首页 > 学术发表知识库 > 毕业论文多元时间序列

毕业论文多元时间序列

发布时间:

毕业论文多元时间序列

到是一个时间序列多元线性方程,但不知道怎么确我明确的好

五年以内。最好是五年以内的研究的期刊或者论文,因为这是这个领域里面最新的资讯,作为你论文的佐证是最好的。实在没有办法的话用10年以内的也是可以的,当然了,如果有很早以前的,但是又是必须的也可以加上,但是我建议不要用是最好的。

框架可以拟一下

时间序列毕业论文题目

学术堂最新整理了二十条好写的统计学毕业论文题目:1.MMC排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产业产值影响因素的研究5.关于和谐社会统计指标的初步研究6.CCA研究我国产业结构的区域差异对经济的影响7.基于单因素序列相关面板数据的实证分析8.基于空间面板数据的中国FDI统计分析9.基于排队论在杭州公交站点停车位的优化及实证分析10.基于统计方法的股票投资价值分析11.某某市2019年工业发展状况的统计分析12.近30年31省市城镇居民恩格尔系数的统计分析13.近30年31省市农村居民恩格尔系数的统计分析14.近三十年中国经济发展趋势的实证分析15.林业科技对经济的贡献率美联储量化16.宽松政策对中国经济影响的统计17.分析排队论简介及其应用18.我国财政收入总额影响因素分析19.我国城市竞争力的综合评价与实证分析20.我国城乡居民收入差距统计分析一以某某省为例

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 G.E.P.Box 和 G.M.J enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 EViews5.0 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。2.ARMA拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 0.05。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - 2.136479 - 4.161144 - 3.506374 - 3.183002 11.20582非平稳1 - 2.764521 - 4.165756 - 3.508508 - 3.184230 11.171892 - 2.101495 - 4.170583 - 3.510740 - 3.185512 11.180023 - 2.418890 - 4.175640 - 3.513075 - 3.186854 11.205434 - 2.230514 - 4.180911 - 3.515523 - 3.188259 11.27059表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - 5.714836 - 4.170583 - 3.510740 - 3.185512表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - 5.448501 - 3.574446 - 2.923780 - 2.599925 - 1.536478 - 1.458512平稳 1 - 3.832346 - 3.577723 - 2.925169 - 2.600658 - 1.662966 - 1.5448712 - 3.398029 - 3.581152 - 2.926622 - 2.601424 - 1.770517 - 1.6115043 - 3.324520 - 3.584743 - 2.928142 - 2.602225 - 1.747432 - 1.546692图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 6.876% , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - 1.536412 - 1.321820 - 1.135728最优为 AR(1)MA(1)SC - 1.458445 - 1.282837 - 1.097119Variable Coefficient Std. Error t- Statistic Prob.AR(1) 0.586643 0.115236 5.090781 0.0000R- squared - 0.226023 Mean dependent var 0.104967Adjusted R- squared - 0.226023 S.D. dependent var 0.111688S.E. of regression 0.123668 Akaike info criterion - 1.321820Sumsquared resid 0.718807 Schwarz criterion - 1.282837Log likelihood 32.72369 Durbin-Watson stat 2.132697Inverted AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 4975.63 4904.72 - 1.436.8762003 5401.71 5125.82 - 5.122004 6309.92 5496.78 - 12.892005 6687.78 6374.83 - 4.682006 7497.00 6728.05 - 10.26年度 GDP 值 7497.00 8026.08 8359.59增长率(%) — 7.06 4.16表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

经济学是研究人类社会在各个发展阶段上的各种经济活动和各种相应的经济关系及其运行、发展的规律的学科。那么经济学专业的论文选题怎么选呢?下面我给大家带来2021经济学论文题目有哪些_经济学专业论文选题题目,希望能帮助到大家!

