号系统问题分析及对策
24、站内轨道电路分路不良计轴检查设备设计与实现
25、铁路综合视频监控系统的技术研究与工程建设
26、客运专线信号控制系统设计方案
27、铁路信号仿真实验室的硬件系统设计及其信号机程序测试
28、基于C语言的离线电弧电磁干扰检测系统数据采集及底层控制的实现研究
29、铁路综合演练系统的开发与实现
30、大功率LED铁路信号灯光源的研究
31、牵引供电系统不平衡牵引回流研究
32、CBTC系统中区域控制器和外部联锁功能接口的设计
33、城轨控制实验室仿真平台硬件接口研究
34、ATP安全错误检测码与运算方法的研究与设计
35、LED显示屏控制系统的设计及在铁路信号中的应用
36、客运专线列控系统临时限速服务器基于3-DES算法安全通信的研究与实现
37、基于动态故障树和蒙特卡洛仿真的列控系统风险分析研究
38、物联网环境下铁路控制安全传输研究与设计
39、轨道交通信号事故再现与分析平台研究与设计
40、铁路强电磁干扰对信号系统的影响
41、基于LTE的列车无线定位方法研究
42、列车定位系统安全性研究
43、基于CBTC系统的联锁逻辑研究
44、无线闭塞中心仿真软件设计与实现
45、职业技能 教育 的研究与实践
46、光纤铁路信号微机监测系统数据前端设计
47、LED大屏幕在铁路行车监控系统的应用研究
48、基于微机监测的故障信号研究与应用
49、语域视角下的人物介绍英译
50、基于嵌入式系统的高压不对称脉冲轨道信号发生器设计
通信技术毕业论文题目
1、基于OFDM的电力线通信技术研究
2、基于专利信息分析的我国4G移动通信技术发展研究
3、基于无线通信技术的智能电表研制
4、基于Android手机摄像头的可见光通信技术研究
5、基于激光二极管的可见光通信技术研究和硬件设计
6、智能家居系统安全通信技术的研究与实现
7、基于DVB-S2的宽带卫星通信技术应用研究
8、基于近场通信技术的蓝牙 配对 模块的研发
9、多点协作通信系统的关键技术研究
10、无线通信抗干扰技术性能研究
11、水下无线通信网络安全关键技术研究
12、水声扩频通信关键技术研究
13、基于协作分集的无线通信技术研究
14、数字集群通信网络架构和多天线技术的研究
15、通信网络恶意代码及其应急响应关键技术研究
16、基于压缩感知的超宽带通信技术研究
17、大气激光通信中光强闪烁及其抑制技术的研究
18、卫星通信系统跨层带宽分配及多媒体通信技术研究
19、星间/星内无线通信技术研究
20、量子通信中的精密时间测量技术研究
21、无线传感器网络多信道通信技术的研究
22、宽带电力线通信技术工程应用研究
23、可见光双层成像通信技术研究与应用
24、基于可见光与电力载波的无线通信技术研究
25、车联网环境下的交通信息采集与通信技术研究
26、室内高速可调光VLC通信技术研究
27、面向5G通信的射频关键技术研究
28、基于AMPSK调制的无线携能通信技术研究
29、车联网V2I通信媒体接入控制技术研究
30、下一代卫星移动通信系统关键技术研究
31、物联网节点隐匿通信模型及关键技术研究
32、高速可见光通信的调制关键技术研究
33、无线通信系统中的大规模MIMO关键理论及技术研究
34、OQAM-OFDM无线通信系统关键技术研究
35、基于LED的可见光无线通信关键技术研究
36、CDMA扩频通信技术多用户检测器的应用
37、基于GPRS的嵌入式系统无线通信技术的研究
38、近距离低功耗无线通信技术的研究
39、矿山井下人员定位系统中无线通信技术研究与开发
40、基于信息隐藏的隐蔽通信技术研究
通信专业毕业论文题目参考相关 文章 :
★ 通信工程毕业论文题目
★ 通信工程毕业论文题目
★ 通信工程毕业论文选题
★ 通信工程的毕业论文参考范文
★ 通信工程专业毕业论文参考文献
★ 通信工程的毕业论文(2)
★ 通信工程方面毕业论文
★ 通信工程专业毕业论文
★ 通信工程的毕业论文范例
★ 通信工程的毕业论文范例(2)
