弦振动实验弦振动实验是普通物理力学中的一个基础实验,它是利用电动音叉引发弦线横波,进而形成驻波,来研究横波的叠加现象;验证横波的波长与张力、线密度的关系;并用驻波法测出电动音叉的固有频率。常用的实验方法有两种:一是采用振动频率固定的电动音叉。通过改变弦线长度或张力,形成稳定驻波;二是采用频率连续可调的振动体,改变弦长或张力,形成稳定驻波从而验证弦线上驻波的振动规律。但是用通常的电动音叉测量波长时,受实验条件的影响,测量的数据不是很精确,本文就针对原实验中存在的问题进行探讨,并提出改进的方法。
骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长:320.0mm 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 243.0 243.8 243.7 243.5 1.11 1.12 1.39%2 全音 220.0 220.9 219.2 220.0 1.13 1.12 0.25%3 半音 195.5 196.1 195.0 195.5 1.07 1.06 1.11%4 全音 182.5 181.9 183.1 182.5 1.12 1.12 0.18%5 全音 162.5 162.0 162.3 162.3 1.13 1.12 0.48%6 全音 143.8 143.8 144.2 143.9 1.11 1.12 1.00%7 半音 130.0 129.8 128.7 129.5 1.05 1.06 0.79%8 124.0 122.4 123.2 123.2 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为0.74%,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。
口腔医学专业学生主要学习口腔医学的基本理论和基本知识,受到口腔及颌面部疾病的诊断、治疗、预防方面的训练,具有口腔常见病、多发病的诊断、修复和预防保健的基本能力。以下是我为大家收集的关于研究实验动物在口腔医学研究中的应用的 论文 ,希望大家喜欢!
论文摘要: 医学实验动物学科是医学发展重要的基础和支撑条件,口腔医学的各项研究也都建立在动物实验的基础上。近年来,许多口腔疾病的研究都在短期或长期建立各种口腔疾病实验动物模型,用于各种口腔疾病的病因分析和诊断治疗等研究。
论文关键词: 实验动物口腔医学构建动物模型
当今的时代是生命科学迅猛发展的时代,也是科技创新的时代。实验动物学科作为生命科学特别是医学研究重要的基础和支撑条件,其本身的创新程度对人类健康事业的持续发展具有重要的作用[1- 3]。动物实验在医学研究中有着重要的意义,是医学研究中的重要方法[4],几乎可以说,在医药学、生命科学研究领域内,每一项重大成果都要应用实验动物。近年来,我国实验动物得到不同水平、不同层次、全方位立体发展,成为现代科学发展不可缺少的重要基础条件。实验动物在口腔医学科研中的作用是多方面的,首先,在医学生物学方面: 借助于实验动物来完成各种实验,用以探索疾病的起源,研究各种疾病与衰老的机制,攻克各种疾病,有利于更准确、更全面、多方位、多层次地了解各种口腔疾病;其次,在制药工业方面:新的口腔用药品必须用大量的动物实验进行严格的安全性和有效性评价,对包括啮齿动物、犬或猴等不同进化程度动物进行实验,以证明对机体是否安全可靠。
