首页 > 学术发表知识库 > dc转dc开关电源电路毕业论文

dc转dc开关电源电路毕业论文

发布时间:

dc转dc开关电源电路毕业论文

不行,MXL1074最大工作电压为40V。你用50-60v,己超出芯片的最高工作电压。

主要就是为了得到不同的直流电压,比如输入12V输出5V。其次,可以做隔离。

你说详细哇?附图?

Buck电路属于串联型开关变换器(降压变换器),由电压源、串联开关、电感器、电容器和二极管构成。

工作原理: 通过斩波形式将平均输出电压予以降低,可以将输入接在光伏电池输出端,通过调节其输出电压来达到调节负载之目的,以保持光伏阵列输出电压在其最大功率点的电压和电流处。

控制过程:

当开关管T导通时,在电感线圈未饱和前,电感电流线性增加,电感储能,在负载R上流过电流为上升的电流,负载两端输出为上升的电压,极性上正下负,电容处于充电状态,这时二极管D1承受反向电压;当开关管T关断时,由于电感线圈的续流作用,其电流由最初的不变而逐渐下降,负载R两端电压仍是上正下负,电容C处于放电状态,有利于维持负载电流和电压不变,二极管承受正向偏压,构成电流通路,故称D1为续流二极管。由于变换器输出电压Uo小于电源电压Us,为降压变换器,公式:Uo=D*Us(D为占空比)

优点:结构简单、效率高、控制易于实现;

缺点:只能用于降压输出控制。

dc学术论文网

李 磊 李效广 张良军 郑锦娜 王心华

(天津地质调查中心)

摘 要 本文主要研究了 DC 元数据和成果地质资料编目之间的映射关系,探讨了如何在此基础上基于 XML schema 技术对生成的地质资料核心元数据进行建模,并利用其来构建分布式共享平台体系。

关键词 DC Dublin Core XML schema OAI 地质资料 编目

0 引言

成果地质资料是指各类地质工作或专题研究项目完成时,按相应技术规范的规定和原项目设计要求,以文字、图、表等形式提供的一整套科技文件材料。我国地质资料馆成果地质资料案卷级目录库多采用国土资源部颁布的《地质资料电子目录著录格式规定(试行)》或中国地质调查局发展研究中心制订的规则标准而建,文件级编目采用《原始地质资料清理数据库》系统标准。以这些标准完成的编目,在实现资料检索、传播、共享、服务、利用方面一直起着非常重要作用。然而,此类编目与地学数据库元数据抑或其他文献编目平台无法实现交换。事实上,成果地质资料作为一种地质专业文献,具有文献的共性,与其他文献目录库互为交换是必要的,特别是与地学信息元数据实现共享是必要的。

元数据是关于数据的数据,是关于信息资源的形式、主要内容、存放位置等信息的综合。目前,元数据技术研究已经深入到各个领域,有专业领域的元数据,如关于地理空间数据的数字地理空间元数据、图书馆文献馆藏资源的机读目录。也有适用范围广泛的元数据,如都柏林核心元数据。笔者经过对比各种元数据,认为成果地质资料作为地质信息资源的重要载体,虽然有空间信息,但是其结构和内容并不符合空间数据的标准。成果地质资料作为一类文献资源,虽然可以以机读目录编目,然而机读目录由于其字段复杂,对录入人员专业要求较高,适用类型狭窄,故考虑到与其他类型资源的交换问题,其并不适于作为通用的元数据标准。而都柏林核心元数据(Dublin Core,DC)简单易用,其最初是为描述网络资源,现已发展成可以描述任何信息资源的元数据标准,应用范围广泛,便于组织与数据交换,可以提高检索数据的准确性。

笔者通过研究认为,利用都柏林核心元数据(DC 元数据)编目成果地质资料,可很好地解决异地多源数据共享的问题,会更有利于促进成果地质资料社会化服务。

1 成果地质资料编目与 DC 元数据的映射

1.1 成果地质资料编目

成果地质资料是指物理上的一套地质资料,除了其具有档案的基本编目信息外,还有具体的文件级资料内容信息。根据其内容形式的不同,成果地质资料文件由 8 类资源组成:正文、审批、附图、附表、附件、数据库和软件、多媒体和其他。这些资源信息全部以表的形式存储在成果资料目录数据库中[1]。

以原始地质资料清理数据库为例,成果地质资料案卷级编目主要字段包括馆藏机构编号、馆藏机构名称、资料编号、资料名称、资料类别、资料类型、语种、编写报告单位、编著者、形成(提交)时间、工作程度、密级、关键词、关键词(矿产)、地理坐标、行政区划、内容提要、工作时段,共计 18 个字段;文件级编目的所有 8 类资源的共有字段包括:资料编号和资料名称,其中审批需要增加审批机构和审批日期,附图则需要增加比例尺。

1.2 DC 元数据字段

都柏林核心元数据产生于 1995 年,经过 10 年不断扩展和完善,形成了 15 个基本核心元素,通过限定词对元素进行细化和修饰的元数据方案,用于描述越来越丰富的网络信息。DC 元素依据其所描述内容的类别和范围,可分为三组[2]:①资源内容描述类元数据项 7 个:分别为 Title、Subject、Description、Language、Source、Relation、Coverage;②知识产权描述类元数据项 4 个:Creator、Publisher、Contributor、Rights;③外部属性描述类。元数据项 4 个:Date、Type、Format、Identifier。具体字段的定义参见表 1。

DC 限定词是对 15 个元素的语义进行限定和修饰的词。它的制订遵循著名的向下兼容原则,即修饰词的语义包含于未修饰词中,在范围上对未修饰词的语义进行限定,在深度上对未修饰词的语义进行延伸[3]。

1.3 映射关系

笔者通过对比研究,认为:

