[讨论]关于辐射技术 @ 食品包装储运技术 导致蛋白质变性。...如辐照小麦淀粉所形成的...在日内瓦召开了关于辐照食品卫生会议。...用大剂量辐照处理某些食品在工艺上是可行的,但是还必须对食品的营养、微生物学和毒理学等方面的影响作进一步的研究。...可提高肉品的保水力。...在20世纪50年代美国开展了辐照技术在肉制品中的应用研究,...从事食品辐照加工的单位和个人,...经卫生部审核批准后发给辐照食品品种批准文号,...www.foodmate.net/cgi-bin/topic.cgi?...-- 网页快照 收藏链接到ViVi
发酵豆粕的实质是“用发酵技术处理大宗原料----豆粕”,受规模和原料成本所限,小规模,不稳定的生产方式是不合理的,必须以工业化水平进行生产。工业的技术前提,是“检测-分析-反馈体系”的建立和健全。目前发酵豆粕工艺对于检测体系是缺失的。本实验在实验中,首先建立了完整的发酵豆粕的“检测-分析-反馈体系”,然后进行工艺开发,并对所建立的“检测-分析-反馈体系”进行了合理性证明。首先明确液体深层发酵工艺过程参数选取的三个原则:1,精度。2,即时性。3,多重平行。为建立固体发酵工艺的“检测-分析-反馈体系”,进行生理参数的选取和检测,在借鉴液体深层发酵工艺以建立检测体系的过程中,最大的障碍就是物料的物理性质。由于固体发酵物料不是均匀的,这就要求取样不能任意选取,而应该在最能代表大部分或绝大部分物料的点,选取不止一个的点进行检测,然后去掉离群值,平均其余的检测点以尽可能得到散布较小的,有连贯性的数据。按照发酵行业检测的习惯,所有生理参数检测都是在较稀的水溶液中进行。工业化检测的经验显示,在水溶液中进行的定量检测,比固体条件下的检测要精确地多。依照这个惯例,固体发酵工艺过程参数也应该选用与液体深层发酵类似的过程生理参数。按照发酵参数选取的原则,参照液体发酵,已经初步确定固体发酵工艺的生理参数,但是,要建立完整的数据处理方法,也即工业化前提的“检测-分析-反馈体系”,必须要证明曲线的合理性,解决曲线的真实度和连续性,曲线才能认为是可以分析的。本文在理论上论证参数的合理性和方法的正确性的可能性。并且,用实验验证检测方法,进行实证。另外,本文明确提出了发酵风险成本的概念。事实上,发酵风险成本概念的提出,以及本文在全成本核算中,提出发酵工艺的相对合理性指标,就可以建立在成本上量化的评价被开发工艺的合理性和先进性的评价体系,直接在数字上比较工艺优劣,回避开工艺选择过程因为标准模糊而进入两难的境地。本实验在建立的“检测-分析-反馈体系”上,应用对发酵风险成本的计算和对发酵工艺相对合理性指标的比较上,在尊重“发酵豆粕的本质是豆粕原料的微生物处理”的观念下,得到了具有工业级意义的,可以放大的,稳定的成本合理的发酵豆粕工艺。 [1] 赵艳,章亭洲. 发酵豆粕替代75%秘鲁鱼粉对仔猪生长性能的影响[J]. 饲料与畜牧. 2010(06)[2] 严鹤松,夏俊松,梁运祥. 黑曲霉发酵豆粕的研究[J]. 饲料工业. 2009(13)[3] 晓陆. 2009年5月全国饲料生产形势分析[J]. 饲料广角. 2009(12)[4] 曹允. 2007年美国饲料与畜牧市场概况(1)[J]. 饲料广角. 2009(12)[5] 李建. 发酵豆粕研究进展[J]. 粮食与饲料工业. 2009(06)[6] 陈济琛,陈名洪,蔡海松,林新坚. 芽孢菌固态发酵降解豆粕工艺研究[J]. 大豆科学. 2008(05)[7] 蒋国华. 粗饲料降解剂发酵豆粕喂猪技术[J]. 农村新技术. 2008(16)[8] 钟耀华,王晓利,汪天虹. 丝状真菌高效表达异源蛋白研究进展[J]. 生物工程学报. 2008(04)[9] 苏移山,王圣钧,王鹏,祁庆生. N-糖酰胺酶F在大肠杆菌中的高效表达及其脱糖基化作用研究[J]. 生物工程学报. 2005(06)[10] 邵伟,熊泽,何晓文. 发酵大豆多肽及其功能研究[J]. 中国酿造. 2005(06)
一、预糊化淀粉:预糊化淀粉是一种加工简单,用途广泛的变性淀粉,应用时只要用冷水调成糊,免除了加热糊化的麻烦。广泛应用与医药、食品、化妆品、饲料、石油钻井、金属铸造、纺织、造纸等很多行业。淀粉的糊化:淀粉粒在适当温度下(各种来源的淀粉所需温度不同,一般60~80℃)在水中溶胀、分裂、形成均匀糊状溶液的作用称为糊化作用。糊化作用的本质是淀粉粒中有序及无序(晶质与非晶质)态的淀粉分子之间的氢键断开,分散在水中成为胶体溶液。糊化作用的过程可分为三个阶段:(1)可逆吸水阶段,水分进入淀粉粒的非晶质部分,体积略有膨胀,此时冷却干燥,颗粒可以复原,双折射现象不变;(2)不可逆吸水阶段,随着温度升高,水分进入淀粉微晶间隙,不可逆地大量吸水,双折射现象逐渐模糊以至消失,亦称结晶“溶解”,淀粉粒胀至原始体积的50~100倍;(3)淀粉粒最后解体,淀粉分子全部进入溶液。糊化后的淀粉又称为α-化淀粉。将新鲜制备的糊化淀粉浆脱水干燥,可得易分散与凉水的无定形粉末,即“可溶性α-淀粉”。2、淀粉糊化作用的测定方法:有光学显微镜法,电子显微镜法,光传播法,粘度测定法,溶胀和溶解度的测定,酶的分析,核磁共振,激光光散射法等。工业上常用粘度测定法,溶胀和溶解度的测定。二、酸变性淀粉在糊化温度以下,用无机酸处理淀粉,改变其性质的产品称为酸变性淀粉。反应机理:在用酸处理淀粉的过程中,酸作用于糖苷键使淀粉分子水解,淀粉分子变小。淀粉颗粒是由直链淀粉和支链淀粉组成,前者具有α-1,4键,后者除α-1,4键,还有少量α-1,6键,这两种糖苷键被酸水解的难易存在差别。