首页 > 学术发表知识库 > 重力式挡土墙安全问题的研究论文

重力式挡土墙安全问题的研究论文

发布时间:

重力式挡土墙安全问题的研究论文

请问12米高 52米长宽1.2米出现断裂应该怎么办

重力式挡土墙安全问题解决方法:1重力式挡土墙的设计要点设计重力式挡土墙,一般先通过满足挡土墙的抗滑移要求确定挡土墙的总工程量,再进行细部尺寸调整,以满足挡土墙的抗倾覆要求。1、断面形式的确定根据重力式挡土墙结构类型及其特点,我们可以根据实际条件,选择不同类型的断面结构。如果地面横坡比较陡峭,若采用仰斜式挡土墙,一定会过多增加墙高,断面增大,造成浪费,而采用俯斜式挡土墙会比较经济合理。只有在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。2、挡土墙的截面尺寸的确定重力式挡土墙是靠自身重力来抵抗土压力,在设计时,重力式挡土墙的截面尺寸一般按试算法确定,可结合工程地质、填土性质、墙身材料和施工条件等方面的情况按经验初步拟定截面尺寸,然后进行验算,如不满足要求,则应修改截面尺寸或采取其它措施,直到满足为止。3、土压力的确定挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多,由于库伦理论概念清析,计算简单,适用范围较广,因此库伦理论和公式是目前应用最广的土压力计算方法。

1.稳定性增大的措施为减少基底压应力,增加抗倾覆的稳定性,可以在墙趾处伸出一台阶,以拓宽基底,以增大稳定力臂。另外可以改变墙背或墙面的坡度,以减小土压力或增大力臂。改变墙身形式,如采用衡重式、拱桥式等。2.滑动稳定性增大的措施重力式抗滑挡土墙的墙背坡度一般采用1:0.25,墙后常设卸荷平台,墙基一般做成倒坡或台阶形,墙高和基础的埋深必须按地基的性质,承载力的要求,地形和水文地质等条件,通过验算来确定。此外,为避免因地基不均匀沉陷而引起墙身开裂,应根据地质条件的变化和墙高,墙身断面的变化而设置沉降缝和伸缩缝。3.挡土墙的排水处理措施挡土墙的排水设施通常内地面排水和墙身排水两部分组成。挡土墙的排水处理是否得当,直接影响到挡土墙的安全及使用效果。地面排水可设置地面排水沟,引排地面水。夯实回填土顶面和地面松土,防止雨水和地面水下渗,必要时可加设铺砌,对路堑挡土墙墙趾前的边沟应予以铺砌加固,以防止边沟水渗入基础。墙身排水主要是为了迅速排除墙后积水,浆砌挡土墙应根据渗水量在墙身的适当高度处布置泄水孔。

1重力式挡土墙的设计要点 设计重力式挡土墙,一般先通过满足挡土墙的抗滑移要求确定挡土墙的总工程量,再进行细部尺寸调整,以满足挡土墙的抗倾覆要求。 1.1断面形式的确定 根据重力式挡土墙结构类型及其特点,我们可以根据实际条件,选择不同类型的断面结构。如果地面横坡比较陡峭,若采用仰斜式挡土墙,一定会过多增加墙高,断面增大,造成浪费,而采用俯斜式挡土墙会比较经济合理。只有在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。 1.2挡土墙的截面尺寸的确定 重力式挡土墙是靠自身重力来抵抗土压力,在设计时,重力式挡土墙的截面尺寸一般按试算法确定,可结合工程地质、填土性质、墙身材料和施工条件等方面的情况按经验初步拟定截面尺寸,然后进行验算,如不满足要求,则应修改截面尺寸或采取其它措施,直到满足为止。 1.3土压力的确定 挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多,由于库伦理论概念清析,计算简单,适用范围较广,因此库伦理论和公式是目前应用最广的土压力计算方法。 2重力式挡土墙的计算内容 从安全地角度考虑,当埋入土中不算很深时,作用于挡土墙上的荷载有主动土压力、挡土墙自重、墙面埋入土中部分所受的被动土压力,一般可忽略不计。重力式挡土墙的计算内容主要进行稳定性验算、地基承载力验算和墙身强度验算。 2.1挡土墙的稳定验算及强度验算 挡土墙的设计应保证其在自重和外荷载作用下不发生全墙的滑动和倾覆,并保证墙身截面有足够的强度、基底应力小于地基承载力和偏心距不超过容许值。因此在拟定墙身断面形式及尺寸之后,应进行墙的稳定及强度验算(采用容许应力法)。 2.2 墙身截面强度验算 通常选取一、两个截面进行验算。验算截面可选在基础底面、1/2墙高处或上下墙交界处等。墙身截面强度验算包括法向应力和剪应力的验算。剪应力虽然包括水平剪应力和斜剪应力两种,重力式挡土墙只验算水平剪应力。 2.3基底应力及偏心验算 基底的合力偏心距e计算公式为:e=B/2-Zn=B/2-(WZw+EyZx-ExZy)/(W+Ey) 在土质地基上,e≤B/6;在软弱岩石地基上,e≤B/5;在不易风化的岩石地基上,e≤B/4。 3挡土墙稳定性增大的措施 设计、验算之后,为保证挡土墙的安全性,必须采取必要的措施。 3.1倾覆稳定性增大的措施 为减少基底压应力,增加抗倾覆的稳定性,可以在墙趾处伸出一台阶,以拓宽基底,以增大稳定力臂。另外可以改变墙背或墙面的坡度,以减小土压力或增大力臂。改变墙身形式,如采用衡重式、拱桥式等。 3.2滑动稳定性增大的措施 重力式抗滑挡土墙的墙背坡度一般采用1:0.25,墙后常设卸荷平台,墙基一般做成倒坡或台阶形,墙高和基础的埋深必须按地基的性质,承载力的要求,地形和水文地质等条件,通过验算来确定。此外,为避免因地基不均匀沉陷而引起墙身开裂,应根据地质条件的变化和墙高,墙身断面的变化而设置沉降缝和伸缩缝。 3.3挡土墙的排水处理措施 挡土墙的排水设施通常内地面排水和墙身排水两部分组成。挡土墙的排水处理是否得当,直接影响到挡土墙的安全及使用效果。 地面排水可设置地面排水沟,引排地面水。夯实回填土顶面和地面松土,防止雨水和地面水下渗,必要时可加设铺砌,对路堑挡土墙墙趾前的边沟应予以铺砌加固,以防止边沟水渗入基础。墙身排水主要是为了迅速排除墙后积水,浆砌挡土墙应根据渗水量在墙身的适当高度处布置泄水孔。 总之挡土墙是防止土体坍塌的构筑物,考虑重力式挡土墙设计要点时,应与其他工程方案进行技术经济比较,分析其技术的可行性及经济的合理性,按照国家技术规范组织工程的实施,才能建造出优质的重力式挡土墙工程。