目前常用于口腔医学科研的实验动物包括大鼠、兔、犬、小型猪等,现就目前常见口腔医学实验动物应用作一综述。
1 大鼠
大鼠口腔的上下左右各有3 颗磨牙,其口腔内部组织的结构、组织病理学都与人类近似,如齿龈沟内上皮表面有角化存在,其口腔内的病原体、菌斑形成及其滋生繁殖等与人类口腔相似。患各种口腔疾病时,其病理学特征也类似人的口腔组织病理,所以,大鼠作为口腔疾病模型在口腔医学科学研究中的应用十分广泛。
1.1建立实验性牙周炎动物模型刘颍凤等在大鼠尼古丁实验性牙周炎动物模型建立的实验[5]中就用36 只SD 大鼠,丝线结扎上颌右侧第二磨牙颈部, 左侧未结扎作为自身对照。
采用组织学、Micro- CT 方法观察大鼠牙周破坏情况。实验证实牙颈部丝线结扎方法可成功地建立牙周炎实验模型,腹腔注射尼古丁可致加重大鼠牙槽骨丧失。陈金富[6]等在齿龈内阿米巴引起牙周病及其致病机制研究中,也应用大鼠感染阿米巴原虫来构建研究所需要的动物模型。
1.2 建立复发性口腔溃疡(RAU)实验动物模型王婷等[7]选用SD 大鼠观察双黄清口胶囊对口腔溃疡的治疗效果。将大鼠分为双黄清口胶囊高、中、低剂组,阳性对照组和空白对照组,连续灌胃给药14 d,进行药效学实验,得出结论为双黄清口胶囊能促进口腔黏膜溃疡的恢复,并具有较好的抗炎止痛作用。张彦表[8]等也以大鼠建立RAU 动物模型,探讨参芪扶正注射液对RAU 大鼠TNF- α、NF- κ B p65 表达的影响。并得出参芪扶正注射液对RAU 大鼠有治疗作用,其机制可能与抑制炎性细胞NF-κB p65 的活化及减少炎性细胞因子的分泌有关的结论。
2 兔
和其他啮齿目动物不同,兔有6 颗切齿,它多了一对小切齿,其上唇分开,左右两侧分别与同侧鼻孔相连。兔是骨折愈合和骨缺损修复研究的常用备选动物,尽管兔下颌骨的解剖与人存在一定的差异,如下颌角处骨皮质薄,下颌骨骨质脆,易劈裂,血运相对较差,下颌体由各牙根充斥,可用骨质不多等[9]。但由于兔繁殖、饲养以及麻醉、解剖等问题的资料都已比较成熟,适用于大样本动物模型研究,又能很好模拟人类的骨折和骨缺损的修复,所以常常应用于下颌骨的治疗研究中。刘瑞峰[10]等就以家兔为实验动物模型,行双侧下颌骨骨切开术,采用内置式牵张器对双侧下颌骨同时进行牵引,研究家兔下颌骨延长术后新生骨回缩情况,确定牵张器的拆除时机。荣小芳[11]等选用30 只健康成年日本大耳白兔建立了兔下颌骨临界骨缺损人工材料植入的动物模型,并在此基础上研究人类骨折愈合和骨缺损的修复等相关问题,收到良好效果。
3 犬
姓名:牛立志 博士职位:广州复大肿瘤医院(海珠院区)副院长
专业:肿瘤外科专家
【个人简介】
于第四军医大学胸心外科博士毕业;暨南大学硕士研究生导师。擅长肿瘤外科手术及微创冷冻治疗,在胰腺癌、肝癌、肺癌、肾癌、甲状腺癌、腹腔肿瘤等实体性肿瘤的微创治疗方面独树一帜,取得了突出的成绩。牛立志博士及其团队完成了世界较多例数(近万例)、复杂的微创冷冻治疗。以牛立志博士为核心的肿瘤微创治疗中心,在冷冻治疗肿瘤方面成就突出,已接受来自马来西亚、印尼、菲律宾、韩国、中国台湾以及南方医科大学、湘雅医科大学等医院医生的培训并指导他们开展冷冻术。迄今为止,牛立志博士接待国内外参观培训共50多人次,其中经国家医学继续教育部门批准,共计举办冷冻治疗培训班4批,学员39名。其治疗的病人从4岁小孩至94岁老人,从部长、明星到普通百姓,均取得了满意疗效。牛立志博士以其精湛的技术被病人誉为"双刀奇侠"!