由于淀粉颗粒结晶结构的影响,直链淀粉分子间经由氢键结合成晶态结构,酸渗入困难,其α-1,4键不易被酸水解。而颗粒中无定形区域的支链淀粉分子的α-1,4键、α-1,6键较易被酸渗入,发生水解。工艺与原理:通常制取酸变性淀粉是使用浓淀粉淤浆,含固量约为36%~40%,加热到糊化温度之下(常为40~60℃),加入无机酸并搅拌一个小时或几个小时。当达到所要求的酸度或转化度时,三、氧化淀粉许多试剂都能氧化淀粉,但是工业生产中最常用的是碱性次氯酸盐。用次氯酸盐氧化的淀粉被称为“氯化淀粉”(虽然处理中并没有把氯引进淀粉分子内)。淀粉乳浆的次氯酸盐氧化是在碱性次氯酸钠溶液中进行的,此时需要控制pH、温度和次氯酸盐、碱和淀粉的浓度。用约3%的氢氧化钠溶液调节pH至8~10,在规定时间内添加有效氯5~10%的次氯酸盐溶液。用添加氢氧化钠稀溶液的方法来控制pH,并中和反应中生成的酸性物质。改变时间、温度、pH值、淀粉品种、次氯酸盐浓度和次氯酸盐添加速度,能够生产出多种不同的产品。当氧化反应达到要求程度时,将pH降至5~7,加入亚硫酸氢钠溶液或二氧化硫气体以除去其中多余的氯来终止反应。四、变性淀粉的分类目前,变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据处理方式来进行。(1)物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。(2)化学变性:用各种化学试剂处理得到的变性淀粉。其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。(3)酶法变性(生物改性):各种酶处理淀粉。如α、β、γ-环状糊精、麦芽糊精、直链淀粉等。(4)复合变性:采用两种以上处理方法得到的变性淀粉。如氧化交联淀粉、交联酯化淀粉等。采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羧甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。五、变性淀粉的性质天然淀粉的可利用性取决于淀粉颗粒的结构,直链淀粉和支链淀粉的含量;不同来源的淀粉原料在性质上存在差异,因而不同来源淀粉的可利用性不同。天然淀粉在现代工业中的应用,特别是在新技术、新工艺、新设备采用的情况下是有限的。大多数的天然淀粉不具备很好的性能,根据需要,结合淀粉的结构合理化性质开发淀粉变性技术,生产具有更优良性质的变性淀粉,使之应用方便,且适合新技术操作的要求,开辟其新的用途,拓展市场空间。变性的主要作用是改变糊化和蒸煮特性,主要改变以下性质:(1)糊化温度:解聚使糊化温度(GT)下降;非解聚时糊化温度有升高也有下降,一般淀粉分子中引进亲水基团可增强淀粉分子与水的作用,使GT下降。交联起阻挡作用,不利水分子进入,使GT升高。高直链淀粉结合紧密,晶格能高,较难糊化。(2)淀粉糊的热稳定性:一般谷类淀粉的热稳定性大 。变性淀粉,亦称改性淀粉,它是指利用物理、化学或酶的手段来改变天然淀粉的性质。通过分子切断、重排、氧化或者在淀粉分子中引入取代基可制得性质发生变化、加强或具有新的性质的淀粉衍生物。 变性淀粉具有改善蒸煮特性、减缓老化、提高乳化稳定性等作用。变性淀粉应用于食品工业中,主要作为增稠剂、胶凝剂、黏结剂和稳定剂等使用,可以替代昂贵的原料,降低食品制造成本,提高食品质量同时提高经济效益。 在面制品中的应用 变性淀粉在新鲜面中的应用研究证明,加入面粉量1%的脂化糯玉米淀粉或羟丙基玉米淀粉,可降低淀粉的回生程度,使经贮藏的湿面仍具有较柔软的口感,面条的品质、溶出率等都得到改善。因变性淀粉的亲水性比小麦淀粉大,极易吸水膨胀,能与面筋蛋白、小麦淀粉相互结合形成均匀致密的网络结构,但加入过量会对面团有不利的影响。 在焙烤食品中的应用 抗性淀粉的膳食纤维含量大于40%,且耐热性能高,吸水能力仅有1.4g水/g淀粉,颗粒细小,适用于中等含水量的焙烤食品、低含水量的谷物制品和休闲食品中。在华夫饼干、发面饼干和曲奇饼干中,能产生酥脆的质构、优异的色泽和良好的口感。在面制食品和面条中,也能增加制品的坚实性和耐煮性。 在冷冻食品中的应用 在大多数冷冻食品中,变性淀粉的主要作用是增稠、改善质构、抗老化和提高感官质量。如汤圆经冷冻后皮易裂,不能反复冷冻融化,可在制作汤圆的糯米粉中添加5%左右的醚化淀粉起粘结和润湿作用,从而避免皮的破裂和淀粉回生,减少蒸煮时汤糊现象,降低汤内固形物量。 在糖果中的应用 糖果中使用的变性淀粉主要有两大类:一类是凝胶剂,如牛皮糖中用的酸解淀粉;另一类是填充料并起着黏结剂的作用,如口香糖中使用的预糊化淀粉或变性预糊化淀粉。 酸变性淀粉具有粘度降低、粘合力强、水溶性增强、糊液的透明性和热糊稳定性提高、凝胶能力增强、形成薄膜性能好的特点。这类淀粉主要用于糖果、胶冻软糖和胶姆糖的生产。 在甜品中的应用 在冰淇淋中使用变性淀粉可代替部分脂肪提高结合水量并稳定气泡,使产品具有类似脂肪的组织结构,降低生产成本。这种变性淀粉主要是淀粉基脂肪替代品。 果冻的特点是具有很好的透明性,且其组分经加热溶化再冷却后,能形成很好的凝胶。实践中,使用羟丙基交联淀粉取代25%卡拉胶制作果冻,能很好地满足这一要求。近些年来乳制甜品在世界各地越来越流行,从水果蛋糕、胶凝乳、奶油甜品到液态布丁,数不胜数。 在饮料中的应用 在搅拌、均质处理或压力下,亲脂性淀粉会形成非常微小、稳定性极佳的乳胶体,可作为乳化液稳定剂,取代干酪素、明胶和阿拉伯胶在食品中的应用。除了能形成稳定的乳化液外,亲脂性淀粉能赋予乳浊液稳定性,用以代替阿拉伯胶在香精乳浊液和饮料乳浊液中应用,如橘子汁饮料、可乐饮料和冷冻果汁饮料等。这种淀粉能够提供多种优于传统胶囊剂的好处,例如,与阿拉伯胶相比,它在冷水中的分散能力较佳,能减少高达25%的胶囊剂用量,并且由于形成乳化液的能耗较少,节省了生产成本。 在调味品中的应用 淀粉基脂肪代用品已经成功地应用于各种低脂肪食品中,这类物质对脂肪的替代率限制在50%~70%之间,大多被人体吸收后不会带来不良的生理效果。 调味料包括辣椒酱、草莓酱、番茄酱等,该类酱需要使用增稠剂。使用变性淀粉后,一方面成本比原来使用胶类大大降低;另一方面其长时间存放不分层,酱的外观有光泽,口感细腻。这类增稠剂可选用氧化淀粉,但交联酯化淀粉更为合适。