重力挡土墙安全问题的研究论文

请问12米高 52米长宽1.2米出现断裂应该怎么办

重力式挡土墙安全问题解决方法:1重力式挡土墙的设计要点设计重力式挡土墙,一般先通过满足挡土墙的抗滑移要求确定挡土墙的总工程量,再进行细部尺寸调整,以满足挡土墙的抗倾覆要求。1、断面形式的确定根据重力式挡土墙结构类型及其特点,我们可以根据实际条件,选择不同类型的断面结构。如果地面横坡比较陡峭,若采用仰斜式挡土墙,一定会过多增加墙高,断面增大,造成浪费,而采用俯斜式挡土墙会比较经济合理。只有在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。2、挡土墙的截面尺寸的确定重力式挡土墙是靠自身重力来抵抗土压力,在设计时,重力式挡土墙的截面尺寸一般按试算法确定,可结合工程地质、填土性质、墙身材料和施工条件等方面的情况按经验初步拟定截面尺寸,然后进行验算,如不满足要求,则应修改截面尺寸或采取其它措施,直到满足为止。3、土压力的确定挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多,由于库伦理论概念清析,计算简单,适用范围较广,因此库伦理论和公式是目前应用最广的土压力计算方法。

重力式挡土墙安全问题解决方法:1重力式挡土墙的设计要点设计重力式挡土墙,一般先通过满足挡土墙的抗滑移要求确定挡土墙的总工程量,再进行细部尺寸调整,以满足挡土墙的抗倾覆要求。1.1断面形式的确定根据重力式挡土墙结构类型及其特点,我们可以根据实际条件,选择不同类型的断面结构。如果地面横坡比较陡峭,若采用仰斜式挡土墙,一定会过多增加墙高,断面增大,造成浪费,而采用俯斜式挡土墙会比较经济合理。只有在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。1.2挡土墙的截面尺寸的确定重力式挡土墙是靠自身重力来抵抗土压力,在设计时,重力式挡土墙的截面尺寸一般按试算法确定,可结合工程地质、填土性质、墙身材料和施工条件等方面的情况按经验初步拟定截面尺寸,然后进行验算,如不满足要求,则应修改截面尺寸或采取其它措施,直到满足为止。1.3土压力的确定挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多,由于库伦理论概念清析,计算简单,适用范围较广,因此库伦理论和公式是目前应用最广的土压力计算方法。2重力式挡土墙的计算内容从安全地角度考虑,当埋入土中不算很深时,作用于挡土墙上的荷载有主动土压力、挡土墙自重、墙面埋入土中部分所受的被动土压力,一般可忽略不计。重力式挡土墙的计算内容主要进行稳定性验算、地基承载力验算和墙身强度验算。2.1挡土墙的稳定验算及强度验算挡土墙的设计应保证其在自重和外荷载作用下不发生全墙的滑动和倾覆,并保证墙身截面有足够的强度、基底应力小于地基承载力和偏心距不超过容许值。因此在拟定墙身断面形式及尺寸之后,应进行墙的稳定及强度验算(采用容许应力法)。2.2 墙身截面强度验算通常选取一、两个截面进行验算。验算截面可选在基础底面、1/2墙高处或上下墙交界处等。墙身截面强度验算包括法向应力和剪应力的验算。剪应力虽然包括水平剪应力和斜剪应力两种,重力式挡土墙只验算水平剪应力。2.3基底应力及偏心验算基底的合力偏心距e计算公式为:e=B/2-Zn=B/2-(WZw+EyZx-ExZy)/(W+Ey)在土质地基上,e≤B/6;在软弱岩石地基上,e≤B/5;在不易风化的岩石地基上,e≤B/4。3挡土墙稳定性增大的措施设计、验算之后,为保证挡土墙的安全性,必须采取必要的措施。3.1倾覆稳定性增大的措施为减少基底压应力,增加抗倾覆的稳定性,可以在墙趾处伸出一台阶,以拓宽基底,以增大稳定力臂。另外可以改变墙背或墙面的坡度,以减小土压力或增大力臂。改变墙身形式,如采用衡重式、拱桥式等。3.2滑动稳定性增大的措施重力式抗滑挡土墙的墙背坡度一般采用1:0.25,墙后常设卸荷平台,墙基一般做成倒坡或台阶形,墙高和基础的埋深必须按地基的性质,承载力的要求,地形和水文地质等条件,通过验算来确定。此外,为避免因地基不均匀沉陷而引起墙身开裂,应根据地质条件的变化和墙高,墙身断面的变化而设置沉降缝和伸缩缝。3.3挡土墙的排水处理措施挡土墙的排水设施通常内地面排水和墙身排水两部分组成。挡土墙的排水处理是否得当,直接影响到挡土墙的安全及使用效果。地面排水可设置地面排水沟,引排地面水。夯实回填土顶面和地面松土,防止雨水和地面水下渗,必要时可加设铺砌,对路堑挡土墙墙趾前的边沟应予以铺砌加固,以防止边沟水渗入基础。墙身排水主要是为了迅速排除墙后积水,浆砌挡土墙应根据渗水量在墙身的适当高度处布置泄水孔。总之挡土墙是防止土体坍塌的构筑物,考虑重力式挡土墙设计要点时,应与其他工程方案进行技术经济比较,分析其技术的可行性及经济的合理性,按照国家技术规范组织工程的实施,才能建造出优质的重力式挡土墙工程。

4.6.1前言

水泥土搅拌技术是20世纪70年代发展起来的一门新技术,过去主要用来处理软弱地基,而近年来被越来越多地用于基坑支护。由于重力式水泥土支护技术在国内起步较晚,处于发展中,许多设计和施工技术正在完善,其基坑支护设计原理及计算,目前还没有统一的国家标准,只是出了一些地方性、行业性规范或规程。这些规程或规范主要是针对当地的工程情况、基坑和土层等制定出来的,具有较强的地方性。原冶金工业部和建设部分别于1998年和1999年颁布了《建筑基坑工程技术规范》(Y B 9258—97)和《建筑基坑支护技术规程》(JGJ 120—99)(以下分别简称为《规范》和《规程》)。目前国内绝大多数地方的工程技术人员,在进行重力式水泥土挡墙基坑支护设计时,主要是依据和参照《规范》和《规程》来进行设计。