(1)案卷级编目字段除了Format(格式)外,其余14个基本元素皆可与DC核心元素建立起对应关系。在覆盖范围(Coverage)元素中,由于地质资料兼具时间特征与空间特征,故采用限定词spatial(空间范围)和 temporal(时间范围)对覆盖范围进行描述;此外,由于成果地质资料部分元素具有行业特殊性,需要增加三个自定义字段作为补充,分别为Districts(行政区划)、DataCategory(资料类别)和WorkingDegree(工作程度)。而Relation(关联)与Contributor(其他责任者)在成果资料目录库中无对应字段,需要单独填写。其中Relation(关联)填写的内容为成果地质资料所含的所有文件级内容的唯一标识码,关系为部分为(HasPart),即所描述的案卷级资源在物理或逻辑上包含被参照文件级资源,Contributor(其他责任者)填写数据库录入人员姓名。

(2)文件级的各类资源中,由于各自属性内容有所差别,最终分为三类资源:第一类资源为正文、附表、附件、数据库和软件、多媒体和其他这六类文件级资源,均与 DC 核心元素建立起 4 个对应关系,其中 Format(格式)和 Relation(关联)这两个元素在库中无对应字段。需要说明的是:这里 Format(格式)填写的是地质资料的媒体类型和资源大小。在这六类资源中,数据库和软件、多媒体资源只有源电子文件[1],其余均有源电子文件和存档电子文件。Relation(关联)填写的是文件级资料所对应案卷级资料的唯一标识码,关系为部分于(is part of)。第二类资源为审批资源,其在第一类资源的基础上增加了Creator(创建者)和 Date(日期)两个元素来表示审批机构和审批日期。第三类资源为附图资源,其在第一类资源的基础上增加了自定义字段比例尺(Scale)。

通过将 DC 字段的定义和原始地质资料清理数据库中的字段定义进行比对,最终得出了 DC 元数据与该数据库字段的映射关系,案卷级编目对应关系如表 1 所示,文件级编目对应关系如表 2、3、4 所示,由此确定了成果地质资料核心元数据的元素集。在该核心元素集中,如果映射关系成立,则沿用 DC 元数据的元素名称,若未找到对应关系,则采用自定义元素名称。

表 1 DC 元数据与成果地质资料案卷级编目映射关系表

续表

表 2 DC 元数据与成果地质资料文件级正文、附表、附件、数据库和软件、多媒体和其他资源编目的映射关系表

表 3 DC 元数据与成果资料文件级审批资源编目的映射关系表

表 4 DC 元数据与成果资料文件级附图资源编目的映射关系表

2 实现方法

XML(Extensible Makeup Language)是一种结构化与半结构化数据的标志语言,由互联网联合组织(W3C)所开发和创建,其目的不仅在于满足不断增长的网络应用需求,更是为了确保在通过网络进行交互合作时,具有良好的可靠性和互操作性,XML 作为一种独立于系统的表达数据信息的标记语言,更适合于元数据在网络系统中进行数据交换。

XML Schema 是采用 XML 语法描述,提供描述和控制 XML 文档的一种规范。用于定义 XML 文档中使用的元素、属性和数据类型,简单地讲,就是利用一个通用模式,生成具有不同数据但相同结构的XML 数据文档。Schema 与 XML 文档的关系,相当于类和对象之间的关系。有了 XML Schema,XML 文档的写法就有了限制,利用 XML Schema 对成果地质资料核心元数据进行建模生成的 XML 元数据,可以便于资源在网络系统中进行数据管理,从而更好地实现传输。

具体实现过程中可以使用 altova 公司的 XML spy 工具完成成果地质资料核心元数据的建模,生成HTML 或者 Word 形式的 XML schema 文档。基于建模文档,开发人员可以依托相关 xml 技术,比如apache 公司的 XMLBeans[4],实现查询成果资料目录数据库中的对应数据,通过 Schema 来修饰生成需要的 XML 文档,整个过程皆可以用代码实现,无需多次录入数据。最终将生成的 XML 元数据文档以 XML混合数据库(hybird database)形式存储。经过对比研究,作者认为基于 XML schema 技术可很好地实现成果地质资料核心元数据表达。

3 实例

以下是基于 xml 来描述的一条地质资料案卷级目录元数据:

第八届全国地质档案资料学术研讨会文集

“内蒙古阿拉善地区矿产资源潜力评价综合研究”项目是中国地质调查局 1999 年 10 月下达的地质调查综合研究项目(任务书编号:0499201021;项目编号:K1.1.4.4;科研项目编号:DK9902033)。在前人工作基础上,该项目以板块构造、边缘成矿和成矿系统理论为指导,紧紧围绕本区矿产资源评价工作的部署,以野外地质调查为基础,从本区实际出发,重点开展了工作区已知矿点和重要物化探异常区的野外地质调查;开展了区域地球化学背景、层控型朱拉扎嘎式金矿、火山岩型铜金矿和与花岗岩有关的金矿床等的研究工作,进一步厘定了各类矿床的成矿地质条件和控矿因素,明确了找矿标志,归纳了区域成矿规律,筛选了物化遥异常,并在此基础上圈定了找矿有利的预测区,编制了阿拉善地区 1∶50万区域成矿预测图,提出了下一步工作部署建议。

第八届全国地质档案资料学术研讨会文集

第八届全国地质档案资料学术研讨会文集

4 成果地质资料数据共享技术探讨

基于网络的成果地质资料数据共享,主要存在两个问题:首先,成果地质资料分布比较分散,服务方式不尽相同;其次,用户是分布的,其背景、教育程度、熟练程度等相差很大。因此必须研究一种合适的分布式数据的共享体系来整合这些分散的数据资源,为互联网用户提供统一的数据共享服务[5]。