食管癌患者红细胞变形性研究关键词:食管肿瘤;红细胞变形性【摘要】 目的:研究食管癌患者红细胞变形能力(RCD)的变化及其与食管癌病情及预后的关系。方法:对 100 例食管癌患者50 例头颈部良性肿瘤患者及 100 例健康查体者进行 RCD 测定。结果:食管癌患者 RCD 明显低于正常人(P<0.01),病情越重,RCD 下降越明显。RCD 下降与血液粘度增高、RBC膜过氧化性损害加重有关。血液粘度增高及 RCD 下降有利于肿瘤细胞的附壁、癌性血栓形成,使肿瘤免疫失效,有利于肿瘤生长及转移。结论:改善血流变性、提高RCD,有助于延缓肿瘤生长及转移。中图分类号:R735.1 文献标识码:A 文章编号:1009-4571(2000)06-0598-02Clinical Studies on RCD in Patients With Esophagceal CancerWU Bo.SHANG Xian-rong,LI Feng-yan.(Lai cheng People's Hospital,Laiwu 271100)【Abstract】 Objective:To study the Red cell defo-mability in patients with esophaeal cancer,To investigate patient's condition and prognosis.Methods:To determine Red cell deformabilitly in.100 patients with esophageal cancer.Results:The RCD of esophaneal cancer was lower than that of normals (P<0.01)The more severe the condition,the lower the value of RCD.The mechanism of lowered RCD is related to the increased viscosity of whole blood and lipid peroxidation damage to membrane of RBC. The changes of both contributed to the tumor cell adhesion microthrombi of carcinoma and deficience immunity to tuvor.They aggravated growth and metastases of tumor.Conclusions:The approach which improved hemoviscosity and RCD couldslow down the development of breast cancer and prevent matastases.【Key words】 esophgeal cancer;Red cell deformability食管癌(esophageal cancer,EC)红细胞变形能力(rcd cell deformability,RCD)为观察 RCD 与 EC 发生发展、临床分期、复发及转移与疗效、预后的相关性,我们于1996年6月~1999年12月,对100例EC患者进行了RCD检测,报告如下。1 材料与方法1.1 临床资料EC组(A组):经食管钡透、纤维胃镜及活检明确诊断的住院EC患者 100 例,男 51 例,女 49 例;年龄40~78岁,平均62.5岁。其中治疗前患者组(A1组)45例,临床分期:Ⅰ期 10 例,Ⅱ期 12 例,Ⅲ期 11 例,Ⅳ期 12 例;治疗后患者组(A2组)25 例;食管癌转移组(A3组)20 例;食管癌术后复发组(A4)组 10例。良性肿瘤组(B组):选择头颈良性肿瘤患者 50 例,包括纤维瘤,甲状腺瘤等。男 26 例,女 24 例;年龄39~78岁,平均年龄 62 岁。