进行重力式水泥土挡墙支护设计,其主要的设计内容一般为:挡墙的抗倾覆、抗滑移、墙身及地基土强度验算、抗隆起验算等。但在具体设计这些内容时,《规程》和《规范》里的计算公式,计算方法等有时相差较大,就是设计内容有时两者也有差异。这常常给基坑工程设计人员带来困难,不知以何种规程或规范为依据。尤其是在设计经验还不多的情况下更加感到棘手。其实,不论是上述的《规范》还是《规程》都不可能包罗万象,它们虽然都提供了一些设计计算方法和公式,但要能满足全国各地的基坑工程设计,也不太现实。这也许是《规范》和《规程》目前只是行业性标准,还没有成为国家标准的原因之一。其实,在支护设计中,只要根据具体的基坑工程及其土层情况,充分领会《规范》和《规程》的精神,设计起来还是很顺利的。下面就重力式水泥土挡墙支护设计内容,结合《规范》和《规程》的差异,对支护设计中的几个问题进行探讨。

4.6.2抗倾覆设计及验算

抗倾覆设计及验算是重力式水泥土挡墙支护设计的重要内容。它直接关系到挡墙的尺寸大小,进而影响到工程的造价。在抗倾覆设计中,《规范》和《规程》都有明确规定。

原冶金工业部《建筑基坑工程技术规范》的第9.2.2条按式(4.1)确定:

桂林岩溶区岩土工程理论与实践

式中: ——被动土压力绕墙前趾O点的力距和;

——主动土压力绕墙前趾O 点的力矩和;

∑Mw——墙前和墙后水压力对墙前趾O点的力矩和;

G——墙身重量;

B——墙身宽度;

U——作用于墙底面上的水浮力,

γw——水的重度;

hwa——主动侧地下水位至墙底的距离;

hwp——被动侧地下水位至墙底的距离;

lw——U的合力作用点距墙前趾0点的距离;

γt——倾覆稳定抗力分项系数。

原建设部《建筑基坑支护技术规程》的第5.2.1条规定,水泥土挡墙厚度设计值b宜根据抗倾覆稳定条件,对墙底土体为粘性土或粉土时按式(4.2)确定:

桂林岩溶区岩土工程理论与实践

式中:γ0——建筑基坑侧壁重要性系数;

ha——合力∑Eai作用点至水泥土墙底的距离;

∑Eai——水泥土墙底以上基坑外侧水平荷载标准值合力之和;

hp——合力∑Epj作用点至水泥土墙底的距离;

∑E pj——水泥土墙底以上基坑内侧水平抗力标准值的合力之和;

γcs——水泥土墙体平均重度;

h——基坑开挖深度;

hd——合力∑E pj作用点至基坑开挖面得距离。

式(4.1)适应于任何土类(包括粘性土),考虑了地下水的作用,它认为地下水的作用:是自由流动的重力水而作用在挡墙上;而式(4.2)只适应于粘性土或粉土,没有考虑地下水的作用。

实际上,对于粘性土,由于土体孔隙较小,地下水很难自由流动,即使有地下水作用也仅仅是孔隙水压力,而用水土合算计算土压力时,可以把孔隙水压力对挡墙的作用概括进去,因此用式(4.2)较为合理;而对于粉土、砂等,地下水可以较自由地流动,其作用于挡墙的水压力可认为是自由流动的重力水作用,因此用式(4.1)计算较合理。

为了说明式(4.1)对粘性土挡墙设计不太合理,下面举一工程实例。桂林市中山中路某大楼,基坑深为5 m,土层依次为①填土,γ=17 kN/m 3,c =10kPa,φ=15°厚度为2.5 m;②可塑粘土,γ=18 kN/m 3,c=28kPa,φ=13°,厚度在8.0 m以上。用重力式水泥土挡墙支护,地下水埋深为1.2 m,表4.6是仅仅考虑抗倾覆的要求而设计计算的结果。

由此可见,《规范》由于过分地考虑了挡土墙前后地下水的作用,在计算过程中得到的地下水前后对挡墙墙前趾倾覆点O的力矩∑M w =1109 kN ·m,远大于主动土压力对O点的力矩 =1109 kM ·m。其实,粘性土是弱渗透性土,地下水很难产生像自由重力水那样的作用效果,其力矩也很难大于主动力的力矩而达到1109 kN·m。但如果当基坑土体为砂土、粉土时地下水对O 点产生的力矩还是可观的,采用《规范》第(9.2.2)条比较合理。当基坑土体为粘性土时,用《规程》中第5.2.1条比较合理。

表4.6 按抗倾覆要求设计计算结果与实际结果对比Table 4.6 Calculations result according to design anti-overturning compared with actual result

最后还有一点需探讨的是:式(4.1)中Ulw原意应为粘土挡墙底部水压力(浮力)对墙前趾O 点的力矩,其中U 为作用于墙底面上的水浮力(kPa), ;lw 为U的合力作用点距O 点的距离(m),由此可知Ulw 仅仅代表的是墙底单位面积上水压力(浮力)对O 点的力矩,只有Ulw 再乘以墙宽B,即Ulw B 才代表每延米长度方向上的水压力(浮力)对O 点的力矩;因此建议将式(4.1)改为:

桂林岩溶区岩土工程理论与实践

这样可能更合理。

4.6.3抗滑移设计及验算

抗滑移设计与验算也是重力式水泥土挡墙设计的重要内容之一,《规程》和《规范》对此也作了较为详尽的规定。抗滑移设计验算可分为:挡墙整体滑移设计验算和挡墙水平滑动设计验算。

《规程》是根据水泥土挡墙嵌固深度来控制满足整体稳定性要求,其具体计算原理和过程在《规程》的附录A中有详细介绍,简洁明了,切实可行。但是,《规程》中没有对基坑抗水平滑动验算作要求。其实,在许多地区,尤其是软土地区,挡墙的水平滑动常常是水泥土挡墙支护工程的常见破坏形式。

《规范》中,既有水平滑动验算公式,又有圆弧整体滑动计算公式,内容较全面。但其整体滑动计算公式是经典的简单条分法,计算方法步骤烦琐,需经多次试算,工作量大,在工程设计中不太方便,而这一点《规程》中的附录A 可以弥补。因此对挡墙整体移动设计验算建议采用《规程》中的附录A 的方法;另外还需对挡墙进行抗水平滑移设计验算,依据《规范》中的计算分式,这样显得更合理。

4.6.4基坑底部土体强度验算

基坑开挖前,施工完毕水泥土挡墙后,由于水泥土挡墙重度与原基坑土体的重度相差不大,挡墙底部土体所承受的压力无太大变化,原来处于稳定的土层仍将稳定。但当基坑土层开挖后,由于卸荷,基坑边缘的土体由于有临空面,挡墙底部的土体承载能力将降低,尤其是其承载力设计值将会降低,如图4.6,因此有必要验算其地基承载力。对此点,《规程》中没有作要求;而《规范》也仅仅是在第 9.2.3(2)条中式(9.2.3.2)有要求,但其要求不全面,它只对墙底边缘最大压力的A 点处进行了验算。而没有对整个挡墙底部的土体承载力进行验算。而有时,在满足抗倾覆、抗滑移,墙身应力强度,抗隆起等条件的情况下,恰恰是由于基坑挡墙底部土体承载力不足而导致支护失败或更改设计方案。