作者经过比较国内外常用的分布式共享平台体系,认为 OAI(open archives initiative)数据资源整合模式比较适合成果地质资料数据共享。OAI 对外提供了开放文档元数据采集协议(OAIMH)。它最主要的目标就是通过元数据采集模式来实现网络上发布信息的不同组织之间的互操作,为其提供一个与应用无关的元数据互操作框架。OAIMH 基于 HTTP 协议,返回的数据采用 XML 格式,所有的存储必须为自己的资源产生 Dublin Core 的元数据以供交换,由此来实现各个节点之间的网络互操作。数据生产者无需完全开放自己的本地资源,只需共享元数据,这样既不用改变本地存储数据的软件结构,又能轻松实现联合检索和数据共享。不失为一种经济的互操作模式,故将成果地质资料目录转换为 DC 元数据能在更大范围内与其他科学数据实现共享交换。由于篇幅限制,对共享平台如何实现不做进一步的论述。

5 结论

用 DC 标准来设计成果地质资料核心元数据完全可行,基于 XML schema 技术可以实现建模,最终生成 XML 元数据文档。最终在基于 OAI 协议的数据资源整合模式下构建分布式共享平台,交换生成的地质资料核心元数据,将能更好地实现成果地质资料的共享与服务,进而能最大限度地发挥地质资料信息的潜在价值,服务整个社会。