正常人组(C组):选择健康体检的干部、知识分子及工人,无高血压、冠心病、糖尿病及脑血管病史者 100 例,男 50 例,女 50 例;年龄39~79岁,平均 63岁。1.2 方法RCD 测定:应用国产KBH-30初始滤过细胞变形测定仪(中科院高能物理研究所研制的核孔滤膜孔径 5 mm)。抽取正常人及患者晨空腹肘静脉血 2 ml,注入抗凝试管,进行红细胞滤过指数(IF)的计算,IF越大,RCD越小。2 结果2.1 EC患者与头颈良性肿瘤及正常人IF值比较EC患者IF值均比良性肿瘤患者及正常人增高,提示EC患者的RCD明显较正常人及头颈良性肿瘤患者低(表1)。2.2 EC患者治疗前后及复发和转移的IF 值比较EC患者中,治疗后患者的IF值明显低于治疗前患者,而EC转移及复发者的IF值明显高于治疗前患者,除治疗后患者外,治疗前、转移及复发者的IF值均明显高于正常人。提示治疗后的EC患者RCD基本接近正常人。治疗前、转移及复发者RCD均明显低于正常人,而转移及复发者降低程度更为明显(表2)。表1 三组IF值比较(±s)组别 n IF值 A组 100 0.26±0.10 B组 50 0.21±0.08※ C组 100 0.19±0.06※注:※P<0.01 vsA组。表2 EC患者IF值比较(±s)组别 n IF值 A1组 45 0.25±0.06 A2组 25 0.20±0.05# A3组 20 0.30±0.10#※ A4组 10 0.30±0.09#※注:#P<0.05 vsA1组;※P<0.01 vsA2组。2.3 EC患者IF值与临床分期的关系治疗前临床各期EC患者RCD情况均不同,随病情加重IF值增高,RCD逐期下降,除Ⅰ期外,Ⅱ、Ⅲ、Ⅳ期的IF值均明显高于正常人(表3)。表3 EC患者临床分期IF值比较(±S)临床分期 n IF值 Ⅰ组 10 0.20±0.05 Ⅱ组 12 0.23±0.06 Ⅲ组 11 0.26±0.07# Ⅳ组 12 0.29±0.07※注:#P<0.05 vsI组,※P<0.05 vsI组。3 讨论RBC 的粘性、粘弹性、弹塑性及其综合表现称为 RBC 的变形性或变形能力。RCD 是维持微循环有效灌注的必要条件。RCD 降低与 RBC 的几何图形改变、膜生化特性异常及其内粘度增高有关〔1〕。RCD 降低时,RBC 难以通过口径(5 μm)比其直径(7~8 μm)细的微血管,导致微循环障碍,发生各种疾病。本文 EC 患者的 RCD 较头颈良性肿瘤及正常人明显降低(P<0.01)。且病情越重,降低越显著(P<0.01),显然 RCD 的改变与 EC 的发生、发展有一定关系。由于机体生理生化的改变,引起血流变性的改变,血粘度增高、血小板功能亢进、RBC 聚集,导致 RBC 内粘度增高、其流变性下降。由于血粘度的增高,微循环障碍、组织缺血缺氧,使机体内产生大量自由基,过氧化反应增强,RBC 膜过氧化性损害加重,其变形性下降〔2〕。当机体血粘度增高、RCD 下降、血流缓慢或滞流时,血流中的肿瘤细胞易形成附壁粘着,其周围由纤维蛋白原及血小板包被,使肿瘤免疫及其他杀灭食管肿瘤细胞的手段失效,有利于肿瘤细胞穿过血管壁进入周围组织中,形成新的癌转移灶〔3〕。我们对 EC 患者 RCD 观察分析,认为检测 RCD 对了解 EC 患者的病情及估计预后有重要意义,可改善微循环,降低血粘度,提高 RCD 有助于延缓食管癌的生长、转移,值得进一步研究。参考文献:〔1〕 董蕴.红细胞变形能力下降的机理研究〔J〕.中风与神经疾病杂志,1993,10(3):145-148.〔2〕 贾兵.过氧化脂质对体外微循环中红细胞变形能力的实验研究〔J〕.微循环技术杂志,1993,1(1):8-11.〔3〕 农辉图,黄光武,小杉忠诚,等.喉癌患者的血小板聚集功能检测〔J〕.中华耳鼻咽喉科杂志,1993,28(6):364-366.
光的偏振是光的波动性的又一例证。光的频率、相位和偏振都是标定光特性的物理量,利用这些物理量,可以加载有用的信息,实现通信、存储、计算等