中国电信经过几十年的建设和发展,形成了以湖北,上海,广东,西安,四川,福建,新疆大区局及浙江,西藏,贵州等10个国家应急通信一类保障队伍和其他21个省机动局(队)为支柱的全国性应急通信保障体系,同时还配备了31个省公司应急预备队,铸就一支国家战备应急通信和全国性专业信息通信服务体系不可替代的关键力量。
军事技术军事技术是军事科学的重要组成部分,是构成 军队战斗力,决定战争胜负的重要因素,也是衡量国家军事实力的重要标志之一。军事技术的发展,受军事思想和战略、战术的指导,同时也对军事思想、战略、战术乃至军队建设产生重大影响。军事需要是推动军事技术发展的动力。军事技术的发展归根结底取决于国家的经济状况和科学技术的发展水平,即受生产力的制约。科学技术的最新成就往往优先运用于军事,引起军事技术的变革;而军事技术的发展,又在一定程度上促进科学技术的发展。军事技术是建设武装力量、巩固国防、进行战争和遏制战争的重要物质基础,是构成军队战斗力的重要因素。它主要包括:各种武器装备及其研制、生产所涉及的技术基础理论与基础技术;发挥武器装备效能的运用技术以及军事工程和军事系统工程等。武器装备是军事技术的主体,是军事技术发展水平的集中体现。现代军事技术可以按武器装备的种类来区分:如轻武器、火炮、坦克、弹药、军用飞机、舰艇、导弹、核武器、化学武器、生物武器、三防装备、军用雷达、军用光学仪器、军用通信装备、电子对抗装备以及军队指挥自动化系统等;也可以按应用于不同的军种、兵种领域来区分:如海军技术、空军技术、战略导弹部队技术、炮兵防空兵技术、装甲兵技术等。 在现代战争中,军事通信的中枢神经作用显得格外突出。而在现代电子技术、计算机技术、航天技术等高技术基础上发展起来的现代通信技术,则为现代军事通信提供了更加有效的通信工具和更完善的通信手段。毋庸置疑,军事通信技术在战后得到了相当大的发展。让我们来看看这些具有代表性的现代通信技术:载波通信二战以后,军事有线通信技术取得了包括60年代产生的程控交换技术在内的一系列重大进步,其中比较突出的是载波通信与光纤通信技术。载波通信就是利用频率分割原理,在一对线路上同时传输多路电话的通信。其工作原理是:在发信端把各路电话信号分别对不同的载波频率进行调制,将各话路的频谱安排在各自不同的频位上。在接收端,则进行相反的解调过程,把位于不同频位的各话路还原为话音频谱,实现载波多路通信。载波通信除了传输电话信号外,还可以进行二次复用,即利用载波话路来传输电报、传真、数据等等。载波通信有效的利用了有线通信的线路,扩大了信道的容量,提高了传输的速度。在军事信息量不断增加、军事通信要求高效迅速的情况下,载波通信是一种极好的技术手段。载波通信技术产生于20世纪初期,电子管和滤波器发明以后,为实现载波电话通信创造了技术条件。同时,增音器和同轴电缆的发明又为载波通信的发展插上了翅膀。1918年,在美国的匹茨堡到巴尔的线路上开通了第一个载波电话通信系统,每对线通3路电话。到1938年,经过不断改进,可通12路电话。在两次世界大战中,由于战争条件的限制,各参战国(除美国外)的长途有线通信发展很慢。第二次世界大战结束初期,各国均建立了规模巨大的军用长途载波通信系统,通信容量从最初的每对线几路、十几路,发展到几十路、几百路。20世纪60年代初,载波通信设备进入了半导体化阶段。20世纪50年代初,单晶硅制备技术得到了突破性的发展,60年代各种晶体管电子元件相继诞生。半导体晶体管的诞生是电子元件的第二次重大突破,它具有体积小、重量轻、耐震、寿命长、性能可靠、功耗低等电子管无法比拟的优点,有效地促进了电子技术的发展。载波通信的半导体化进一步促进了军事载波技术的发展。到70年代,随着半导体技术的进一步发展和同轴电缆材料与性能的提高,10800路载波电话系统在一些国家的军队中先后投入使用。光纤通信光纤通信是以激光作载体,以光纤维做媒介来实行信息传输的一种新型通信方式。1960年美国科学家梅曼用红宝石制成了世界上第一台激光器,激光技术由此问世。其基本工作原理是,通过从外部对某些物质施加能量,使电子急剧增能,在外来光的激发下,以光子形式经过光学谐振腔的特殊装置,等到聚能放大而发射出来。