图4.6 基坑开挖示意图Fig.4.6 Diagram for excavation

例如某基坑深为6 m,基坑土体为软土,γ=17 kN/m 3,c=15kPa,φ=6°,承载力标准值为fk=90kPa,地下水埋深为3.0 m。用重力式水泥土挡墙支护,设计墙宽B=3 m,挡墙高(h+D)为9 m(经计算满足抗倾覆、抗滑移及墙身应力等验算)。

在基抗开挖后,墙底软土的承载力设计值f应为(参照《建筑地基基础设计规范》(GBJ 7—89)第5.1.3条)

f=fk+ηbγ(b-3) + ηdγ0(d-0.5)

ηb=0;ηd=1.1;fk=90kPa

桂林岩溶区岩土工程理论与实践

将以上取值代入得

f=90 + 1.1 ×10.3 ×( 6-0.5) = 152.3kPa

挡墙底部压力为:

桂林岩溶区岩土工程理论与实践

f=152.3kPa

即挡墙底部的土体将破坏。

因此,在进行水泥土挡墙设计时,除按《规范》中的规定验算挡墙底部最大压力外,还需验算整个挡墙底部处地基土承载力,即挡墙底部处土体所受的压力p必须小于土体的承载力设计值f,而这一点,《规范》和《规程》中有关内容均没有提及。

4.6.5土压力计算中的c、φ值选取

在水泥土挡墙支护设计中,土压力的计算是支护设计的根本依据,而土压力计算中的c、φ值又是最关键的参数。

在工程中,为了尽可能模拟工程各种复杂的排水条件,在进行c、φ值剪切试验时,通常分为三种情况,即三轴剪切试验的不固结不排水剪、固结不排水剪和固结排水剪,如用直接剪切仪,则分为快剪,固结快剪和慢剪。由于三轴剪切试验相对于直接剪切试验,更能模拟土体的实际受力状况以及更能严格控制排水条件,因此其c、φ值也相对更为可靠。对于基坑工程,一般要求采用三轴试验剪切实验。

不同试验方法和排水条件对c、φ值影响很大,例如在桂林市西门菜市主体工程场地,取同一粉质粘土试样进行不同固结排水条件下的直接剪切试验和三轴剪切试验,其对比结果如表4.7(c'、φ'为有效应力强度指标值)。由表4.7可知,同一土体采用不同的试验方法和排水条件,其值相差明显,由此计算的土压力也相差甚远。此外,土体的应力历史和应力路径也是影响土体c、φ值的重要因素。

表4.7 桂林市西门菜市主体工程部分粉质粘土剪切试验结果Table 4.7 Results of shear test of silty clay in the main project of Ximen market in Guilin city

对基坑土体c、φ值试验方法的选择,一般的原则是:当地基土的透水性和排水条件不良,土体没有固结,施工速度又较快,土中的水来不及排出时,采用不固结不排水(快剪)剪切试验,例如机械开挖粘性土基坑;而当基坑土体的透水性和排水条件较好时,且施工速度也较慢时,土体能够较充分地固结和排水,采用固结排水(慢剪)剪切试验,例如人工开挖粉砂、粉土基坑;如果介于上述两者之间,可用固结不排水(固结快剪)剪切试验结果。

根据前面的分析,桂林市区主要的基坑工程土层,所采用的剪切试验方法,建议如表4.8。

表4.8 桂林市区基坑土层c、φ值剪切试验的选用Table 4.8 The selection of c、φ in shear test for pit soil in Guilin city

4.6.6结论

(1)在重力式水泥土挡墙支护设计中,其抗倾覆设计及验算对于粘性土基坑,建议采用《规程》中的有关规定;对于粉土、砂土基坑建议采用《规范》中的有关规定,同时建议将式(4.1)改为:

桂林岩溶区岩土工程理论与实践

(2)在抗滑移设计验算时,建议采用《规程》中的附录A 进行整体抗滑移计算,另外,还必须对基坑进行水平抗滑移验算,采用《规范》中的有关规定。

(3)《规范》和《规程》都没有对水泥土挡墙底部土体进行承载力验算,这有时会直接影响基坑工程的安全,建议对挡墙底部土体进行承载力验算,使挡墙底部土体所受的压力小于其承载力设计值。

(4)重力式水泥土挡墙基坑土压力计算中的c、φ值,可以因为不同试验方法和排水条件而表现为不同的数值,从而影响土压力值,因此,抗剪强度c、φ值试验,要依据不同的基坑土体条件和施工条件,而采用不同的试验方法,不能一概而论。