参 考 文 献

[1] 李效广等 . 机读目录在成果地质资料管理中的应用前瞻 . 中国地质学会第二届学术研讨会论文集,[C]. 2010

[2] 刘芳,朱沙 . 数字图书馆中基于 XML_RDF 的 DC 元数据描述体系 [J]. 大学图书情报学刊,2005

[3] 盛剑锋 . 电子期刊 MARC 与 DC 编目数据比较 . 图书馆论坛 [J],2008,(2):104 ~ 107

[4] 杨典华,杨志刚 . 基于 XML 和 DC 元数据标准研究教育资源的元数据及其数据传播 . 现代教育技术 [J],2006,(16):57 ~ 67

[5] 诸云强 . 地球系统科学数据共享关键技术研究 M. 北京:科学出版社, 2009:36 ~ 57

秦高梧教授已在《International Materials Reviews》、《Chemistry-A European Journal》、《Applied Physics Letters》、《Chemical Communications》、《ActaMaterialia》等有重要影响的国内外学术刊物上发表论文60余篇,其中SCI收录论文45篇(SCI影响因子大于3.0的11篇),他人引用/评价200余次。回国3年内作为项目负责人承担11项科研项目,其中国家级项目5项,省部级项目4项。最近3年取得的主要学术成果有:提出了合成贵金属Au/Pt纳米粒子和世界最高比表面积的三维贯通式纳米多孔海绵的简便、“绿色”制备方法,有望实现新型高效催化剂和生物过滤器等;首次建立了纳米粒子外表面指数的TEM表征通用数学模型与表征方法,为揭示催化剂外表面与催化特性的关系奠定基础;实验证实了纳米/微米软磁粒子复合体有效提高其在GHz波段的导磁率,突破了Snoek极限,将应用于高效/节能DC-DC转换器和抑制GHz波段电磁噪音;解决了Mg合金在实验相图测定过程中的活性问题,最近几年国际上文献发表9个体系Mg基合金相图,其中6个体系是其领导的研究组完成的。回国3年来,秦高梧教授不仅在较短时间内组建了自己的研究室和学术梯队,而且与日本东北大学,美国Oak Ridge国家实验室,美国Nevada大学和印度Calicut大学等国际知名研究室建立了稳定的合作关系 。 一、回国后发表论文(2006.3~2009.12)1. G.W. Qin, Y. P. Ren, N. Xiao, B. Yang,L. Zuo, K. Oikawa. “Development of ultra-high density magnetic recording media: materials issues and challenges”, Inter. Mater. Rev., 54(3)(2009)157-179 (SCI/EI收录,SCI影响因子3.4,5年平均影响因子6.5)2. G.W. Qin, P. Raveendran, J.C. Liu, J. Balaji, L. Zuo. “A facile and template-free method to prepare mesoporous gold sponge and its pore size control”, J. Phys. Chem. C, 112(2008) 10352-10358. (SCI/EI收录,SCI 影响因子3.4)3. G.W. Qin, B. Yang, N. Xiao, Y.P. Ren, M. Jiang, X. Zhao, K. Oikawa, “Origin on amorphization of Co-Mo magnetic thin films”, Thin Solid Films, 517(2009)2984-2987. (SCI/EI收录,SCI影响因子1.9)4. S. Li, G.W. Qin*, W. Pei, Y. Ren, L. Zuo, “Capping Groups Induced Size and Shape Evolution of Magnetite Particles Under Hydrothermal Condition and their Magnetic Properties”, J. Ame. Cera. Soc., 92(3) (2009) 631-635. (SCI收录, SCI影响因子1.8, *通讯作者).5. S. Li, Y.D. Zhang, C. Esling, J. Muller, J. S. Lecomte, G.W. Qin, X. Zhao, L. Zuo, “Determination of surface crystallography of faceted nanoparticles using transmission electron microscopy imaging and diffraction modes”, J. Appl. Cryst., 42(3) (2009) 519-524. (SCI收录,SCI影响因子3.6)6. M.L.Huang. H. X. Li, H. Ding, Y. P. Ren, G.W. Qin, S. M. Hao, “Partial phase relationships of Mg-Zn-Ce system at 350 degrees C”, Trans. Nonferro. Metals Soc. China, 19(3)(2009)681-685.(SCI/EI收录)7. B. Yang, G.W. Qin*, N. Xiao, X. Zhao, “Abnormal saturation magnetization dependency on W content for Co-W thin films”, Acta Metall. Sin., 2009 (in press,*通讯作者).8. Y. P. Ren, G.W. Qin*, W. L. Pei, S. M. Hao, “The (1+2) miscibility gap of the Al-Zn-Cu system at 360℃”,Scripta Mater.,61(1)( 2009)36-39. (SCI/EI收录, SCI影响因子2.8,*通讯作者)9. H.D. Zhao, G.W. Qin*, Y.P. Ren, W.L. Pei, Y. Guo, “Isothermal sections of the Mg-rich corner in the Mg-Sn-Y ternary system at 300 and 400 ℃”, J. Alloys. Comp., 481 (2009) 140-143. (SCI/EI收录,SCI影响因子1.5,*通讯作者)10. Y.P. Ren, G.W. Qin*, W.L. Pei, Y. Guo, H.D. Zhao, H.X. Li, M. Jiang, S.M. Hao, “The -Mg solvus and isothermal section of Mg-rich corner in the Mg-Zn-Al ternary system at 320℃”, J. Alloys. Comp., 481(2009)176-181. (SCI/EI收录,SCI影响因子1.5,*通讯作者)11. Y. P. Ren, G.W. Qin*, W.L. Pei, H.D. Zhao, Y. Guo, “Isothermal section of the Mg-Al-Mn ternary system at 400℃”, J. Alloys. Comp., 479(2009)237-241. (SCI/EI收录,SCI影响因子1.5,*通讯作者)12. G.W. Qin, B. Yang, W. L. Pei, Y. P. Ren, “ Correlation of Magnetic Properties of Co/Cr Bi-layer Thin Films with Grain Boundary Diffusion”, J. Mater. Sci. Tech., 2009 ().13. X. N. Xu, G.W. Qin*, Y. P. Ren, B. Shen, W. L. Pei, “Experimental study of the miscibility gap and calculation of the spinodal curves of the Au-Pt system”,Scripta Mater. 61 (2009) 859-862 (SCI影响因子2.8,*通讯作者)14. G. W. Qin, N. Xiao, B. Yang, Y.P. Ren, W.L. Pei and X. Zhao, “Amorphous Forming Ability of Co-X (X=Cr, Mo, W) Magnetic Thin Films”, Acta Metall. Sin., 2009 (in press).15. 赵 林,樊占国,杨中东,高 鹏,秦高梧,“磁场下电沉积制备CuCo颗粒膜的巨磁电阻效应”,19(5)(2009)924-929.16. 许德美, 李 峰, 王战宏, 何力军, 任玉平, 裴文利, 秦高梧*, “粉末热等静压和铸造Be-Al合金的室温拉伸断裂机理”,中国有色金属学报,2009,17. 李端阳,沈波,任玉平,裴文利,秦高梧*,“AZ91D镁合金化学镀Ni-P及Ni-W-P镀层的结构与耐蚀性”,中国腐蚀与防护学报,2009,18. W.L. Pei, G.W. Qin*, S. Ishio. “A novel analysis method for noise of perpendicular recording media”, J. Magn. Magn. Mater., 320(2008)3165-3168.(SCI/EI收录,SCI影响因子1.7,*通讯作者)19. 杨波,肖娜,裴文利,任玉平,赵骧,秦高梧*。“基板温度对Co-Pt-P薄膜结构与磁性能的研究”,功能材料,39(10) (2008)125-127.20. 赵林,樊占国,秦高梧。“电沉积制备CuCo颗粒膜微观结构和巨磁电阻效应研究”,功能材料,39(9)(2008)1425-1429.(EI收录)21. Y. Shimada, M. Yamaguchi, G.W. Qin, S. Okamoto, O. Kitakami. “Permeability of submicron and nanometer ferromagnetic particle composites”, J. Appl. Phys., 101 (9)(2007) 09M505-07.(SCI/EI收录,SCI影响因子2.3)22. Y.B. Zhu, Y. Wang, X. Y. Zhang, G.W. Qin*, “W/NiFe phase interfacial characteristics of liquid-phase sintered W-Ni-Fe alloy”, Intern. J. Refr. Metals. Hard Mater. 25 (2007)275-279.(SCI/EI收录, SCI影响因子1.3)23. R. Ruslan, E. Shibata, D. Shindao, T. Nakamura, G.W.Qin, “Formation and characterization of graphite-encapsulated cobalt nanoparticles”, Acta Mater. 55(2007)3671-3680. (SCI/EI收录,SCI影响因子3.5)24. Y. M. Lee, G.W.Qin, C. G. Lee, O. Kitakami, “Effect of Reaction Time on Formation of CoNi Particles prepared via polyol method”, Metals and Materials International, 13( 3) (2007)207-210(SCI/EI收录).25. Y. Shimada, M. Yamaguchi, S. Okamoto, O. Kitakami, G. W. Qin, K. Oikawa, “Initial Permeability of Magnetic Nanoparticles composites”, J. Magn. Soc. Jpn., 30(6)(2006)378-385.

个案报道,又称病例报告是医学论文的一种常见体裁,是报道临床罕见病例或新发现的病例的医学论文。我整理了个案报道学术论文,有兴趣的亲可以来阅读一下!

肾病综合征个案报道

【关键词】 肾病综合征;感染

doi:10.3969/j.issn.1004-7484(x).2012.08.292 文章编号:1004-7484(2012)-08-2644-02

肾病综合征是由多种肾脏病理损害而致的蛋白尿及其引起的一组临床表现,其主要特征是大量蛋白尿,定义为≥3.5g/d,伴有低白蛋白血症≤30g/L,高脂血症及水肿。由于该征可由多种疾病、不同病因及病理引起,所以在其临床表现、治疗措施等方面又各具特点。本文就我院收治的1例报告如下。

1 临床资料

患者男,14岁,因颜面及双下肢水肿2月就诊于当地医院,自诉查小便常规未提示异常,后口服药物(具体不详)水肿逐渐消退。来诊前5天患者无明显诱因再次出现颜面及双下肢水肿,伴腹胀,无发热呕吐等不适,当地查小便常规示隐血2+,蛋白3+,患者未予重视及治疗。来诊前1天患者上述症状加重伴右腹及腰部疼痛、发热,遂来我院就诊。查体:T38.9℃,BP120/75mmHg,颜面浮肿,移动性浊音(+),双肾区叩痛明显,阴囊及双下肢水肿,其他查体无明显阳性体征。辅助检查:WBC18.0×10?9/L,N%89.5%,HGB121g/L,PLT343×10?9/L,Cr118.3umol/L,ALB11.6g/L,24h尿蛋白定量>10g,凝血功能:PT16.1s,PTR1.34,APTT98.9s,FIB12.98g/L,血浆D-二聚体(+)。胸片示肺水肿,左侧胸腔中量积液;CT示肺纹理增多,腹腔大量积液,其他无特殊。入院后给与抗感染、输注新鲜冰冻血浆等对症支持治疗,由于患者合并严重感染、低蛋白血症及凝血功能障碍,故未予肾穿刺活检。10d后患者一般情况有所好转,感染得到控制,给与甲强龙治疗后患者水肿逐渐减退,小便量增多,血浆白蛋白水平回升,后患者病情好转出院。