激光具有很好的相干性、单色性和方向性,可在大气空间、宇宙空间、光波导、光导纤维以及海水中传输,故能作为信号载波应用于通信。由于激光的光束很细、方向性极好,人眼又看不见,因此用激光进行通信具有极好的保密性。不易被敌人截获和干扰,且不受热核辐射的影响。激光技术的产生,为光纤通信创造了技术条件。1955年,英国伦敦大学的卡佩奈在其博士论文中提出了纤维光学技术的基础理论。1970年,廷德尔首次表演了沿电解质管进行光的传输。光通信原理的提出和对于光纤维的研究,激发了人们对利用光纤维进行通信的兴趣。但是要使它真正实现还要有赖于激光技术的成熟、光纤维的制备和光电调制技术。1970年,格拉斯研制成20db/km低衰减的纤维,这是光纤通信的一项重大突破。1971年,日本电星公司生产出一种具有分散折射指数的纤维。1976年,在美国芝加哥展示了试验性光波传输系统(利用玻璃光波导传送由超小型固体激光器和发光二极管发出的光脉冲信息)。1977年,美国及其他国家的一些电话公司建立了实验性的光导纤维系统。80年代以后,光纤通信以逐渐渗透到陆、海、空乃至空间武器装备系统中,成为现代军事通信的重要手段。世界各国军队纷纷以光纤代替原先的金属电缆,美空军后勤司令部已在所有空军基地建立了据称是迄今世界上同类网络中最大的光纤通信网络——“军事基地光纤通信系统”。随着光纤通信技术的发展,光纤通信在现代军事通信中的应用将更加广泛。散射通信第二次世界大战以后,军事无线通信技术也获得了巨大发展,出现了散射通信、无线激光通信、红外通信、移动通信、卫星通信等新的通信形式。散射通信是利用空中传播煤质的不均匀性对电磁波的反射作用进行的超视距通信。大气层中的对流层、电离层和流星余迹等,都具有对入射的电磁波再向多方向辐射的特性。利用这些煤质将视距传播的电磁波传送到视距以外,即可进行远距离通信。对流层散射通信即用对流层对超短波或微波的反射作用来实施超视距通信。军用对流层散射通信有固定式和移动式。流星余迹通信则是利用流行穿过大气层高速运动造成的短暂电离痕迹对无线电波的反射或散射作用进行远距离瞬间通信。流星余迹通信传输受核爆炸及太阳耀斑的影响较小,电波反射的方向性强,隐蔽性好,信号不易被截获,适用于远距离小容量的军事通信。第一条对流层散射通信线路于1955年在美国建立,全长2600公里。中国于50年代中期开始研究,于60年代初研制出对流层散射通信设备。在军事通信中,由于散射通信比短波无线电通信稳定,并可多路传输,比起微波、超短波接力通信来可以不建或少建中间转接站,而且不受高山、海峡、海港等天然障碍地带和被敌占区阻隔的限制,所以在第二次世界大战以后许多国家都大力进行研究开发,用于军事战略通信和战术通信。20世纪60年代以后,随着激光技术与微电子技术的发展,军事无线通信中出现了大气激光通信和红外线通信。大气激光通信是利用大气空间作为激光信号的传输媒介来实现信息传递的。发信时,将传送的信号经信息终端、光调制器及激光器转换为激光信号,然后经光学发射天线将激光信号发射出去,通过大气空间传送到对方;收信时,光学接受天线将激光信号接受下来送至光检测器,转换成电信号到信息终端,信息终端再将电信号转换为原来的话音或图像等信息。大气激光通信的优点是通信容量大,不受电磁干扰,保密性强,设备轻便。但通信距离较近,可靠性较差,且需要比较精密的设备,所以在军事通信中一般最为辅助通信手段,用于边防哨所、海岛之间以及跨越江河峡谷等近距离定点通信。红外线通信则是利用红外线传输信息的一种光通信方式,红外线是一种能在大气空间作直线传输但不能为人眼所觉察的电磁波。红外线通信的优点是:红外线沿一条直线传播,方向性强,不易被敌发现,保密性好,不受天电和其他电磁波的影响,抗干扰性能强,设备简单,造价低廉。主要缺点是受地形、天候和烟尘等影响较大,并且只能在直视距离以内使用,在军事上大多用于战术通信。卫星通信二战以后,军事无线通信技术取得的最大成果是军事卫星通信技术的产生和发展。1945年,美国的克拉克提出了用卫星进行通信的设想。1946年,曾有人用雷达向月球发射微波信号,结果准确的收到了从月面反射的回波,从理论上证明了利用卫星进行无线电通信的可行性。