【方法】 1.酶液提取:称取25℃下萌发3~4天的小麦种子1.0g(芽长1.0~1.5cm),置研钵中,加少量石英砂和2ml蒸馏水,研磨成匀浆后转入离心管中,用7ml蒸馏水分次将残渣洗入离心管提取液在室温下放置提取15~20min,每隔数分钟搅动1次,使其充分提取。 然后在3000rpm转速下离心10min,将上清液倒入50ml容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液。吸取上述淀粉酶原液5ml,放入50ml容量瓶中,用蒸馏水定容至刻度摇匀,即为淀分酶稀释液。 2.麦芽糖标准曲线制作:取7支干净的具塞刻度试管,编号,按表33-1加入试剂。 表33-1 制作麦芽糖标准曲线配方表 试 剂 管 号 1 2 3 4 5 6 7 麦芽糖标准液(ml) 0 0.2 0.4 0.8 1.2. 1.6 2.0 蒸馏水(ml) 2.0 1.8 1.6 1.2 0.8 0.4 0 麦芽糖含量(mg) 0 0.2 0.4 0.8 1.2 1.6 2.0 3,5-二硝基水杨酸(ml) 2 2 2 2 2 2 2 摇匀,置沸水中浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml。以1号管作为空白调零点,在540nm波长下比色测定。以麦芽糖含量为横坐标,吸光度值为纵坐标,绘制标准曲线。 3.酶活力的测定:取6支干净的具塞刻度试管,编号,按表33-2进行操作。 表33-2 配活力的测定配方表 操作项目 管 号 Ⅰ-1 Ⅰ-2 Ⅰ-3 Ⅱ-1 Ⅱ-2 Ⅱ-3 淀粉酶原液(ml) 1.0 1.0 1.0 0 0 0 钝化β-淀粉酶 置70℃水浴中15min,取出后在流水中冷却 淀粉酶稀释液(ml) 0 0 0 1 1 1 DNS试剂(ml) 2.0 0 0 2.0 0 0 预保温 40℃恒温水浴中保温10min 1%淀粉溶液(ml)(40℃) 1.0 1.0 1.0 1.0 1.0 1.0 保温 40℃恒温水浴中准确保温5min DNS试剂(ml) 0 2.0 2.0 0 2.0 2.0 摇匀,置沸水浴中5min,取出后冷却,加蒸馏水至20ml。摇匀,在540nm波长下比色,记录测定结果。 4.结果计算:用Ⅰ-2、Ⅰ-3吸光度平均值与Ⅰ-1吸光度值之差,在标准曲线上查出相应的麦芽糖含量(mg),再按下式计算α-淀粉酶的活力(Aα),淀粉酶活性以麦芽糖mg·g-1·min-1表示: Aα= Ⅱ-2、Ⅱ-3吸光度平均值与Ⅱ-1吸光度值之差,在标准曲线上查出相应的麦芽糖含量(mg),按下式计算(α+β)-淀粉酶总活力AT: AT= 式中 A—淀粉酶活性,Aα为α-淀粉酶的活性,AT为淀粉酶总活性,主要是α、β淀粉酶的活性; Cα—α-淀粉酶水解淀粉生成的麦芽糖量(查标准曲线求值,以下同); CT—(α+β)淀粉酶共同水解淀粉生成的麦芽糖量; V1—显色所用酶液体积(ml); t—酶作用时间(min); Vt—样液稀液总体积(α-淀粉酶为50ml,α+β淀粉酶为500ml); FW—样品鲜重(g)。
你好,你是想问实际工作淀粉酶活性的测定必要性是什么吗?实际工作淀粉酶活性的测定必要性是反映酶活力。在实际工作中测定淀粉酶的活性具有重要的意义,淀粉酶普遍存在于植物体内,特别是萌发后的禾谷类种子淀粉酶活性最强,其活性高低可以衡量种子萌发速率,当测定了淀粉酶活性就可以必要的反映酶活力,可了解底物的降解速率。淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。
药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,EC.3. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α-1.6糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆Klebsiella.pneumoniae)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( E.C3.2.1.68, Oligo-l,6-glucosidase ),普鲁兰酶(E.C3.2.1.41Pullulanase ),异淀粉酶( E.C3.2.1.68, Isoamylose ),支链淀粉一6-葡聚糖酶( E.C3.2.1.69,Amylopectin-6-gluanohydrase ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 1.1蜡状芽抱杆菌覃状变种(Bacillus cereus Var.mycodes) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~6.5,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 1.2嗜酸性分解普鲁兰多糖芽抱杆菌(BaciIluS.Acidopullulyticus) 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸(pH4.5)。