经济学博士论文题目

1、基于绿色GDP投入产出模型架构研究

2、中国住户生产核算理论与 方法 研究

3、成长型企业无形资产统计问题研究

4、中国社会核算矩阵编制与模型研究

5、政府统计数据质量评估方法及其应用研究

6、人口老龄化对我国GDP及其构成的影响

7、环境价值核算方法及应用研究

8、经济核算原理在现代制造业定量研究中的应用

9、中国服务业的全要素生产率研究

10、我国GDP中劳动报酬份额的下降

11、经济福利核算的理论及其指标研究

12、宏观金融运行异常的统计监测研究

13、国民经济核算及其总体模式研究

14、国民经济核算方法论研究

15、可持续发展指标体系建构及其应用研究

16、供应链违约风险的研究

17、对我国国民经济核算理论与方法问题研究

18、Markov算子的渐近行为与经济系统的几个问题

19、非完全竞争市场的宏观经济优化模型

20、效用、风险与纳什均衡选择

21、粮食、农业制度供给中的博弈与实证

22、理解经济变迁的过程

23、海洋经济核算体系与核算方法研究

24、区域环境价值核算的方法与应用研究

25、基于环境因素的全要素生产率和国民收入核算研究

26、浙江省城乡收入差距统计研究

27、现代企业统计理论体系创新研究

28、ICT对国民经济的贡献研究

29、资本存量与资本服务核算研究

30、地区GDP核算及数据衔接问题研究

31、资源环境经济综合核算与绿色GDP的建立

32、基于可持续发展的中国能源核算研究

33、消费型中间消耗的概念及测算

34、时间序列分析方法研究及其在陕西省GDP预测中的应用

35、物流配送选址优化模型的研究

36、供应计划问题的遗传算法求解

37、基于景气指数的宏观经济监测预警系统研究

38、 企业管理 创新数量分析中的线性优化逆问题

39、技术能力成长决策中的实物期权方法研究

40、资产定价标准的讨论和模拟

41、投资者认知收益度量模型及系统设计

42、基于水环境的杭州市绿色GDP核算的GIS表征

43、人力资本与全要素生产率

44、湖南省宏观经济景气指数的编制与应用研究

45、森林资源核算及纳入国民经济核算体系研究

46、疏浚企业挖泥船生产统计系统优化分析

47、过程神经网络在GDP预测中的应用研究

48、四川调查总队系统职工工作满意度调查研究

49、基于线性回归和神经网络的预测模型在国民经济数据中的应用

50、国民经济核算体系中环保指标设计研究

微观经济学论文题目

1、我国绿化工程监理微观环境分析

2、知识产权对微观经济的作用机理研究

3、外生驱动互联网消费增长的微观空间计量研究

4、房地产市场反周期宏观调控政策绩效的微观探析

5、劳动力成本上升对现代服务业企业升级的影响研究--基于微观企业财务层面以信息技术产业为例

6、宏微观因素对商业银行信贷风险影响的实证分析

7、经济责任审计促进经济增长的微观途径--基于“中国之谜”中政府官员的作用

8、中级微观经济学混合教学模式探索与实践

9、基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究

10、中国经济发展新常态的宏观表象和微观基础

11、货币政策、所有制差异与商业信用再配置--兼论新常态背景下供给侧治理的微观路径

12、微观权力、自我技术与组织公民行为-- 人力资源管理 的后现代分析

13、增值税转型对我国微观经济的影响

14、商业性小额信贷机构市场定位微观制度因素分析--以某村镇银行和某小额贷款公司为例

15、城乡关系重构下乡村人口城镇化微观进程研究--基于家庭流动人口的视角

16、微观商业视角下的微信经济

17、应用型人才培养模式下独立学院微观经济学教学改革研究

18、微观开放性视角下创造力的多层次影响机制探究

19、农户劳动力资源配置的微观决策

20、微观经济与企业管理探讨

21、民营企业对外直接投资对企业内就业的影响--基于温州微观企业数据的实证研究

22、房产税、房价与住房供给结构--基于上海、重庆微观数据的分析

23、基于微观经济学方法的网格资源分配管理模型研究

24、森林转型的微观机制--以重庆市山区为例

25、我国纺织业企业创新与生产率关系的微观测度

26、人的自由全面发展视域下资源配置的微观机制

27、基于微观企业数据的产业空间集聚特征分析--以杭州市区为例

28、从微观管理视角浅析高校国有资产管理中的问题

29、“双创”背景下非正规就业对劳动力市场影响的微观分析--基于马克思劳动力价值理论视角

30、我国众筹融资的微观机理及宏观效应

31、金融市场微观结构理论综述

32、利率调控对房地产营销市场波动的微观作用机制探究

33、中国对外并购的绩效研究--基于制造业上市企业的微观分析