1957年,苏联第一课人造地球卫星发射成功,为卫星通信技术的产生和发展铺平了道路。1958年,美国发射了世界上第一个试验性的有源通信卫星。1960年,美国的皮尔斯等人首次实现了用人造地球卫星Echo-I作无线电反射器,Echo-I是一颗无源通信卫星,靠反射电波来完成通信。由于入射波的能量得不到补充,反而消耗在卫星到地球的路程中,所以地面接收到的信号是很微弱的,只有经过放大才能达到有效通信。经过两年的努力,到1962年利用Echo-I进行北美与欧洲的通信获得了成功。1962年,美国发射了第一个有源通信卫星Telstar。有源通信卫星装有接收机和发射机,可接收和发送信号。通过Telstar通信卫星实现了横跨大西洋的电视和电话传输。卫星通信技术产生以后,立即便用于军事目的。20世纪60年代初,美国军方委托伍德里奇公司研制出“国防通信卫星”并投入使用,成为为美国国防部各部门提供通信线路和直接支援全球军事通信与指挥的系统。1971年至1989年底,美国又发射了16颗更为先进的“国防通信卫星III”。与此同时,美国还发展了各军兵种使用的通信卫星。1978年至80年代末期,美国发射了8颗由TRW公司研制的舰队通信卫星。该系统由美国海军负责管理,约800艘舰船、100艘潜艇和空军的数百架飞机和一些地面终端使用。1976年,美国开始部署空军通信卫星系统,1979年投入使用,1981年开始全面工作,系统连接包括预警机、侦察机、战略轰炸机、洲际导弹指挥所在内的地面和机上终端。90年代以后,美国还研制和发射了具有较强抗核加固的抗干扰能力,能保证和战争条件下通信顺畅的新一代军用通信卫星战略战术和中继卫星(MILSTAR)。除了美国之外,其他国家和国际军事组织也大力发展军事卫星通信技术。北约组织于70年代初发射了3颗“纳托”通信卫星;法国于1984年和1985年分别把“电信-1A”、“电信-2B”发射到地球同步轨道;英国于1969年、1970年、1974年和1988年分别发射了“天网-1”、“天网-2”、“天网-4”军用通信卫星;苏军于1965年发射了“闪电-1”、军事通信卫星74颗,70年代后又发射了改进的“闪电-2”、“闪电-3”卫星近50颗;中国于60年代发射“东方红”地球卫星后,也发展了军事卫星通信。利用人造地球卫星进行军事通信具有通信距离远、传输容量大、可靠性高、灵活性强和造价便宜等优点,成为当代军事通信的理想形式。第二次世界大战以后,在军用无线电通信技术方面,还发展了自动转接的移动通信技术。移动通信即通信双方或一方处于运动状态中,以移动电台通过固定通信台转接进行的通信联络。用于移动通信的主要设备是各种便携式、车载式、船载式的超短波电台和短波电台。通过地面无线电设备与有线电话交换中心连接,移动电话还可与近距离或远距离的有线电话通信。人们早就希望有一种便携的能“自由”通话的工具。20世纪30年代出现了体积小、重量轻的电子管步谈机,采用单工无线电话的工作方式。尽管步话机技术后来有了发展,但由于发射功率小,传输的距离近,而且采用单工方式,送花的同时不能听话,使用不够方便。60年代以后,随着微电子技术和程控交换技术的发展,小型的电台能发射较大功率的信号,固定通信台站可以通过程控交换机接转覆盖区内的任何一个用户。于是移动通信技术迅速地发展起来。移动通信机动灵活,方便迅速,便于军队在机动中及时实施作战指挥,使海陆空军各部队在复杂情况下能够密切配合协同作战,对保障现代条件下的作战具有重要作用。技术发展军用野战电台作为军事通信中特有的通信设备在第二次世界大战以后得到了迅速发展。20世纪50年代,军用野战电台的单边带技术得到了普遍的应用和发展。所谓单边带通信就是发送和接受调幅信号的两个边带中的一个边带信号的无线电通信。单边带电台在传送话音信号时,话音信号和频率合成器产生的高稳定度的低载频信号,加载到发信机的高频信号上,经调制器的作用,产生上下两个载频,再经滤波器把某一边带滤掉,只让另一边带的信号加载到较高的工作频率上,并加以放大,送至天线发射出去。收信机将天线接收射频单边带信号搬回到较低的频率上,并加以放大,送人单边带解调器,在解调器中加入低载频信号,将原话音信号还原出来。