挡土墙安全问题研究论文

1重力式挡土墙的设计要点 设计重力式挡土墙,一般先通过满足挡土墙的抗滑移要求确定挡土墙的总工程量,再进行细部尺寸调整,以满足挡土墙的抗倾覆要求。 1.1断面形式的确定 根据重力式挡土墙结构类型及其特点,我们可以根据实际条件,选择不同类型的断面结构。如果地面横坡比较陡峭,若采用仰斜式挡土墙,一定会过多增加墙高,断面增大,造成浪费,而采用俯斜式挡土墙会比较经济合理。只有在路堑墙、墙趾处地面平缓的路肩墙或路堤墙等情况下,才考虑采用仰斜式挡土墙。 1.2挡土墙的截面尺寸的确定 重力式挡土墙是靠自身重力来抵抗土压力,在设计时,重力式挡土墙的截面尺寸一般按试算法确定,可结合工程地质、填土性质、墙身材料和施工条件等方面的情况按经验初步拟定截面尺寸,然后进行验算,如不满足要求,则应修改截面尺寸或采取其它措施,直到满足为止。 1.3土压力的确定 挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。计算土压力的理论和方法很多,由于库伦理论概念清析,计算简单,适用范围较广,因此库伦理论和公式是目前应用最广的土压力计算方法。 2重力式挡土墙的计算内容 从安全地角度考虑,当埋入土中不算很深时,作用于挡土墙上的荷载有主动土压力、挡土墙自重、墙面埋入土中部分所受的被动土压力,一般可忽略不计。重力式挡土墙的计算内容主要进行稳定性验算、地基承载力验算和墙身强度验算。 2.1挡土墙的稳定验算及强度验算 挡土墙的设计应保证其在自重和外荷载作用下不发生全墙的滑动和倾覆,并保证墙身截面有足够的强度、基底应力小于地基承载力和偏心距不超过容许值。因此在拟定墙身断面形式及尺寸之后,应进行墙的稳定及强度验算(采用容许应力法)。 2.2 墙身截面强度验算 通常选取一、两个截面进行验算。验算截面可选在基础底面、1/2墙高处或上下墙交界处等。墙身截面强度验算包括法向应力和剪应力的验算。剪应力虽然包括水平剪应力和斜剪应力两种,重力式挡土墙只验算水平剪应力。 2.3基底应力及偏心验算 基底的合力偏心距e计算公式为:e=B/2-Zn=B/2-(WZw+EyZx-ExZy)/(W+Ey) 在土质地基上,e≤B/6;在软弱岩石地基上,e≤B/5;在不易风化的岩石地基上,e≤B/4。 3挡土墙稳定性增大的措施 设计、验算之后,为保证挡土墙的安全性,必须采取必要的措施。 3.1倾覆稳定性增大的措施 为减少基底压应力,增加抗倾覆的稳定性,可以在墙趾处伸出一台阶,以拓宽基底,以增大稳定力臂。另外可以改变墙背或墙面的坡度,以减小土压力或增大力臂。改变墙身形式,如采用衡重式、拱桥式等。 3.2滑动稳定性增大的措施 重力式抗滑挡土墙的墙背坡度一般采用1:0.25,墙后常设卸荷平台,墙基一般做成倒坡或台阶形,墙高和基础的埋深必须按地基的性质,承载力的要求,地形和水文地质等条件,通过验算来确定。此外,为避免因地基不均匀沉陷而引起墙身开裂,应根据地质条件的变化和墙高,墙身断面的变化而设置沉降缝和伸缩缝。 3.3挡土墙的排水处理措施 挡土墙的排水设施通常内地面排水和墙身排水两部分组成。挡土墙的排水处理是否得当,直接影响到挡土墙的安全及使用效果。 地面排水可设置地面排水沟,引排地面水。夯实回填土顶面和地面松土,防止雨水和地面水下渗,必要时可加设铺砌,对路堑挡土墙墙趾前的边沟应予以铺砌加固,以防止边沟水渗入基础。墙身排水主要是为了迅速排除墙后积水,浆砌挡土墙应根据渗水量在墙身的适当高度处布置泄水孔。 总之挡土墙是防止土体坍塌的构筑物,考虑重力式挡土墙设计要点时,应与其他工程方案进行技术经济比较,分析其技术的可行性及经济的合理性,按照国家技术规范组织工程的实施,才能建造出优质的重力式挡土墙工程。

如果太忙没空写作需要原创代笔时可以找我 希望可以帮到你,论文要想写的特别好,拿到高分,最重要的是要把认真两字要记牢,认真收集资料,列好大纲,根据学校格式写,关于法学专业案例论文是我们特长,服务特点:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。1、论文题目:要求准确、简练、醒目、新颖。 2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。T a o,bao两钻信誉,诚信保过,需要详谈,看 用 户 名

说到挡土墙安全方案,现阶段,建筑企业进行安全方案编制中,基本情况怎么样?基本流程情况如何?以下是中达咨询小编梳理挡土墙安全方案相关内容,基本情况如下:小编通过建筑行业百科网站——建筑网建筑知识专栏进行查询,梳理挡土墙安全教育相关内容,基本情况如下:挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基底;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。建筑企业制定挡土墙安全方案,挡土墙施工安全方案内容如下:挡土墙具体施工工程1、在砌筑操作之前必须检查操作环境是否符合安全要求,道路是否畅通,机具是否完好、牢固,安全设施和防护用品是否齐全,经检查符合要求后才可施工。2、砌筑基础时,应经常检查和注意基坑边坡的土体变化情况,有无开裂、位移现象。堆放石材料应离槽(坑)边1m以上。3、砌筑高度超过施工操作面1.2m以上时应搭设脚手架。脚手架上堆放材料不得超过规定荷载值,同一块脚手板上操作人员不得超过两人。不准用放不稳固的工具或物品在脚手板上垫高操作,更不准在未经计算和加固的情况下,在脚手板上再随意叠搭一层脚手板。应按规定搭设安全网。4、在脚手架施工时,堆放材料、施工机具等物品不得超过使用荷载,否则,必须经过验算并采取有效的加固措施后,方可堆放和施工。5、不准站在墙顶面上划线、砖砌、刮缝、清理墙面和检查大脚垂直度等工作;修石时应面向墙面砍,并要注意防止碎石跳出伤人,垂直往上、往下人工投递石料时,要支搭站人用的宽度不小于0.6m的专用脚手架,并认真传递,以防伤人。6、不准在墙顶上或脚手架上修凿石材,以免墙体受到振动,影响墙体质量或石块掉下伤人。不准勉强在超过胸部的墙上砌筑片石,以免不宜控制墙面垂直度、碰撞石墙或上石时失手掉下造成事故。不用的石块不得由上往下投掷,运石上下的坡道要加固定牢,并订设防滑条、栏杆扶手等。7、已砌好的墙应用临时系杆(如檀条等)放置在各跨墙上,使其连接稳定,或采用其他加固措施,雨期每天下班前应用防雨材料遮盖,以防雨水冲掉砂浆,致使砌体倒塌。施工安全注意事项1、所有现场作业人员必须配带安全帽,严禁穿拖鞋或其他防滑功能差的鞋子上岗。2、高边坡作业人员和脚手架上作业人员,身上需系安全设施,以防坠落。3、施工重地,闲人免进。工班长应注意维护现场秩序,不得让与施工无关的人员进入施工重地。4、注意用电安全,所用电线等不得乱拉乱接,或靠近诸如脚手架等金属作业设施,以免触电。所用电力设备机具每次使用前必须仔细检查,确保安全后方可投入使用。5、夏季作业,特别在炎热天气要注意防暑,防止因中暑等引发安全事故。6、雨天不得进行高空作业。7、施工现场发生任何异常及事故时,应立即停止施工,保护现场,并及时与项目部施工科联系。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。

1.稳定性增大的措施为减少基底压应力,增加抗倾覆的稳定性,可以在墙趾处伸出一台阶,以拓宽基底,以增大稳定力臂。另外可以改变墙背或墙面的坡度,以减小土压力或增大力臂。改变墙身形式,如采用衡重式、拱桥式等。2.滑动稳定性增大的措施重力式抗滑挡土墙的墙背坡度一般采用1:0.25,墙后常设卸荷平台,墙基一般做成倒坡或台阶形,墙高和基础的埋深必须按地基的性质,承载力的要求,地形和水文地质等条件,通过验算来确定。此外,为避免因地基不均匀沉陷而引起墙身开裂,应根据地质条件的变化和墙高,墙身断面的变化而设置沉降缝和伸缩缝。3.挡土墙的排水处理措施挡土墙的排水设施通常内地面排水和墙身排水两部分组成。挡土墙的排水处理是否得当,直接影响到挡土墙的安全及使用效果。地面排水可设置地面排水沟,引排地面水。夯实回填土顶面和地面松土,防止雨水和地面水下渗,必要时可加设铺砌,对路堑挡土墙墙趾前的边沟应予以铺砌加固,以防止边沟水渗入基础。墙身排水主要是为了迅速排除墙后积水,浆砌挡土墙应根据渗水量在墙身的适当高度处布置泄水孔。