34、我国服务贸易出口的影响因素分析--来自微观企业层面的证据

35、市场微观结构下高频交易流动性--基于我国商品期货市场的实证研究

36、工商行政管理在宏观控制与微观搞活中的职能与作用

37、典型平原农区土地非农化对乡村发展影响的微观机理

38、贫困地区特色农业规模经营意愿的影响因素研究--微观农户视角的分析

39、中国政策性银行全要素生产率测度及影响因素研究--基于宏观与微观解构

40、中国产业结构升级的新视角--微观产品质量角度

41、新疆农民专业合作社微观运行障碍调研与政府责任分析--以吉木萨尔县为例

42、制造业可持续发展的微观经济分析--基于价格机制与制度结构的视角

43、微观视角下煤炭上市公司资本结构影响因素实证研究

44、优化农业科技创新风险投资微观运行机制的策略研究

45、低碳经济政策失灵的原因分析及应对 措施 --基于微观经济个体的视角

46、税制改革推动国家治理能力提升的微观作用机理研究--基于增值税转型对企业投资行为的影响

47、论宏观调控与微观自主的辩证平衡

48、基于微观动力视角我国上市公司市值管理绩效评价的研究

49、宏观经济政策与微观企业行为--拓展会计与财务研究新领域

50、以“供给管理”激发微观活力实现经济发展动力转型

宏观经济学论文题目与选题参考

1、“互联网+”重塑中国宏观经济

2、20_年宏观经济形势讨究和政策的观点综述

3、20_年世界经济形势回顾讨究与展望

4、20_年玩具市场跨越式发展的契机论议与挑战

5、20_年中国成品油市场讨究

6、财政分权与中国经济增长

7、城乡一体化理论研究

8、从诺贝尔经济学奖看现代宏观经济学的发展

9、当前国民经济运行中应注意的几个问题及建议

10、当前经济形势下扩大内需的困难与措施研究

11、当前社会人文效应与经济效应的互相影响

12、当前收入分配存在问题的思考

13、地方财政支出的产业结构效应研究

14、电信业漫谈之供给与需求

15、对欧洲宏观经济体制的批评

16、房地产的宏观经济学说

17、房地产动摇对经济增长的影响

18、房地产行业走势对中国宏观经济的影响分析

19、复合式通胀压力下浅探宏观经济政策选择

20、高校扩招的经济影响

21、公共财政政策与可持续发展(或技术创新)

22、供给学派的起源与美国实践

23、关于金融稳定与货币政策的一点思考

24、关于凯恩斯主义与货币主义对大萧条成因解释的分析

25、贵州省城镇失业问题研究

26、国家宏观调控的内涵与手段研究

27、哈耶克对经济周期的研究及其方法论特点

28、宏观行为经济学的新发展及其应用

29、宏观经济剖析和政策前瞻

30、宏观经济形势分析与数据解说

31、宏观经济学的创新与调控方向的转变探讨

32、宏观经济学视角下经济增长理论和政策

33、宏观经济学中的管理理念与措施应用分析

34、宏观经济学中的经济理论研究

35、宏观经济学中的长期与短期分析

36、宏观经济学中金融市场影响经济的分析

37、宏观经济政策应稳步微调

38、后危机阶段中国宏观经济政策的趋向

39、后危机时代安徽省财政宏观调控政策研究

40、互联网改变就业的宏观经济学机理

41、汇率理论的演变评述与人民币国际化借鉴

42、货币国际化 经验 与人民币国际化研究

43、技术创新对社会经济发展贡献率探究

44、减税的思考与超越--简评蒙代尔税收思想

45、金融冲击对全要素生产率的影响分析

46、金融市场与宏观经济的联系

47、金融危机下的浙江制造业面临的困境研究

48、经济发展与社会(伦理、幸福、价值等)关系的分析

49、经济韧性问题研究进展

2021经济学论文题目有哪些相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目参考2021

★ 大学生论文题目大全2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021政治小论文范文5篇

★ 国际经济学专业毕业论文选题最全题目(2)

★ 国际经济论文题目大全

★ 经济学理论论文

★ 经济学论文

我了解更多,选择明白这个道理

时间序列论文格式

曹刿论战是公元前684年 邹忌那个说的是齐威王时候的事是战国时候的人 他在位是356-320 扁鹊是公元前401-301年代的人 马谡是三国时候的人 在春秋战国之后 唇亡齿寒是晋献公伐虢的事 在公元前651年 南辕北辙是魏惠王时候的事 他当时正想攻打邯郸 因为徐州相王时候他们俩互相承认 然后后面魏国被齐国欺负 所以这个事情应该在邹忌讽齐王纳谏之前 所以这个时间序列从前往后应该是曹刿论战、唇亡齿寒、扁鹊见齐桓公、南辕北辙、邹忌讽齐王纳谏、马谡失街亭 希望楼主采纳