单边带技术于1915年发明,1923年进行了横跨大西洋的通信试验,1933年以后为大多数远洋通信所采用。1954年,单边带电台在军用无线电通信系统中迅速发展,取代了普通的调幅电台。50年代,大多数国家特别是发达国家普遍使用了单边带战术电台,美军使用的单边带无线电台既有台式的,也有车载的,可通16路报、2路话、1路传真,功率为10千瓦。20世纪60年代以后,随着半导体技术的产生和发展,军用野战电台由晶体管代替了电子管,并在70年代以后大量采用集成电路和大规模集成电路。军用野战电台向晶体管小型化发展,进一步缩小体积,减轻重量,提高了通信容量和可靠性。美军在50年代营连装备的电台是电子管式的AN/PRC-1型,60年代初装备了除末级外均为晶体管的AN/PRC-25型电台,60年代末装备了全晶体管的 AN/PRC-77型电台,70年代装备了微模组件式的AN/PRC-99型电台。经过更新换代,电台的信道数不断增加,信道间隔进一步缩短,通信距离得到扩展,重量随之减轻,集成化程度提高。美军在80年代初期研制成的产品集成化程度已达20%~40%,到80年代后期达到90%以上,发射功率在20千瓦量级,重量在4公斤左右,可靠性比同类电台提高10倍。在采用晶体管、集成电路、大规模集成电路的同时,60~70年代的军用野战电台实现了多波段、多工种、多用途,以便于各兵种配合作战,减少机种,实现一机多用。80年代以后,各国军队野战电台的发展出现了两大趋势。一是由模拟制向模数兼容和全数字化过渡,运用了数字计算和数字处理技术。将数字技术引进通信设备是80年代军事通信技术出现的新动向。性能良好的数字电路逐步取代了传统的模拟电路,大量涌现的数字器件(数字混频器、数字频率合成器、数字滤波器、数字振荡器等)用于军事通信设备。一些发达国家在野战电台中逐步采用了微处理器。它是由一片或若干片大规模集成电路组成,包括技术逻辑部件、指令处理部件以及控制存储或运算的控制器,具有运算和控制功能。在数字处理技术和微型计算机技术发展的基础上,野战电台的保密技术也得到了发展,特别是采用信号压缩技术和数字加密技术,使无线通信信号被截获和破译的概率大大缩小。采用信号压缩技术发出的信号极其短暂,使人难以截获,即使截获了也难以破译。而数字保密技术可以把密钥数做的很大,使人难以破译。二是采用跳频技术等抗干扰技术。跳频技术就是收发双发电台的工作频率,按预定的顺序在一定的频率范围内作同步快速跳变。早期的无线电操作员采用一个时间表来使用工作频率,而跳频系列则是使用一个码序来决定在某一特定的时间应使用什么频率,工作频率每秒钟可跳变数十次、数百次或更多,跳变的频率范围可宽达数十兆赫。采用这种方式发射的信号,不易被敌方干扰,它是在军事通信中抗干扰的主要措施。德国于1981年研制出CHX200机动式和固定式高频跳频电台系统,1983年研制出SEM172甚高频跳频电台;美国于1982年研制出背负式AN/PRC-117型中频跳频电台;瑞典于1985年研制出甚高频跳频电台;英国也在80年代研制出150系列高频跳频电台,供该国和比利时等许多国家的军队装备。这些跳频电台大多数由微机进行控制,能自动搜索信道,自动变频,抗干扰和保密性能十分良好。
信息时代的新变革 信息时代打信息战争,精确制导武器大量运用,使战争样式发生了巨大变革 。 精确制导武器作为时代产物已成为未来武器发展的重要趋势。其分类主要包 括精确制导导弹和精确制导弹药。导弹有防空、反坦克、空空、空地、(舰)地 、地地战术巡航等;弹药主要有炮弹、炸(舰)弹、激光、电视、红外制导弹药 和末敏弹药等。目前,世界上正在使用的导弹有300多种,可谓种类繁多,用途各 异。制导技术大致可分三种:一是微电子制导技术,各发达国家都把它作为最关 键技术放在军事技术发展的首位,主要包括微波雷达制导、智能制导、卫星制导 和全球定位等;二是光电制导技术,它以激光器和先进探测器为基础,主要应用 于军用卫星、侦察机、舰船和车辆的光电侦察。