答:1、偏振光实验原理本仪器适用于大学物理实验中的“偏振光的研究”等需要进行光强测量的实验。偏振光实验通常用一个偏振片(起偏器)将透过它的自然光转换为平面偏振光,再用另一片偏振片(检偏器)检测平面偏振光。或者用玻璃板起偏,测量布儒斯特角;2、仪器工作原理实验装置由钠光灯、分光计、起偏器、检偏器、光敏探测器和光强测量仪等组成。在传统物理实验教学中,光强测量通常用硅光电池作为光敏器件,将光强信号转换为电流,再用检流计测量电流。由于检流计的输入阻抗较大(数百欧姆),而光敏器件只有当负载电阻较小时(10欧姆左右),其输出电流才与输入光强成线性关系
可以提高光束质量,改善光的相干性,改善光能量。实际应用:光纤8字形腔偏振锁模超短脉冲激光器,磁光隔离器,偏振干涉,玻片,激光干涉实验,光纤保偏,晶体倍频效应,自相关仪,布儒斯特窗,偏振片,等等等等。
视线追踪技术中广泛运用的方法叫做“瞳孔—角膜反射方法”(the pupil center cornea reflection technique),其所利用的眼动过程中保持不变的特征,是眼球角膜外表面上的普尔钦斑(Purkinje image)——眼球角膜上的一个亮光点,由进入瞳孔的光线在角膜外表面上反射(corneal reflection)而产生。由于摄像机的位置固定、屏幕(光源)的位置固定、眼球中心位置不变(假设眼球为球状,且头部不动),普尔钦斑的绝对位置并不随眼球的转动而变化(其实,头部的小幅度运动也能通过角膜反射计算出来)。但其相对于瞳孔和眼球的位置则是在不断变化的——比如,当你盯着摄像头时,普尔钦斑就在你瞳孔之间;而当你抬起头时,普尔钦斑就在你的瞳孔下方。这样一来,只要实时定位眼睛图像上的瞳孔、和普尔钦斑的位置,计算出角膜反射向量,便能利用几何模型,估算得到用户的视线方向。再基于前期定标过程(即让用户注视电脑屏幕上特定的点)中所建立的用户眼睛特征与电脑屏幕呈现内容之间的关系,仪器就能判断出用户究竟在看屏幕上的什么内容了。定位瞳孔中心的位置是视线追踪技术中的关键一步,但一个问题是,相比于虹膜与眼白之间的极其明显的分界线来说,瞳孔和虹膜之间的分界线并没那么清晰,特别是咱黑眼睛黄皮肤。因此,研究者为了提高这一步的精准度,又设计了“亮、暗瞳差分方案”,即:交替用不同方位的光源向人眼发出近红外线,然后在每两帧相邻的图像中,分别获取用户明亮的瞳孔(bright pupil,亮瞳)和暗淡的瞳孔(dark pupil,暗瞳),进行叠加差分,从而更清晰地“抠”出瞳孔,再计算瞳孔的质心和形状等参数。究竟拍到的是“亮瞳”还是“暗瞳”,这取决于摄像头是否与光源共线。如果摄像头与光源在同一条线上,则摄像头拍到的瞳孔是被光照亮的,也就是“亮瞳”。这和拍照时,相机闪光灯直对着拍摄对象时照片上会出现“红眼”的原理是类似的(忍不住想提一下,百科说红眼是因为闪光灯使瞳孔暂时变大,其实有点扯,首先不相关,其次瞳孔在强光下会变小,不然岂不被闪瞎了眼)。如果二者不共线,则拍到的就是正常的“暗瞳”了。所以,支持亮暗瞳追踪的眼动仪上都有两套位置不同的近红外光源。之所以要用近红外线,是因为人眼无法察觉到,不至于晃眼,影响用户。这些光束很弱,只要研究者按照眼动仪说明书上指示的距离安排用户就坐(比如离眼动仪60cm以上),用户即便在工作的眼动仪前待8个小时也不会有放射性危险。与上述“非侵入式”技术相对应的视线追踪技术,则需要用户与测试设备上的传感器直接接触。比如早期的眼动测试会在测试者的眼睛里塞进一个类似硬质隐形眼镜的东西,监测随着眼睛运动而不断变化的磁场,从而知道你在看什么地方,或者在测试者的眼睛周围贴上电极,监测电位变化。这些方法听着有点慑人,操作起来也麻烦,但获取的数据比较准确。那么,普通的商用眼动测试究竟能有多精确呢?这就得看测试用眼动仪的具体参数了。分空间和时间两个维度:空间上的相关参数有精确度、漂移和屏幕尺寸,时间上的参数是采样率(延时)。