重力式水泥土挡墙毕业论文

1. 有效固结应力法在水泥土搅拌桩挡土墙土压力计算中的应用(字数:20813,页数:59 ) 2. 超细粉煤灰对混凝土强度的影响(字数:8632,页数:18 ) 3. 聚丙烯纤维改性橡胶混凝土试验研究(字数:14628,页数:32 ) 4. 改善混凝土性能应用技术研究(字数:16408,页数:28 ) 5. 混凝土节材技术研究(字数:10302,页数:22 ) 6. 矿渣粉对混凝土强度的影响(字数:9628,页数:25 ) 7. 橡胶粉掺量对砂浆强度的影响(字数:24076,页数:43 ) 8. 土层固结度对软土地基上填土土坡稳定的影响(字数:23619,页数:59 ) 9. 楔形桩的变形研究(字数:16405,页数:44 ) 10. 考虑施工堆载影响的软土地基上填土土坡稳定分析(字数:26492,页数:74 )可联&>系Q+.Q:89.......后面输入....3....6..........接着输入28......1....36Q+Q空间.里有*所有内容。

4.6.1前言

水泥土搅拌技术是20世纪70年代发展起来的一门新技术,过去主要用来处理软弱地基,而近年来被越来越多地用于基坑支护。由于重力式水泥土支护技术在国内起步较晚,处于发展中,许多设计和施工技术正在完善,其基坑支护设计原理及计算,目前还没有统一的国家标准,只是出了一些地方性、行业性规范或规程。这些规程或规范主要是针对当地的工程情况、基坑和土层等制定出来的,具有较强的地方性。原冶金工业部和建设部分别于1998年和1999年颁布了《建筑基坑工程技术规范》(Y B 9258—97)和《建筑基坑支护技术规程》(JGJ 120—99)(以下分别简称为《规范》和《规程》)。目前国内绝大多数地方的工程技术人员,在进行重力式水泥土挡墙基坑支护设计时,主要是依据和参照《规范》和《规程》来进行设计。

进行重力式水泥土挡墙支护设计,其主要的设计内容一般为:挡墙的抗倾覆、抗滑移、墙身及地基土强度验算、抗隆起验算等。但在具体设计这些内容时,《规程》和《规范》里的计算公式,计算方法等有时相差较大,就是设计内容有时两者也有差异。这常常给基坑工程设计人员带来困难,不知以何种规程或规范为依据。尤其是在设计经验还不多的情况下更加感到棘手。其实,不论是上述的《规范》还是《规程》都不可能包罗万象,它们虽然都提供了一些设计计算方法和公式,但要能满足全国各地的基坑工程设计,也不太现实。这也许是《规范》和《规程》目前只是行业性标准,还没有成为国家标准的原因之一。其实,在支护设计中,只要根据具体的基坑工程及其土层情况,充分领会《规范》和《规程》的精神,设计起来还是很顺利的。下面就重力式水泥土挡墙支护设计内容,结合《规范》和《规程》的差异,对支护设计中的几个问题进行探讨。

4.6.2抗倾覆设计及验算

抗倾覆设计及验算是重力式水泥土挡墙支护设计的重要内容。它直接关系到挡墙的尺寸大小,进而影响到工程的造价。在抗倾覆设计中,《规范》和《规程》都有明确规定。

原冶金工业部《建筑基坑工程技术规范》的第9.2.2条按式(4.1)确定:

桂林岩溶区岩土工程理论与实践

式中: ——被动土压力绕墙前趾O点的力距和;

——主动土压力绕墙前趾O 点的力矩和;

∑Mw——墙前和墙后水压力对墙前趾O点的力矩和;

G——墙身重量;

B——墙身宽度;

U——作用于墙底面上的水浮力,

γw——水的重度;

hwa——主动侧地下水位至墙底的距离;

hwp——被动侧地下水位至墙底的距离;

lw——U的合力作用点距墙前趾0点的距离;

γt——倾覆稳定抗力分项系数。

原建设部《建筑基坑支护技术规程》的第5.2.1条规定,水泥土挡墙厚度设计值b宜根据抗倾覆稳定条件,对墙底土体为粘性土或粉土时按式(4.2)确定:

桂林岩溶区岩土工程理论与实践

式中:γ0——建筑基坑侧壁重要性系数;

ha——合力∑Eai作用点至水泥土墙底的距离;

∑Eai——水泥土墙底以上基坑外侧水平荷载标准值合力之和;

hp——合力∑Epj作用点至水泥土墙底的距离;

∑E pj——水泥土墙底以上基坑内侧水平抗力标准值的合力之和;

γcs——水泥土墙体平均重度;

h——基坑开挖深度;

hd——合力∑E pj作用点至基坑开挖面得距离。

式(4.1)适应于任何土类(包括粘性土),考虑了地下水的作用,它认为地下水的作用:是自由流动的重力水而作用在挡墙上;而式(4.2)只适应于粘性土或粉土,没有考虑地下水的作用。

实际上,对于粘性土,由于土体孔隙较小,地下水很难自由流动,即使有地下水作用也仅仅是孔隙水压力,而用水土合算计算土压力时,可以把孔隙水压力对挡墙的作用概括进去,因此用式(4.2)较为合理;而对于粉土、砂等,地下水可以较自由地流动,其作用于挡墙的水压力可认为是自由流动的重力水作用,因此用式(4.1)计算较合理。

为了说明式(4.1)对粘性土挡墙设计不太合理,下面举一工程实例。桂林市中山中路某大楼,基坑深为5 m,土层依次为①填土,γ=17 kN/m 3,c =10kPa,φ=15°厚度为2.5 m;②可塑粘土,γ=18 kN/m 3,c=28kPa,φ=13°,厚度在8.0 m以上。用重力式水泥土挡墙支护,地下水埋深为1.2 m,表4.6是仅仅考虑抗倾覆的要求而设计计算的结果。

由此可见,《规范》由于过分地考虑了挡土墙前后地下水的作用,在计算过程中得到的地下水前后对挡墙墙前趾倾覆点O的力矩∑M w =1109 kN ·m,远大于主动土压力对O点的力矩 =1109 kM ·m。其实,粘性土是弱渗透性土,地下水很难产生像自由重力水那样的作用效果,其力矩也很难大于主动力的力矩而达到1109 kN·m。但如果当基坑土体为砂土、粉土时地下水对O 点产生的力矩还是可观的,采用《规范》第(9.2.2)条比较合理。当基坑土体为粘性土时,用《规程》中第5.2.1条比较合理。