在监视、预警及火控方面,用于 导弹武器的技术主要有电视、红外、激光、光纤和图像匹配制导等,它们制导精 度高,抗干扰能力强;三是水声制导技术,这是海军特有的一项高科技,主要与 人工智能技术和军用光电子技术相结合,对水雷、鱼雷等水中兵器进行精确制导 。 以美国战斧式导弹为例,这种多用途巡航导弹,可海、空发射,且命中精度 不断提高,其误差已达1米以内,它可由 B—2等飞机在1000多公里以外发射,被 袭击的国家很难对飞机进行报复。 远程化 隐身化 通用化 当前,精确制导武器的发展几乎融入了当今信息时代所有最新的科学技术, 特别是以信息技术为核心的高技术发展成果。近年来,世界一些地区的武装冲突 中几乎到处都有精确制导武器的身影,它正在将人类战争推向一个新的历史阶段 。然而,精确制导武器并没有发展到顶峰,主要军事大国都在总结经验教训,力 争进一步改进。 系列化。其一是精确制导使用上的系列化,如反坦克导弹形成了近程单兵携 带型和中、远程车载式及机载型体系。美军“空地一体”的空中反装甲作战中安 排了三个梯次的火力:4公里以内用 A H— I S“眼镜蛇”直升机发射陶式导弹; 5公里左右用 A H—64“阿帕奇”直升机发射“海尔法”导弹;距离远时由空军的 A—10攻击机发射“小牛”导弹。其二是同类精确制导武器的系列化,如防空导 弹已经形成了便携式、低空近程、中高空远程的系列。其三是精确制导武器自身 形成了不同型号的家族系列,如美军“宝石路”空地炸弹的导引头已经发展了三 代,空军的“响尾蛇”导弹发展改进了11个型号,“小牛”发展了7个型号,并广 泛采用了电视、激光、红外三种制导技术。 智能化。其实,目前的精确制导武器仍不如想像得高,只有50%—60%命中率 ,而提高其智能化水平后情况便大不相同了。主要做法是:(1)红外探测方式从 点源探测向成像探测方向发展,以进一步提高目标探测的精度;(2)探测元件从 单元向多元方向发展;(3)采用多种制导头,以对付不同目标或者软件可调,以 适应打击不同目标的需要;(4)采用复合制导技术;(5)信号处理电路由模拟 式向数字化处理方向发展。 远程化。目前,国外市场正在发展各种远射程的精确制导武器,目的之一便 是提高发射平台的生存概率。如美军正在研制“联合防区外发射武器”,并计划 将现有的“陆军战术导弹系统”( A T A C M S)的射程提高到150至250公里, 同时改进现有的“战斧”巡航导弹,增加射程,并采用 G P S辅助制导等。其他 国家正在研制的防区外发射武器有:以色列的 R A F A C P O P E R Y( H A V E N A P)导弹,射程100公里;法国射程为150公里的 A P A C H E子弹药散布 器等。 隐身化。为提高精确制导武器的突防能力,隐身化是重要途径,如美国正在 研制的“联合直接攻击弹药”( J D A M)和“三军防区外攻击导弹”( T S S A M)等。然而,法国专家等认为,提高精确制导武器突防能力,与其花很大力 量研究隐身措施,还不如采用现有的超音速攻击,使对方防御系统来不及反应, 同样可以达到提高生存能力的目的。因此,提高精确制导武器攻击速度也成为一 大发展方向。 通用化。对一种导弹进行改进,使其适应其他各种作战任务需要。当前通用 化的渠道至少有3种:将精确制导某个分子系统改装成按模块化制导,如美“陆军 战术导弹系统”( A T A C M S)为攻击不同目标,可以携带反装甲、攻击硬目 标、反跑道弹头、地雷、反软目标弹药等几种弹头中的任何一种;将一种导弹经 过改造满足另一种作战任务要求。如美“麻雀”空空导弹,经过加装高度表,改 造弹翼,重新设计发射装置,就成了“海麻雀”航空导弹;同一种导弹经改进后 可由不同平台搭载,但仍完成同一种任务。例如“飞鱼”导弹和“战斧”巡航导 弹均可航载,也可以由潜艇发射。目前,大批导弹经改进后,战斗力水平均产生 了新的飞跃。
蓝牙是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换。下面我给大家分享一些大学生蓝牙科技论文,大家快来跟我一起欣赏吧。
蓝牙定位测量