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。Bacillus.Acidopullrrlyticus呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于6.5以上不长,在以普鲁兰糖为碳源的培养基((pH4.8 ~5.2)上生长良好。 1.3枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为7.0~7.5,但在pH5.0时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 1.4耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的E.madi等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在pH4.5~6.0有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. 1.5 Bacillusnaganoensis,Bacillus deramificans,Bacillus.Acidopullulyticus 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在pH6.5以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 1.6产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, pH6.3, Thermotoga maritime的最适温度和pH分别是90℃, pH6.0, Thermurs caldopHilus的最适温度和pH分别是75℃,pH5.5, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, pH6.0o 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~1.4,α~1.6,α~1.2,α~1.3,α~1.5,α~1.1糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 3.1单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 3.2普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~1.6糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量1.5%(对碎米计),β~淀粉酶活性2,000单位/克以上,pH5.8;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加14.8,麦芽糖含量平均增加了45.6,糊精含量平均减少了26.7高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 3.3用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~1.6糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~1.6糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~1.4和α~1.6糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌Klebsiella.pneumoniae)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从0.069u/mL提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和4.5,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值4.0,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达350.8U/mL,最佳发酵条件下产量可达504.5-510.1U/mL .酶的最适作用温度为600C,最适pH值4.5,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到B.subtilis中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到B.subtilu:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在E.coli中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到E.coli中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process Biochem.19:351-369 [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. nov.Int J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全