2 讨论

肾病综合征的病因可为原发性和继发性,后者主要是在排除前者的情况下诊断。引起继发性肾病综合征的原因很多,包括糖尿病肾病、乙肝相关性肾炎、狼疮性肾炎、淀粉样变、药物及感染等[1]。原发性肾病综合征的病理类型主要以微小病变肾病、系膜增生性肾炎、局灶阶段性肾小球硬化、膜增生性肾病及膜性肾病常见。其中微小病变型多见于儿童及青少年,且对激素治疗敏感;膜性肾病主要见于中老年;系膜增生性病变主要以IgA肾病及非IgA型多见,也是肾病综合征最常见的病理类型。

肾病综合征的临床表现和病理生理改变主要包括:蛋白尿、血浆蛋白浓度改变、高脂血症和水肿。低白蛋白血症主要是自尿中丢失蛋白,但血浆白蛋白水平与尿蛋白丢失量并不完全平行。其他血浆蛋白成分的变化如IgM、纤维蛋白原、a1及a2球蛋白及较大脂蛋白正常或略上升。另外易形成血栓的纤维蛋白原水平、第Ⅷ因子水平上升,抗凝血酶Ⅲ水平下降、蛋白C和S的水平及活性均下降;纤溶酶原水平下降、纤溶酶原激活抑制物-1(PAI-1)水平上升、或因白蛋白水平低而引起纤溶酶-纤维蛋白之间的交互作用受损[2]。水肿主要是血管外钠、水的潴留。当组织间液水容量增长大于5kg时可出现临床上可察觉的可凹性水肿。水肿程度一般与低蛋白血症程度一致。

肾病综合征的主要并发症有感染、血栓栓塞性并发症、营养不良及肾损伤。发生感染主要是本征时血IgG水平的明显下降[3]、补体成分特别是影响补体旁路激活途径的B因子和D因子下降[4]、白细胞功能下降[5]及低转铁蛋白及低锌血症[6]。血栓栓塞性并发症是本征严重的、致死性并发症之一。肾病综合症时处于高凝状态[7],加之低蛋白、高脂血症致血液浓缩、粘稠度增加使血栓形成倾向更严重。另外过度使用利尿剂也可加重血液浓缩。

肾病综合征的治疗大致分为蛋白尿的治疗、针对全身病理生理改变的对症治疗和保护残存肾功能三个方面。蛋白尿的治疗主要包括糖皮质激素、细胞毒药物、免疫抑制剂、ACEI等;对症治疗包括消肿、抗凝等方面的治疗;另外一些中药如黄芪等对慢性肾脏病变具有保护作用。

本例患者符合肾病综合征的表现,同时又合并其他一些临床表现。就诊时已合并严重感染,并且凝血功能有严重障碍,有明显出血倾向,显然此种情况下不适合抗凝治疗,应首先纠正凝血功能及控制感染,同时给与各种对症支持治疗,待患者一般情况好转,感染得到控制后,再给与激素正规治疗。

参考文献

[1] 刘刚,马序竹,邹万忠,等.肾活检患者肾脏病构成十年对比分析.临床内科杂志,2004,21:834-838.

[2] Kaysen GA.Plasma composition in the nephrotic syndrome.A J Nephrol,1993,13:347-359.

[3] Giangiacomo J,Cleary TG,Cole BR,et al.Serum immunoglobulins in the nephrotic syndrome.A possible cause of minimal-change nephrotic syndrome.N Engl J Med,1975,293:8-12.

[4] Anderson DC,York TL,Rose G,et al.Assessment of serum factor B,serum opsonins, granulocyte chemotaxis,and infection in nephrotic syndrome of children.J Infect Dis,1979,140:1-11.

[5] Aube D, Chapman S, Brown Z, et al.Depression of normal lymphocyte transformation by sera of patients with minimal change nephropathy and other forms of nephrotic syndrome.Clin Nephrol,1981,15:286-290.

[6] Cameron JS.Clinical consequences of the nephrotic syndrome.In:Cameron JS,Davl’son AM,et al.Oxford textbook of clinical nephrology.1st ed.Oxford:Oxford University Pres,1992:276.

[7]Mehls O,Andrassy K,Koderisch J,et al.Hemostasis and thromboembolism in children with nephrotic syndrome:differences from adults.J Pediatr,1987,110:862-867.