[摘要] 该文描述了一种基于蓝牙的无线室内定位测量系统。一般蓝牙工作使用接收信号强度指示器(RSSI),进行自动发射功率控制以保证稳定的信噪比。取消反馈系统,并应用RSSI产生一系列新的测试 方法 。系统使用安装在一个单元内的视距无线传播模型,测算基准发射器和便携式接收机之间的距离。该系统设计、运行和测试结果证实, 在存在多径干扰条件下,测量范围平均绝对误差可以达到。
[关键词] 蓝牙 定位测量 RSSI
1 简述
精确度大约1m的蓝牙室内定位测量将有助于扩大新的定位服务(LBS)范围。这些服务包括医用定位服务,具有无线传感器的计算机网络,移动数据探测和跟踪系统,用于安全用途的室内电子地图和具有定位识别的智能装置。
室内定位测量需要发展新技术设备。全球定位系统(GPS)要求视距内有4颗卫星以保证精确3-D定位,因此无法室内应用。无绳电话定位系统精确度只有大约100m。室内短距离(10米半径)内,无线电单元可用于测量位置,基于单元识别,但要求安装许多固定、均距的单元以覆盖给定区域。
蓝牙室内定位测量系统工作描述:在一个室内无线电单元内进行接收功率测量,它常用于跟踪固定基准蓝牙发射器和存在多径干扰的视距信道的便携式接收机之间的距离。
2 接收信号强度指示器(RSSI)定位测量
在蓝牙装置中, 接收信号强度指示器(RSSI)数值通常用于使发射功率最小化,以接收到满意的信噪比的信号。在本系统中反馈系统停止工作,发射机(发射功率PTX)和接收机之间距离能通过使用RSSI测量装置和一个无线电传播模型计算得出。
该方法非常适用于室内定位系统。而 其它 室内无线定位技术都不适用,如到达角度(AOA)法,到达时间(TOA)法,和到达时差(TDOA)法。第一种:AOA法,要求有一个特殊天线阵列用于测量接收信号的角度,成本高昂而且仅适用于专用系统。使用扫描技术要求系统有精确的时钟。便携式设备时钟精确度为1μs,但1m的定位误差要求时钟精确度应达到3ns。
这里使用的无线电波传播模型,其公式如下:
PRX=PTX+GTX+GRX+20log(c/4лf)-10n�(d)(1)
= PTX+GTX+�(d)(2)
其中:PRX是接收功率;PTX是发射功率(dB);GRX和GTX是天线增益(dBi);c是光速();f是中心频率();n是衰减因素(在自由空间为2);d是发射器和接收器之间的距离(m)。
蓝牙系统中使用RSSI直接测量接收功率,由一个内置微处理器将数据 报告 数字指示器。使用该装置,RSSI和接收功率之间的关系曲线如图1。
图1 RSSI与接收功率PRX 关系曲线
分析图1,可以得到RSSI和接收功率PRX关系如下:
PRX =-40dBm+RSSI, RSSI>0dB
-60dBm PRX≤-60dBm+RSSI,0>RSSI>-10dB
PRX≤-62dBm,RSSI=-10dB
因此,基准发射器和便携式接收机之间的距离d满足下列公式:
d=10[( +G)/10n](4)
这里,PRX是测得的RSSI值经过公式(3)计算得出,总天线增益G= GTX+GRX
3 系统构成
该定位系统使用商业化的蓝牙开发套件构成。以个人电脑PC作为蓝牙主机,控制蓝牙模块,如图2所示。
定位应用在射频指令行接口(RFCLI)上完成,指令行起到容许用户控制和接入各种蓝牙软件层的作用。软件层分为主计算机界面(HCI)和蓝牙装置。主机通过通用异步接收/发射(UART)进行有线连接控制。板上的UART(HCI硬件接口)控制基带和射频层。
图2 主机和蓝牙装置之间硬件连接
一个基准发射器与便携式接收机进行通讯联系。首先应禁止蓝牙芯片对功率的控制功能。这样做将阻止两设备交换功率控制信息而保持接收功率在其限定范围内(将导致RSSI读值结果为0)。
测量在两种不同环境条件下进行:
无回声室测量。
在无回声室的测量中,确定天线增益G。测量装置设计模拟自由空间环境,频率范围为2~40GHz,衰减因素n=,多径干扰可忽略。天线放置高度为,天线之间最大距离3m。
天线增益G见公式(4),因为其他变量已知,通过计算确定G的平均值是。
办公环境测量
在办公室环境中,使用两试验基准线进行RSSI测量,距离增量为
图3 测量布置图