比如:Tobii X120的精确度是0.5度,随时间的漂移在0.3度内,如果以用户距离屏幕60cm计算的话,则偏移量约在0.13mm;其采样率为120Hz,则延时在17ms,因为每隔两帧才能算一次瞳孔。但有研究者发现,实际测试中的位置偏差要比这里算出来的值大很多,可能与用户移动头部、或定标问题有关。如果用tobii这一系列做阅读测试的话,很可能无法准确定位用户到底在看界面上的哪一行字。因此在作分析时,要避免太相信结果中所给出的注视点。同时在做测试时,也应尽量遵守实验规范。现在的商用眼动仪一般都能对头动进行补偿计算,但是,即便眼动仪允许用户自由活动,也有一个规定的头动范围,比如Tobii X60和T60型号的头动范围在44×22×30cm(长宽高),而X120和T120的频率高、允许的头动范围更小,为30×22×30cm(长宽高),测试时应保证用户的头动幅度在此范围内。而在定标时,则应允许用户在规定范围内的移动头部,在定标阶段将头动纳入考虑。
尤金.阿瑟瑞斯基的睡梦实验,以及他人的后续研究说明人皆有梦,睡梦发生在快速眨眼活动的浅睡眠阶段,人一晚上大约有六到七次REM活动。 下面来看看,斯坦福大学威廉姆.德门特后续的突破性研究。 斯坦福大学的威廉姆.德门特(William Dement),在阿瑟瑞斯基睡梦实验研究的基础上,对于睡梦剥离后对人体功能的影响进行了后续研究,有了重大发现。 德门特在文章中说到:“既然人皆有梦,我们需要问问从某种程度来说,睡梦是否是我们存在所必须和重要的。” 这个问题,又引出了其它问题:如果一个人的睡梦被全部或者部分剥离,人体功能还能不能正确地发挥?从心理和生理上来说,睡梦是不是人体所必需的? 因此,德门特决定通过研究一些人的睡梦剥离,来试图回答这些问题。开始,他想到让参与者服用抑郁药(depressant drugs,有镇静作用的药物),来防止做梦。由于这些有镇静作用的药物,药效作用太大,结果不可控。 因此,最后决定采用最直接,也是最残酷的办法:只要发现实验参与者又快速眼帘活动REM,也就是开始进入梦境了,马上就把参与者从睡眠中叫醒。 德门特选择了8个实验参与者(8个倒霉蛋),均属于年龄在23-32周岁的男性。 实验参与者需要在晚上睡眠的时间,来到实验室,头上戴上仪器,便于研究者观察参与者的脑电波和眼部活动。正如阿瑟瑞斯基的实验方法一样,仪器的导线延伸到另一间房里,实验研究者可以观察睡眠情况。 ①第一步:在开始的头几个晚上,参与者被允许按照自己以前正常的睡眠状况入睡。这样做是为了,让参与者能够保持正常的入睡状态,有正常的做梦格局。 ②第二步:睡梦剥离阶段。一旦发现参与者进入REM阶段,每次立即被摇醒,让他们坐在床上完全彻底清醒几分钟,然后让他们再去继续睡眠。 德门特研究的一个特别要求是,参与者在睡梦研究阶段,在其它任何时间都不能睡眠。否则,如果他们在其它时间打盹或者做梦,实验的结果将会受到影响。 ③第三步:睡梦正常复苏阶段(recovery phase)。在这个阶段里,参与者被允许在整夜不被打扰地入睡。当然,所有的仪器仍然在正常监测着睡梦情况。 ④第四步:休息阶段。每个参与者被允许放假几天,然后8人中的6个人,回到实验室进行一系列被打断的实验。这些睡梦中摇醒,与之前参与者被摇醒的情况一样。唯一不同的是,这次摇醒的时间,不是在REM快速眼动时刻。 当梦境开始的时候,参与者不被打扰,而是等梦境结束后再被摇醒,也就是在两次REM之间。 这些参与者,也被安排了同样天数的恢复性的睡眠,作为控制性恢复(control recovery)。参与者可以完全按照自己的方式睡眠或者做梦,不受任何干扰。 ③快速眼帘反弹效应REM-rebound effect,把损失的睡梦补回来 由于在实验中,每次发现出现REM快速眼帘活动即刻把参与实验者叫醒,开始睡梦剥离的夜晚叫醒次数为8-10次,而实验的最后晚上随着睡梦剥离天数的延长,每晚的叫醒次数增加了一倍以上。说明睡梦剥离之后,身体需要把剥离掉的睡眠试图补回来。 尤其是在睡梦正常复苏阶段,在一连7天睡梦剥离(太痛苦了)之后,给一个晚上不被打扰地睡眠。