点击下页还有更多>>>个案报道学术论文

多路开关电源毕业论文

10分也想得到毕业论文

1引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。 从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。 2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。 3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。 4)按式(1)计算第j路的交叉负载调整率SIL。 式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值; Uj为各路输出电流为额定值时,第j路的输出电压。 根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变(100%-0%时)对该路输出电压精度影响的百分比。 2.2多路输出开关电源 由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开。此时假设主、辅电路的功率比为1:1。从实际测量得主电路交叉负载调整率优于0.2%,而辅电路的交叉负载调整率大于50%。无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的。如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器(包括三端稳压器,低压差三端稳压器)如图3所示。 从图3可知,由于引入了线性稳压调节器V,所以在辅路上附加了一部分功率损耗,功率损耗为P=而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压差,即就是要有意识增大,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率。 以图1及图3原理为基础设计和应用电源时,应注意的原则为: 1)主电路实际使用的电流最小应为最大满输出电流的30%; 2)主电路电压精度应优于0.5%; 3)辅电路功率最好小于主电路功率的50%; 4)辅电路交叉负载调整率不大于10%。 2.3改进型多路输出开关电源 在很多应用场合中,要求2路输出的功率基本相当,比如±12V/0.5A,±15V/1A。我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的。 图4电路设计思想的核心有以下2点。 1)将正负2路输出滤波电感L1、L2绕制在同一磁芯上,采用双线并绕的方法,从而保证L1、L2电感量完全相同。并注意实际接入线路时的相位(差模方法)关系,这种滤波电感的连接方法使2路输出电流的变化量相互感应,在一定程度上较大地改善了2路输出的交叉负载调整率。 2)从图4可以看到,采样比较器Rs1、Rs2不像图1那样接到主电路Vp上,而是直接跨接到正负电源的输出端上,并且逻辑“地”不是电源的输出地,而是以负电压输出端作为采样比较和基准电压的逻辑“地”电位。这样采样误差将同时反映出正、负2路输出的电压精度变化,对正、负2路同样都存在有反馈作用,能在很大程度上改进2路输出的交叉负载调整率。以±15V/1A电源为例,采用图4的电路设计,实测得的2路交叉负载调整率优于2%。 以图4原理为基础设计和应用电源时,应注意的原则为: 1)2路最好为对称输出(功率对称,电压对称),无明显的主、辅电路之分,比如我们常用到的±12V,±15V等都属于此类; 2)2路输出电压精度要求都不是太高,1%左右; 3)2路输出交叉调整率要求相对较高,2%左右。 下面介绍一种通用性极强的3路电源设计方案,如图5所示。 从图5可以看到,主+5V输出与辅路±Vout(可以是±15V或±12V)输出电路不但反馈相互独立,而且其PWM(脉宽调制器),功率变换和变压器都是相互独立的。可以将此3路电源看成是由相互独立的1个+5V电源和1个±Vout电源共同组合而成。为了进一步减少二者之间的相互干扰和降低各自输出电压纹波的峰-峰值,应当进一步减小各独立电源的输入反射纹波(一般纹波峰-峰值应小于50mV,纹波有效值应小于10mV)和采用同步工作方式。 2.4高频磁放大器稳压器 在多路输出电源中,输出电路经常采用高频磁放大稳压器,它以低成本、高效率、高稳压精度和高可靠性,而在多路输出的稳压电源中得到了广泛应用。 磁放大器能使开关电源得到精确的控制,从而提高了其稳定性。磁放大器磁芯可以用坡莫合金,铁氧体或非晶,纳米晶(又称超微晶)材料制作。非晶、纳米晶软磁材料因具有高磁导率,高矩形比和理想的高温稳定性,将其应用于磁放大器中,能提供无与伦比的输出调节精确性,并能取得更高的工作效率,因而倍受青睐。非晶、纳米晶磁芯除上述特点外还具备以下优点: 1)饱和磁导率低; 2)矫顽力低; 3)复原电流小; 4)磁芯损耗少; 磁放大输出稳压器没有采用晶闸管或半导体功率开关管等调压器件,而是在整流管输出端串联了一个可饱和扼流圈(如图6所示),所以它的损耗小。 由图6可知,磁放大稳压器的关键是可控饱和电感Lsr和复位电路。可控饱和电感是由具有矩形B?H回线的磁芯及其上的绕组组成,该绕组兼起工作绕组和控制绕组的作用。复位(RESET)是指磁通到达饱和后的去磁过程,使磁通或磁密回到起始的工作点,称为磁通复位。由于磁放大稳压器所用的磁芯材料的特点(良好的矩形B?H回线及高的磁导率),使得磁芯未饱和时的可控饱和电感对输入脉冲呈现高阻抗,相当于开路,磁芯饱和时可控饱和电感的阻抗接近于0,相当于短路。 目前开关电源工作频率已提到几百kHz以上,磁放大器在开关电源中的广泛应用对软磁材料提出了更高的要求。在如此高的频率下,坡莫合金由于电阻率太低(约60μΩ?cm)导致涡流损耗太大,造成温升高,效率降低,采用超薄带和极薄带虽能有所改善,但成本将大幅度上升;铁氧体具有很高的电阻率(大于105μΩ?cm),但其Bs过低,居里点也太低。由于工作环境恶劣,对材料的应力敏感性、热稳定性等都有严格要求,上述材料是很难满足要求的。 非晶合金的出现大大丰富了软磁材料。其中的钴基非晶合金具有中等的饱和磁感应强度,超微合金具有较高的饱和磁感应强度,它们都具有极低的饱和磁致伸缩系数和磁晶各向异性。钴基非晶和超微晶在保持高方形比的同时可以具有很低的高频损耗,用于高频磁放大器中,可大大提高电源效率,大幅度减小重量、体积,是理想的高频磁放大器铁芯材料。 3高频磁放大输出稳压器典型应用电路 图7所示的多路输出电源,其主路为闭环反馈PWM控制方式,辅路为磁放大式稳压电源。由于辅路磁放大输入电压波形受控于变压器主、辅绕组比,以及主路的工作状态(主路输出电压的高低和主路负载的高低等),所以辅路的交叉负载调整率仍然不能够达到理想的状态。 图8所示是一种完全利用磁放大器稳压技术设计的多路输出稳压电源。此电源前级为双变压器自激功率变换电路,后级多路输出均为磁放大器稳压电路。并且各路之间无关,前后级之间无反馈,无脉宽调制器(PWM)。 此电路的优点如下: 1)电路结构简单,使用元器件数量少,除了两只功率管以外,其它元器件均是永久性或半永久性的,可靠性极高,制作也很方便; 2)电路中没有隔离反馈放大器,因此调整极其容易,而且一旦调整好后就无须维护,前级变换功率取决于后级总输出功率; 3)各路的输出特性相互独立,独自调整稳压,无主、辅路之分,所以,各输出电路的负载调整率的交叉负载调整率都非常理想,小于0?5%; 4)磁放大器在功率开通瞬间,处于“开路”状态,功率管在此刻的导通电流趋近于零,因而,损耗减到了最低限度,这有利于变换器的高频化和高效率; 5)由于前级功率变换器为不调宽的纯正方波,以及后级接了磁放大器,这样可以大幅度地降低输出纹波的峰-峰值,普通PWM型电源的输出纹波大约为输出电压标称值的1%左右,而采取带磁放大器的整流电路,纹波的峰-峰值可比较容易地降低到0.1%左右。 上述磁放大型稳压电源的综合电特性都是其它PWM隔离负反馈多路电源所无法比似的。尤其对多路电源实际应用来讲,可以对电源内部特性和电子系统的负载特性不予考虑,拿来就能使用,用上就无问题。但是,现代磁放大型稳压电源还存在如下一些问题,有待解决。 1)电路形式需进一步完善(尤其是电源前级功率变换电路),应加入过、欠压保护,过流、短路保护,电源使能端。 2)进一步提高工作频率,以便减小体积。 3)进一步提高效率,减小磁损。 4结语 综合上述,对多路电源应用者而言,可以根据电子系统用电情况,更切实际地提出所用电源的特性参数。对多路电源设计者而言,可以更多更系统地了解现今多路电源设计方法,减少新产品的开发周期,做到事半功倍。