表4.6 按抗倾覆要求设计计算结果与实际结果对比Table 4.6 Calculations result according to design anti-overturning compared with actual result

最后还有一点需探讨的是:式(4.1)中Ulw原意应为粘土挡墙底部水压力(浮力)对墙前趾O 点的力矩,其中U 为作用于墙底面上的水浮力(kPa), ;lw 为U的合力作用点距O 点的距离(m),由此可知Ulw 仅仅代表的是墙底单位面积上水压力(浮力)对O 点的力矩,只有Ulw 再乘以墙宽B,即Ulw B 才代表每延米长度方向上的水压力(浮力)对O 点的力矩;因此建议将式(4.1)改为:

桂林岩溶区岩土工程理论与实践

这样可能更合理。

4.6.3抗滑移设计及验算

抗滑移设计与验算也是重力式水泥土挡墙设计的重要内容之一,《规程》和《规范》对此也作了较为详尽的规定。抗滑移设计验算可分为:挡墙整体滑移设计验算和挡墙水平滑动设计验算。

《规程》是根据水泥土挡墙嵌固深度来控制满足整体稳定性要求,其具体计算原理和过程在《规程》的附录A中有详细介绍,简洁明了,切实可行。但是,《规程》中没有对基坑抗水平滑动验算作要求。其实,在许多地区,尤其是软土地区,挡墙的水平滑动常常是水泥土挡墙支护工程的常见破坏形式。

《规范》中,既有水平滑动验算公式,又有圆弧整体滑动计算公式,内容较全面。但其整体滑动计算公式是经典的简单条分法,计算方法步骤烦琐,需经多次试算,工作量大,在工程设计中不太方便,而这一点《规程》中的附录A 可以弥补。因此对挡墙整体移动设计验算建议采用《规程》中的附录A 的方法;另外还需对挡墙进行抗水平滑移设计验算,依据《规范》中的计算分式,这样显得更合理。

4.6.4基坑底部土体强度验算

基坑开挖前,施工完毕水泥土挡墙后,由于水泥土挡墙重度与原基坑土体的重度相差不大,挡墙底部土体所承受的压力无太大变化,原来处于稳定的土层仍将稳定。但当基坑土层开挖后,由于卸荷,基坑边缘的土体由于有临空面,挡墙底部的土体承载能力将降低,尤其是其承载力设计值将会降低,如图4.6,因此有必要验算其地基承载力。对此点,《规程》中没有作要求;而《规范》也仅仅是在第 9.2.3(2)条中式(9.2.3.2)有要求,但其要求不全面,它只对墙底边缘最大压力的A 点处进行了验算。而没有对整个挡墙底部的土体承载力进行验算。而有时,在满足抗倾覆、抗滑移,墙身应力强度,抗隆起等条件的情况下,恰恰是由于基坑挡墙底部土体承载力不足而导致支护失败或更改设计方案。

图4.6 基坑开挖示意图Fig.4.6 Diagram for excavation

例如某基坑深为6 m,基坑土体为软土,γ=17 kN/m 3,c=15kPa,φ=6°,承载力标准值为fk=90kPa,地下水埋深为3.0 m。用重力式水泥土挡墙支护,设计墙宽B=3 m,挡墙高(h+D)为9 m(经计算满足抗倾覆、抗滑移及墙身应力等验算)。

在基抗开挖后,墙底软土的承载力设计值f应为(参照《建筑地基基础设计规范》(GBJ 7—89)第5.1.3条)

f=fk+ηbγ(b-3) + ηdγ0(d-0.5)

ηb=0;ηd=1.1;fk=90kPa

桂林岩溶区岩土工程理论与实践

将以上取值代入得

f=90 + 1.1 ×10.3 ×( 6-0.5) = 152.3kPa

挡墙底部压力为:

桂林岩溶区岩土工程理论与实践

f=152.3kPa

即挡墙底部的土体将破坏。

因此,在进行水泥土挡墙设计时,除按《规范》中的规定验算挡墙底部最大压力外,还需验算整个挡墙底部处地基土承载力,即挡墙底部处土体所受的压力p必须小于土体的承载力设计值f,而这一点,《规范》和《规程》中有关内容均没有提及。

4.6.5土压力计算中的c、φ值选取

在水泥土挡墙支护设计中,土压力的计算是支护设计的根本依据,而土压力计算中的c、φ值又是最关键的参数。

在工程中,为了尽可能模拟工程各种复杂的排水条件,在进行c、φ值剪切试验时,通常分为三种情况,即三轴剪切试验的不固结不排水剪、固结不排水剪和固结排水剪,如用直接剪切仪,则分为快剪,固结快剪和慢剪。由于三轴剪切试验相对于直接剪切试验,更能模拟土体的实际受力状况以及更能严格控制排水条件,因此其c、φ值也相对更为可靠。对于基坑工程,一般要求采用三轴试验剪切实验。

不同试验方法和排水条件对c、φ值影响很大,例如在桂林市西门菜市主体工程场地,取同一粉质粘土试样进行不同固结排水条件下的直接剪切试验和三轴剪切试验,其对比结果如表4.7(c'、φ'为有效应力强度指标值)。由表4.7可知,同一土体采用不同的试验方法和排水条件,其值相差明显,由此计算的土压力也相差甚远。此外,土体的应力历史和应力路径也是影响土体c、φ值的重要因素。

表4.7 桂林市西门菜市主体工程部分粉质粘土剪切试验结果Table 4.7 Results of shear test of silty clay in the main project of Ximen market in Guilin city

对基坑土体c、φ值试验方法的选择,一般的原则是:当地基土的透水性和排水条件不良,土体没有固结,施工速度又较快,土中的水来不及排出时,采用不固结不排水(快剪)剪切试验,例如机械开挖粘性土基坑;而当基坑土体的透水性和排水条件较好时,且施工速度也较慢时,土体能够较充分地固结和排水,采用固结排水(慢剪)剪切试验,例如人工开挖粉砂、粉土基坑;如果介于上述两者之间,可用固结不排水(固结快剪)剪切试验结果。

根据前面的分析,桂林市区主要的基坑工程土层,所采用的剪切试验方法,建议如表4.8。

表4.8 桂林市区基坑土层c、φ值剪切试验的选用Table 4.8 The selection of c、φ in shear test for pit soil in Guilin city

4.6.6结论

(1)在重力式水泥土挡墙支护设计中,其抗倾覆设计及验算对于粘性土基坑,建议采用《规程》中的有关规定;对于粉土、砂土基坑建议采用《规范》中的有关规定,同时建议将式(4.1)改为:

桂林岩溶区岩土工程理论与实践

(2)在抗滑移设计验算时,建议采用《规程》中的附录A 进行整体抗滑移计算,另外,还必须对基坑进行水平抗滑移验算,采用《规范》中的有关规定。

(3)《规范》和《规程》都没有对水泥土挡墙底部土体进行承载力验算,这有时会直接影响基坑工程的安全,建议对挡墙底部土体进行承载力验算,使挡墙底部土体所受的压力小于其承载力设计值。

(4)重力式水泥土挡墙基坑土压力计算中的c、φ值,可以因为不同试验方法和排水条件而表现为不同的数值,从而影响土压力值,因此,抗剪强度c、φ值试验,要依据不同的基坑土体条件和施工条件,而采用不同的试验方法,不能一概而论。

一说到重力式挡土墙设计,相关建筑人士还是比较陌生的,在进行重力式挡土墙设计中,有什么注意事项呢?以下是中达咨询为建筑人士整理相关重力式挡土墙设计基本内容,具体内容如下:中达咨询梳理项重力式挡土墙设计的基本概况,内容如下:一般在进行重力式挡土墙设计中,需要考虑挡土墙在墙后填土土压力作用下,必须具有足够的整体稳定性和结构的强度。设计时应验算挡土墙在荷载作用下,沿基底的滑动稳定性,绕墙趾转动的倾复稳定性和地基的承载力。当基底下存在软弱土层时,应当验算该土层的滑动稳定性。在地基承载力较小时,应考虑采用工程措施,以保证挡土墙的稳定性。其次是作用于挡土墙上的力系计算作用于挡土墙力系,即一般的荷载和约束反力。悬臂式与扶壁式挡土墙设计悬臂式与扶壁式挡土墙,如图7—1所示,是钢筋混凝土挡土墙主要的形式,是一种轻型支挡结构物。它是依靠墙身的重量及底板以上的填土(含表面超载)的重量来维持其平衡,其主要特点是厚度小,自重轻,挡土高度可以很高,而且经济指标也比较好。6m左右用悬臂式;6m以上多用扶壁式。它们适用于缺乏石料、地基承载力低及地震地区。长期以来,悬臂式、扶壁式挡土墙在国内已开始大量应用。为论述方便,分为悬臂式、扶壁式两种类型挡土墙分别讨论。中达咨询小编总结以上几点内容,便于相关重力式挡土墙人员计算相关数据。增加挡土墙数据的准确性。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。

公路重力式挡土墙毕业论文

混凝土现浇楼板裂缝的成因与控制研究重力式悬臂式扶壁式挡土墙结构优化设计与选型温度变化对钢梁受力性能的影响现浇空心楼盖等代刚度和破坏形式的实验研究有限元法在连续组合梁桥负弯矩区处理中的应用钢绞线聚合物砂浆加固钢筋混凝土梁受弯性能研究侧向冲击作用下钢筋混凝土柱动力响应的有限元分析20层木质框架支撑核心筒结构模型的时程分析法新型建筑模板的开发与应用浅析“定性结构力学”在土木工程结构项目中应用

建筑工程作为与人们生产生活息息相关的工程,与整个国家经济的发展、人民生活的改善有着密切的关系。下面是我带来的关于建筑工程技术 毕业 论文题目的内容,欢迎阅读参考!建筑工程技术毕业论文题目(一) 1、软土地基上基础的处理 措施 2、拟建建筑物地质差异较大时的地基处理措施 3、结构设计中梁柱的交接处理 方法 4、结构设计中基础梁的设计处理方法 5、砌体结构房屋产生裂缝的处理措施 6、重力式挡土墙安全问题的研究 7、防止高层建筑基础不均匀沉降的措施 8、工程项目施工的组织研究 9、软弱地基的处理方法 10、地形地貌对建筑体型和层高的影响研究 11、建筑物三缝合一的处理方法研究 12、解决屋面渗漏问题的方法 13、论建筑与人 文化 的协调统一 14、论建筑设计与结构设计的协调统一 15、底层商场的设计处理方法 16、电梯轿箱基础与框架独立柱基的设计处理方法研究 17、深基础支护结构的设计与施工方法 18、框架结构中楼梯与框架梁柱的连接方法研究 19、提高普通建筑物的保温隔热措施 20、保证工程预算准确性的措施 建筑工程技术毕业论文题目(二) 1 浅谈企业从事工程总承包面临的问题 2 试述工程建设项目施工索赔的艺术 3 关于房地产开发成本管理的初探 4 浅谈施工方案与工程项目施工质量的关系 5 试论建筑工程监理应如何确保施工安全 6 论述工程量清单计价模式下的造价控制与管理 7 浅析如何搞好工程建设监理工作 8 试述施工现场基础工程质量控制 9 浅谈工程项目主要成本管理与控制 10 试述工程管理项目中的成本控制和品质管理 11 关于做好项目工程造价全过程的控制 12 浅谈网络计划技术在项目管理中的应用 13 浅谈建设工程项目的造价管理 14 论述工程成本的影响因素及控制对策 15 论述工程建设项目投资中的造价控制 16 论述可行性研究在建设中的作用 17 浅析工程项目投资管理 18 试论建设工程项目质量管理与控制 19 浅谈房地产开发中的工程成本控制 20 浅谈工程建设项目的技术变更管理 建筑工程技术毕业论文题目(三) 1. 浅谈如何做好工程项目的施工质量管理 2. 发包人如何做好工程合同管理 3. 建筑工程项目施工风险防范分析 4. 我国工程监理业存在的问题及对策讨论 5. 关于施工企业实施低成本的战略讨论 6. 浅谈大型工程项目的信息化管理 7. 双代号时标网络计划在建筑施工进度控制中的应用 8. 施工企业如何应对清单环境下的成本管理 9. 浅论如何加强施工项目的成本管理 10. 信息管理在施工管理中的应用 11. 关于工程项目成本管理的预测与控制 12. 浅谈工程索赔对减少工程经营风险的作用 13. 浅谈如何有效的进行工程造价管理 14. 浅谈施工阶段工程项目成本的有效控制 15. PDCA循环管理在建设工程管理中的应用 猜你喜欢: 1. 2017年工程管理毕业论文题目 2. 大专建筑工程技术论文题目 3. 建筑工程技术毕业论文范文 4. 建筑工程技术论文参考文献 5. 建筑工程技术管理毕业论文

  • 索引序列
  • 重力式挡土墙安全问题的研究论文
  • 重力挡土墙安全问题的研究论文
  • 挡土墙安全问题研究论文
  • 重力式水泥土挡墙毕业论文
  • 公路重力式挡土墙毕业论文
  • 返回顶部