实验者没玩的做梦时间达到127分钟,比平均值增加了50%。 在恢复正常睡眠之后,要把损失的睡梦时间补回来。这种现象,在许多动物试验中,科学家也发现过类似现象。 ④酒精可以让人兴奋,从而抑制睡眠。其中在令人兴奋的补偿之夜,实验者出去参加了鸡尾酒会,然后再回来睡眠。本来期望睡梦补偿,与其他实验者一致,由于酒精的抵消作用,睡梦没有明显增长。 再后来的实验中的发现,用药物或者酒精,可以剥夺睡眠REM阶段,让你处于压制你的睡梦阶段而陷入到长夜中睡眠深入阶段NREM。 ⑥在德门特后来的研究中发现,睡梦阶段REM,可以在大脑中产生一种合成蛋白质,而在深度睡眠阶段NREM阶段则没有这种蛋白质化学物质合成。 一些科学家认为睡梦中大脑的这种化学物质变化,可能是代表把新接收的信息结合进大脑记忆结构里,或者是促进个体器官功能新的发展。 1,德门特最新研究发现,也许人们在NREM(无快速眼帘活动,睡梦)期间,也会做梦。 比如人们在白天时间,打盹的时候会做白日梦。同时也发现,在打盹白日梦期间,梦境的数量,梦境的鲜活性和情感上,都不如夜晚做梦。 2,在有梦睡眠阶段REM,人们大脑中会产生一种原始意识(protoconscious),一种人脑中的基本生物结构,对于正常的意识形成非常关键的。这种基本的人脑成长,被认为自出生后一直到儿童时期。 这也解释了两种现象:一种是为什么婴儿大部分时间都在睡眠,好睡的孩子大脑发育是不是应该好一些?第二种是人皆有梦,人的大脑需要 有科学家认为,在有梦睡眠阶段REM,给我们提供了一种现实世界的虚拟模型,可以帮助我们处理我们在清醒状态下正常生活中的任务。比如那位化学家苦思化学苯的结构而不得,做梦发现梦见团成一圈跳舞的蛇,然后惊醒之后,提出了苯环。 3,德门特现在斯坦福大学的人类睡眠研究中心继续他的睡眠梦的研究。 他认为,我们现在处于一个有睡眠病的社会(sleep-sick society),因此致力于通过帮助人们改善睡眠,从而改善人们的健康状况,增加人体免疫、预防疾病和提高人们的幸福指数。 2000年他发表了一本书:睡眠的前景-睡眠是一种良药,与健康和幸福的重要关系。(The Promise of Sleep: A Pioneer in Sleep Medicine Explores the Vital Connection Between Health,Happiness and a Good Night's Sleep)
我们可以通过一系列的试验得出结论: 1、用多媒体展示一张心电图,介绍医院里用心电图仪描出的心电图象,通过观察心电图以了解测试者心跳是否有节律的工作过程。 2、类比说明:要研究简谐运动,我们也可以设法把振子在各个时刻的运动情况记录下来,得到一张“运动图”,那么思考一下,我们用什么方法可以描绘出简谐运动的图象呢? 3、方案一:在物体运动的过程中,用频闪照相,对频闪照片分析、列表,并用描点法得到简谐运动的图象。 方案二:用一个纸做的锥摆,内盛沙子,让沙子摆摆动,同时让沙摆往前移,沙子即显示出摆的振动图象。 方案三:同样做一个盛沙的锥摆,让其摆动,同时在下边拉动一块木板,则摆中漏下的沙子就显示出振动的图象。 方案四:拿半个易拉罐制成的水摆,底部中央刺一小孔,水中滴墨汁,铺有白纸的长木板,让水摆摆动,同时在实验台上匀速地拖动铺有白纸的长木板,墨水就在白纸上显示出振动的图线。 方案五:在水平弹簧振子的小球上安置一支记录用的笔,在下面放一条白纸带,当小球振动时,沿垂直于振动方向匀速拉动纸带,笔就在纸带上画出一条振动图线。 5、通过讨论,得到了不同的描绘方法,下边我们用其中的二种方案来具体描绘简谐运动的图象。 ①用CAI课件展示:气垫导轨上的弹簧振子的振动情况。 ②用多媒体把课本上的三张频闪照片显示出来,并说明三张照片反映的运动情形。(参看媒体素材) 甲图是振子静止在平衡位置时的照片。 乙图是振子被拉到左侧距平衡位置20mm处放手后,在向右运动的 周期内照片。 丙图是振子在接下来的 周期内的频闪照片。 ③前边我们已经知道对于频闪照片:是每隔相等的时间,给物体照一次相,我们假设相邻两次闪光的时间间隔为t0振子所在的位置。 ④学生了解上述情况后,列表、读数,把对应于不同时刻的位置记录下来。 ⑤用实物投影仪抽查读数记录情况。 ⑥学生总结:简谐运动的图象是余弦曲线。 ⑦由于我们所选的计时起点不同,得到的简谐运动的图象有可能是正弦曲线,还有可能是余弦曲线,当以物体运动到平衡位置时作为计时的起点,得到的正弦曲线;当以物体运动到振幅处开始计时,得到的余弦曲线。 6、总结 ①简谐运动的位移——时间图通常称为振动图象。 ②所有简谐运动的振动图象都是正弦或余弦曲线。 7、分组实验 ①每一组拿一个水平弹簧振子,小球下安装有一段铅笔芯,在下面放一条纸带,当小球振动时,沿垂直于振动方向匀速拉动纸带,笔就在纸带上画出一条振动曲线。 ②在做实验时思考:为什么纸带拉动时必须是匀速的? ③实验结束后总结: a、由实验得到:在纸带上描绘出的振动图象是正弦余弦曲线。 b、只有纸带是匀速运动的,我们才能把等距离段划分为等时间段,这样纸带运动的距离就可以代表时间。a专家提供
我们知道对于简谐运动来说,经过半个周期时速度的大小一定相等,方向一定相反.根据动能定理可知弹力做功等于振子的动能变化,显然动能变化为0,所以弹力做功为0.根据动量定理可知弹力的冲量等于振子的动量变化.注意到速度是矢量,所以半个周期后的速度大小虽然等于半个周期前的速度但是方向相反,所以动量变化不等于0.所以弹力的冲量不等于0.当振子从左端最大位移处运动到右端最大位移处(为半个周期)时,动量变化显然为0-0=0当振子从平衡位置第一次回答平衡位置时(为半个周期)动量变化为m[V-(-V)]=2mV所以答案为:AD
【实验题目】 气垫导轨研究简谐运动的规律【实验目的】 1.通过实验方法验证滑块运动是简谐运动。 2.通过实验方法求两弹簧的等效弹性系数和等效质量。实验装置如图所示。说明:什么是两弹簧的等效弹性系数?说明:什么是两弹簧的等效质量?3.测定弹簧振动的振动周期。4.验证简谐振动的振幅与周期无关。5.验证简谐振动的周期与振子的质量的平方根成正比。【实验仪器】气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架。【实验要求】1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 )。 由滑块所受合力表达式证明滑块运动是谐振动。 给出不计弹簧质量时的T。 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T。 实验中,改变滑块质量5次,测相应周期。由此,如何计算k和m0 ?(2)列出实验步骤。(3)画出数据表格。2.测量3.进行数据处理并以小论文形式写出实验报告(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据 处理和计算过程。(2)明确给出实验结论。两弹簧质量之和M= 10-3㎏ = N/m = 10-3㎏i m10-3㎏ 30Ts T2s2 m010-3㎏ i m10-3㎏ 20Ts T2s2 m010-3㎏ KN/m1 4 2 5 3 6 4.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值 M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差 。 究竟选取哪种数据处理方法自定.书中提示了用计算法求k和 m0的方法。若采用,应理解并具体化. 【注意事项】计算中注意使用国际单位制。严禁随意拉长弹簧,以免损坏!在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动!【参考资料】1.马文蔚等《物理学》,高等教育出版社,19992.林抒、龚镇雄,《普通物理实验》,人民教育出版社,19823.华中工学院等编《物理实验》(基础部分),高等教育出版社,1981
力 速度 加速度 质量的关系