双电源自动转换开关毕业论文

a:6:{i:0;a:7:{s:6:"mtitle";s:39:"双电源自动切换开关工作原理";s:7:"summary";s:608:"双电源自动切换开关就是因故停电自动切换到另外一个电源的开关,双电源自动切换开关以咨询厦门日华机电成套有限公司购买,各种档次各种价位应有尽有。一般双电源切换开关是广泛应用于高层建筑、小区、医院、机场、码头、消防、冶金、化工、纺织等不允许停电的重要场所。双电源切换开关包含STS(静态转换开关),为电源二选一自动切换系统,第一路出现故障后STS自动切换到第二路给负载供电,第二路故障的话STS自动切换到第一路给负载供电。";s:8:"art_link";s:38:"http://www.to8to.com/yezhu/z36035.html";s:8:"ordernum";s:1:"1";s:6:"imgurl";s:59:"//pic.to8to.com/case/2017/06/14/20170614124152-1f7b8046.jpg";s:8:"filename";s:0:"";s:6:"isCase";i:1;}i:1;a:3:{s:6:"mtitle";s:33:"双电源自动切换开关价格";s:7:"summary";s:326:"奥盛RSTS采用的是同步控制技术与高采样模块,确保了切换时的同步一致性。本系列产品还具备MCU与GAL等智能控制芯片,确保了功率部件安全可靠快速的切换负载供电路。Aosens PDU 63A三相机柜式双电源自动切换开关电源 AS-RSTS-PG3063市场价52600元。";s:8:"ordernum";s:1:"2";}i:2;a:3:{s:6:"mtitle";s:33:"双电源自动切换开关型号";s:7:"summary";s:589:"(双电源切换开关)说明、型号微断型u 微断型双电源DZ47-A系列智能型双电源(CB级)自动切换装置(基本型): 单相采样检测u 微断型双电源DZ47-B系列智能型双电源(CB级)自动切换装置: 单相采样检测、带消防功能、自动启动发电机u 微断型双电源DZ47-C系列智能型双电源(CB级)自动切换装置: 三相采用检测、合闸延时可调u 微断型双电源DZ47-D系列智能型双电源(CB级)自动切换装置: 三相采样检测、带消防功能、自动启动发动机";s:8:"ordernum";s:1:"3";}i:3;a:3:{s:6:"mtitle";s:36:"双电源自动转换开关说明书";s:7:"summary";s:771:"当因故停电,且在较短时间内无法恢复供电时,必须启用备用电源。步骤: ①切除市电供电各断路器(包括配电室控制柜各断路器,双电源切换箱市供电断电器),拉开双投防倒送开关至自备电源一侧,保持双电源切换箱内自备电供电断路器处于断开状态。②启动备用电源(柴油发电机组),待机组运转正常时,顺序闭合发电机空气开关、自备电源控制柜内各断路器。③逐个闭合电源切换箱内各备用电源断路器,向各负载送电。④备用电源运行期间,操作值班人员不得离开发电机组,并根据负荷的变化及时调整电压、厂频率等,发现异常及时处理。";s:8:"ordernum";s:1:"4";}i:4;a:3:{s:6:"mtitle";s:33:"双电源自动切换开关作用";s:7:"summary";s:219:"双电源自动转换开关是在低压配电系统中起到主备电源切换作用的电器元件,在配电系统中有着不可替代的作用。很多重要的场所都安装有双电源自动转换开关。";s:8:"ordernum";s:1:"5";}i:5;a:3:{s:6:"mtitle";s:36:"双电源自动切换开关接线图";s:7:"summary";s:906:"双电源主要分为PC级双电源(整体式)和CB级双电源(双断路器式)。PC级双电源:能够接通、承载、但不用于分断短路电流的双电源。双电源若选择不具有过电流脱扣器的负荷开关作为执行器则属于PC级自动转换开关。不具备保护功能,但其具备较高的耐受和接通能力,能够确保开关自身的安全,不因过载或短路等故障而损坏,在此情况下保证可靠的接通回路。CB级双电源:配备过电流脱扣器的双电源,它的主触头能够接通并用于分断短路电流。双电源若选择具有过电流脱扣器的断路器作为执行器则属于CB级自动转换开关。具备选择性的保护功能,能对下端的负荷和电缆提供短路和过载保护;其接通和分断能力远大于使用接触器和继电器等其他元器件。";s:8:"ordernum";s:1:"6";}}