办公室内存在金属反射波,产生多路干扰。桌椅同样含有金属零部件。
在基线1,天线放置高度恒定为。在基线2,天线放置高度恒定为。初步测量显示,设备放置距离地板高度不同,对测量数据有一点影响。
两天线放置在固定的方向和高度,两者在视距范围内,按分段。利用射频通信(RFCOMM)协议产生一双工无线链路。使用频谱分析仪进行校准11个不同的发射功率:+,+,,,,,,,,和。
针对以上11个报告的基准发射功率,便携式接收机读出相对应的RSSI数值。 假如RSSI值非0,每个均测量20次RSSI值, 记录RSSI平均值。这些测量数据,每个均有一个随机载频,频率范围分布在蓝牙带宽(―)之间。假如RSSI数值为0,无接收数据记录,选择不同的发射功率。所有11个发射功率均应进行试验。
分段距离每次递增,至最大值。
对应11个接收的RSSI值,PRxi在每个分段距离均优化到最大发射功率,PTx1=。实际发射功率和最大发射功率之间的差异值Pdiff=(PTx1一PTxi)(dB),信道与功率呈线性关系,所以通过增加Pdiff将接收到的RSSI值RRxi优化到一恒定发射功率上。
RRxi=PTxi+ Pdiff=PRxi+(PTX1-PTxi)(5)
使用公式(3)和(5)得出:
-40+RSSIi+(PTX1-PTxi), RSSIi > 0dB
RRxi= -60+RSSIi+(PTX1-PTxi),RSSIi�0dB,(6)
数据为空,RSSIi = 0dB 或RSSIi =-10dB
对于接收功率指示器,RRX对应非0时的RSSI数据,由下式给定
11
RRX= 1/x∑RRxi (7)
i=1
图4 接收功率RRX 与距离d关系曲线
(标准化发射功率=)
4 结果
接收功率和距离
优化后的接收功率数值RRX对应相应分段距
离d,d是基准发射器和便携式接收器之间的距离。基线1和2在办公环境的测量结果如图4。
图4显示了多径衰减的影响结果,两测量曲线的振幅均随距离增加而减少。而基线1和2位于办公室的不同位置,测量定位的衰减干扰是不同的。
通过传播模型预测RRx的理论数值,其中PTx=, n=2,G= dBi。
距离d的平均绝对误差{公式(4)计算,PTx=, n=2,G= dBi},对于实际距离和标准偏差如下。
表1 绝对误差和标准偏差
基线1 基线2
平均绝对误差 (m)
标准偏差 (m)
讨论
基于RSSI的蓝牙定位系统测量精度取决以下三因素:
精确的接收功率指示器
蓝牙规格中定义的RSSI值不是专门设计用于测量接收功率(dB)。而RRX作为接收功率指示,可用于距离估算。接收功率测量误差通过利用多路的、优化的发射功率求平均值进行最小化。
在传播模型中正确选择衰减因素和天线增益G。
线性调节分析用于决定衰减因素n和天线增益G,(n=,G=)。这些校正过的数据用在传播模型中,位置精确度将提高约10%。
减小多径干涉的影响
接收功率和距离关系曲线(见图4),显示两测量设备测试值对理论值的波动和偏差。该图显示了进行时域、频率和发射功率平均后的测量结果。
5 结论
在视距(LOS)无线传播模型中,利用一个简单单元,通过禁止蓝牙(自动)传播功率控制的功能,实现蓝牙接收信号强度指示器RSSI值应用于定位测量。
该技术表明可降低平均绝对定位误差到。这适合于大多室内定位服务。不过,需要注意的是,在强烈的多径干扰下,定位误差仍然存在。绝对位置估算需要平均一系列接近的空间位置以增加可信度。
将来工作可能包括在非LOS条件下完成评价系统。利用三角测量可给出在二维平面上的精确定位信息。
参考文献
[1] A. Harder, L. Song and Y. Wang, Towards an indoor location system using RF singnal strengh in ,(April 2005).
[2] Sheng Zhou and John Pollard, Position Measurement Using Bluetooth in IEEE0098/3036/06,(May 2006).
点击下页还有更多>>>大学生蓝牙科技论文