有的患者身上皮肤大块的皮肤淀粉样变,刚开始可能没什么异常症状,但也有的患者会有剧痒,但很多人没有引起重视,那皮肤淀粉样变对身体有什么危害? 皮肤淀粉样变的危害是不小的: 皮疹逐步过渡到面部,会累及到肝脏,胃肠,心脏等多个脏器受损。 皮疹累及到咽喉部,会出现吞咽困难,声音撕裂声。 皮疹表现在背部有疼痛感,会累及到骨骼 皮疹累及到内脏会出现,胃肠道症状,肾功能不全,心率失常等症状。 极少数伴随骨瘤。 所以,患者朋友们要积极治疗皮肤淀粉样变,避免对身体造成严重损害。 专家提醒:个人病情还需结合自身实际情况而定,任何疾病都要做到早预防、早发现、早治疗,才是维持健康。
皮肤淀粉样变的危害是不小的。皮疹逐步过渡到面部会累及到肝脏,胃肠,心脏等多个脏器受损, 皮疹累及到咽喉部
皮肤淀粉样变的危害是不小的。皮疹逐步过渡到面部会累及到肝脏,胃肠,心脏等多个脏器受损, 皮疹累及到咽喉部,会出现吞咽困难,声音撕裂声,皮疹表现在背部有疼痛感会累及到骨骼,皮疹累及到内脏,会出现胃肠道,症状肾功能不全,心率失常等症状 ,极少数伴随骨瘤 ,所以患者朋友们要积极治疗皮肤淀粉样变,避免对身体造成严重损害 ,专家提醒个人病情还需结合自身实际情况而定,任何疾病都要做到早预防、早发现、早治疗才是维持降低皮肤淀粉样变的危害。
药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,EC.3. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α-1.6糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆Klebsiella.pneumoniae)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( E.C3.2.1.68, Oligo-l,6-glucosidase ),普鲁兰酶(E.C3.2.1.41Pullulanase ),异淀粉酶( E.C3.2.1.68, Isoamylose ),支链淀粉一6-葡聚糖酶( E.C3.2.1.69,Amylopectin-6-gluanohydrase ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 1.1蜡状芽抱杆菌覃状变种(Bacillus cereus Var.mycodes) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~6.5,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 1.2嗜酸性分解普鲁兰多糖芽抱杆菌(BaciIluS.Acidopullulyticus) 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸(pH4.5)。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。Bacillus.Acidopullrrlyticus呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于6.5以上不长,在以普鲁兰糖为碳源的培养基((pH4.8 ~5.2)上生长良好。 1.3枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为7.0~7.5,但在pH5.0时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 1.4耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的E.madi等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在pH4.5~6.0有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. 1.5 Bacillusnaganoensis,Bacillus deramificans,Bacillus.Acidopullulyticus 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在pH6.5以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 1.6产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, pH6.3, Thermotoga maritime的最适温度和pH分别是90℃, pH6.0, Thermurs caldopHilus的最适温度和pH分别是75℃,pH5.5, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, pH6.0o 