双电源自动切换开关是指因为一些原因停电之后自动切换到另一个电源的开关。它的应用范围非常广泛,医院、小区、机场、车站、码头、化工、防治等等许多不允许停电的场所。双电源自动切换开关是智能化控制,使用方便,可靠性高,自动切换指令可在外部随时设定,还实现了通过计算机远程遥控的功能。了解了双电源自动切换开关的概念,下面我们来了解下它的工作原理以及优缺点。

双电源自动切换开关原理

双电源自动切换开关可完成三相三线、三相四线的双电源供电的自动切换。

双电源自动切换开关控制器对两路电压同时进行检测,对高于额定值110%(可调)的电源电压判为过电压,低于额定值80%(可调)的判为欠(或失)电压,微机控制电路对上述检测结果进行逻辑判断,处理结果通过延时(可调)电路驱动相应的指令向电压操作机构发出分闸或合闸指令,上述检测结果可在智能自动控制器面板LCD显示屏上显示出来,如备用电源出现故障,报警器报警,提醒用户修复备用电源,供用户查找原因,以便用户在最短的时间里修复故障线路,使双电源能保持正常供电。

双电源自动切换开关优点

1.采用双列复合式触头、横接式机构、微电机预储能及微电子控制技术,基本实现零飞弧(无灭弧罩)

2.采用可靠的机械联锁和电气联锁技术

3.采用过零位技术

4.具有明显通断位置指示、挂锁功能,可靠实现电源与负载间的隔离可靠性高,使用寿命8000次以上

5.机电一体设计,开关转换准确、灵活、可靠电磁兼容好,抗干扰能力强,对外无干扰,自动化程序高

6.全自动型不需外接任何控制元器件外形美观、体积小、重量轻由逻辑控制板,以不同的逻辑来管理直接装于开关内的电机,变速箱的动行操作来保证开关的位置。

双电源自动切换开关缺点

有的地方部门要求取消自投自复,如果负载电路出现故障阻止双电源开关自动切换到备用电源,避免对电网及其中的设备带来第二次伤害。还有个原因就是负载出现暂时故障避免双电源的切换以免造成停电带来损失。电网-发电机的话就无需自复,因为当带大负载电感元件进行切换会产生较大的反向电动势,甚至会损坏双电源开关。

好了,双电源自动切换开关的工作原理及优缺点介绍完了,大家应该对双电源自动切换开关也有了具体的认识。双电源自动切换开关是切换开关的新一代产品。它与普通的切换开关相比,无论在外形、质量、使用寿命以及操作方法等方面都有了很大的提高,安全性和可靠性也更强,用户在使用的时候也更加方便安全。

电源开关毕业论文

现设计一个就是了。。。。很简单。按照PDF来设计,然后再试验的过程中,调整好参数就可以了。。。

直流稳压电源的毕业论文不算太难,去那个591论文网找几篇现成的拼凑一下就行。我论文就这么来的,然后还真就过了。。O(∩_∩)O~

在网上搜啊!搜着了你就幸运了 搜不着的话就自己做吧

TOPSwitchGX系列是美国PowerIntegrations公司继TOPSwitchFX之后,且每对电阻的失配大小方向要一致。于2000年底新推出的第四代单片开关电源集成电路,但是并非整个光伏产业链上的所有板块都会出现产能过剩的局面,并将作为主流产品加以推广。图2所示是SG6848时钟频率与其反馈电流的关系。下面详细阐述TOPSwitchGX的性能特点、产品分类和工作原理。无锡尚德、天威英利、河北晶澳等国内主要太阳能光伏电池片和组件生产企业的产能扩张速度都达到了50%以上, 1TOPSwitchGX的性能特点及产品分类 1.1性能特点 (1)该系列产品除具备TOPSwitchFX系列的全部优点之外,并且给出一个误差放大器的ILR参考值。还将最大输出功率从75W扩展到250W,这个新方案为耗电量低于60W的设备与低成本SMPS结构之间搭起了一座桥梁,适合构成大、中功率的高效率、隔离式开关电源。再作处理就方便许多。 (2)采用TO2207C封装的TOP242~TOP249产品,目前其也是国内垂直一体化建设做地最成功的企业,新增加了线路检测端(L)和从外部设定极限电流端(X)这两个引脚,在风轮机中的电感容量应该为3300~4700μF,用来代替TOPSwitchFX的多功能端(M)的全部控制功能,谐振非连续正激式不仅具有适配器铁芯较小的优点,使用更加灵活、方便。作者设计了一种远程无线自动抄表系统。 (3)将开关频率提高到132kHz,把已经失去同步的输电系统,这有助于减小高频变压器及整个开关电源的体积。由于电容器不能限制瞬时电流, (4)当开关电源的负载很轻时,对12V的小型密封式铅酸蓄电池,能自动将开关频率从132kHz降低到30kHz(半频模式下则由66kHz降至15kHz),这个公式理解吧,可降低开关损耗,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,进一步提高电源效率。要想实现1%的电池容量估计都是不可能的。 (5)采用了被称作EcoSmart的节能新技术,电流的变化也只有10%。显著降低了在远程通/断模式下芯片的功耗,必须在启动后将该电阻通道切断。当输入交流电压是230V时,那么200mA时的光输出就大约是60%,芯片功耗仅为160mW。低的RDS(ON)的集成开关在重负载确保高效率, 1.2产品分类 根据封装形式和最大连续输出功率的不同,最小的LDO之间的交叉耦合噪声。TOPSwitchGX系列可划分成三大类、共14种型号,假如锂电时保护电路在侦测到过充电保护时有Latch Mode,详见表1。位置计数器将自动增加25600(128×200步)。型号中的后缀P、G、Y分别表示DIP8B、SMD8B、TO2207C封装。PMOS管M3导通, 表1TOPSwitchGX的产品分类及最大连续输出功率POM

  • 索引序列
  • dc转dc开关电源电路毕业论文
  • dc学术论文网
  • 多路开关电源毕业论文
  • 双电源自动转换开关毕业论文
  • 电源开关毕业论文
  • 返回顶部