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~1.4,α~1.6,α~1.2,α~1.3,α~1.5,α~1.1糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 3.1单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 3.2普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~1.6糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量1.5%(对碎米计),β~淀粉酶活性2,000单位/克以上,pH5.8;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加14.8,麦芽糖含量平均增加了45.6,糊精含量平均减少了26.7高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 3.3用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~1.6糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~1.6糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~1.4和α~1.6糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌Klebsiella.pneumoniae)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从0.069u/mL提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和4.5,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值4.0,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达350.8U/mL,最佳发酵条件下产量可达504.5-510.1U/mL .酶的最适作用温度为600C,最适pH值4.5,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到B.subtilis中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到B.subtilu:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在E.coli中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到E.coli中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process Biochem.19:351-369 [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. nov.Int J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全
由溶胶状态转变为凝胶状态,趋向成熟。种子成熟过程中淀粉的变化淀粉种子成熟过程中,可溶性糖含量逐渐降低,而不溶性糖类的含量不断提高。对小麦和水糖、果糖等还原糖的含量迅速减少,而淀粉的含量迅速上升,试验表明增加的淀粉是由可溶性糖转化而合成的。与淀粉的形成有关的酶是淀粉磷酸化酶,种子成熟过程中,如果具备增强淀粉磷酸化酶活性的适宜条件,如pH、温度以及适当的磷酸含量,就能够促进淀粉的合成,从而降低种子中糖的浓度,增加淀粉含量。同时加速茎叶中的糖向穗部运输的速度,提高了籽粒的饱满度。淀粉的合成还与淀粉合成酶、D酶和Q酶的活性有关,特别是禾谷类种子中淀粉的合成是通过ADPG途径合成的。小麦和水稻种子成熟过程中,由几种酶同时参与了淀粉的合成。但一定品种在一定时期可能是某一种酶起主导作用。了解不同酶作用的条件,控制其活性,是促进淀粉的合成、提高作物产量的有效措施。种子成熟过程中脂肪的变化油料种子在成熟过程中,脂肪含量不断增加,而总含糖(葡萄糖,果糖和淀粉等)量则不断下降。油菜种子的试验表明,形成的脂肪是由糖类转化而来的。种子成熟初期所形成的脂肪中含有较多的游离脂肪酸,这些脂肪酸主要是饱和脂肪酸。随着种子的成熟,游离脂肪酸逐渐合成复杂的油脂,饱和脂肪酸逐渐转变为不饱和脂肪酸。种子成熟过程中蛋白质的变化豆科植物的种子和一些淀粉类如小麦、玉米等的种子中蛋白质的含量较多。种子中的蛋白质是叶片和其他营养器官中的氮素,以氨基酸或酰胺的形式运输到种子中后再合成贮藏蛋白。小麦籽粒的氮素总量,以乳熟初期到完熟期变化较小。但随着成熟度的提高,非蛋白氮不断下降,而蛋白氮的含量则不断增加,这说明蛋白质是由非蛋白氮化合物转变而来的。豆科植物的种子在成熟过程中,先在荚中合成蛋白质,成为暂时的贮藏蛋白,然后氮以酰胺态被运输到种子中转变为氨基酸,再由氨基酸合成蛋白质。
淀粉,蛋白质逐渐增多,为种子的萌发做准备蔗糖,葡萄糖逐渐减少,并逐渐转变成淀粉等大分子物质,也是节省空间储能储备营养