时间序列好发论文。根据查询相关公开信息资料显示,从系统论的角度看,时间序列就是某一系统在不同时间(地点、条件等)的响应,围绕时间序列预测、分类、异常检测、表示学习以及在医疗、生物、交通、音乐、金融等方向的应用。

扁鹊见蔡桓公,唇亡齿寒,曹刿论战,邹忌讽齐王纳谏,南辕北辙,马谡失街亭

金融时间序列分析毕业论文

1、倒向随机微分方程数值方法与非线性期望在金融中的应用:g-定价机制及风险度量2、分形市场中两类衍生证券定价问题的研究3、在机制转换金融市场中投资者的最优消费和投资行为分析4、商业银行金融风险程度的模糊综合评价5、金融保险中的若干模型与分析6、金融印鉴真伪识别新方法研究7、基于区间分析的金融市场风险管理VaR计算方法研究8、分形理论及其在金融市场分析中的应用9、离散时间随机区间值收益市场下的定价分析10、金融学理论及其未来发展趋势--转向整合11、微分方程数值解法及在数学建模中的应用12、金融模糊模型与方法13、模糊数学在储蓄机构设置中的应用14、金融市场中的时间变换方法及其应用15、从数学走进生活的创新教育16、为何经济学无法预测金融危机17、金融资产的离散过程动态风险度量研究18、论金融衍生工具及在我国商业银行信贷风险管理中的应用19、基于VAR模型的江苏省金融发展与经济增长关系研究20、货币危机预警模型研究21、在银行和金融业数据分析中应用数学规划模型22、随机过程理论在期权定价中的应用23、金融保险中的几类风险模型24、数学金融学中的期权定价问题25、金融资产收益相关性及持续性研究26、同伦分析方法在非线性力学和数学生物学中的应用27、存货质押融资的供应链金融服务研究28、金融机构资产负债管理模型及在泉州银行的应用29、社保基金投资资本市场:理论探讨、金融创新与投资运营30、量子方案的金融资产投资最优组合选择31、房价调控的数学模型分析32、基于小波分析的金融数据频域分析33、非线性数学期望下的随机微分方程及其应用34、竞争性电力市场中的金融工程理论与实证研究35、小波理论及其在经济金融数据处理中的应用36、四种金融投资风险介绍37、扩展的欧式期权定价模型研究38、基于可疑金融交易识别的离群模式挖掘研究39、华尔街的数学革命40、辽宁城乡金融发展差异对城乡经济增长影响的实证研究41、衍生金融工具风险监控问题探析42、金融危机之信用失衡43、基于西部金融中心建设目标的成都金融人才需求预测研究44、基于小波变换的金融时间序列奇异点识别模型与研究45、我国区域金融中心发展路径与模式研究46、我国农村金融供给不足问题的探讨47、金融发展对江西经济增长的影响48、基于金融自由度的香港人民币离岸市场反洗钱研究49、商业银行信贷市场的非对称信息博弈及基于Agent的SWARM仿真50、金融危机背景下企业并购投资决策体系研究

网上一搜大把,想实际点的就去这类金融公司做做就知道了。。。 主要用到财务知识、金融融资知识。

时间序列分析股票毕业论文

这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急

这是生产量消费量的折线图,完全看不出规律。

如果是按年份找两者之间的联系估计要画三维图。

Abstractnbsp;Datanbsp;miningnbsp;isnbsp;anbsp;databasenbsp;applicationnbsp;andnbsp;researchnbsp;ofnbsp;anbsp;newnbsp;area,nbsp;itsnbsp;objectivesnbsp;throughnbsp;thenbsp;analysisnbsp;ofnbsp;historicalnbsp;data,nbsp;statisticsnbsp;ofnbsp;interestnbsp;tonbsp;usersnbsp;ornbsp;valuablenbsp;information.nbsp;Innbsp;stocknbsp;tradingnbsp;business,nbsp;everynbsp;daynbsp;largenbsp;amountsnbsp;ofnbsp;datanbsp;intonbsp;thenbsp;datanbsp;warehouse,nbsp;thenbsp;datanbsp;onnbsp;ournbsp;understandingnbsp;ofnbsp;marketnbsp;trends,nbsp;makenbsp;thenbsp;rightnbsp;investmentnbsp;decision-makingnbsp;providesnbsp;anbsp;theoreticalnbsp;basisnbsp;fornbsp;research.nbsp;Withnbsp;timenbsp;seriesnbsp;analysisnbsp;ofnbsp;theorynbsp;andnbsp;researchnbsp;methodsnbsp;tonbsp;graduallynbsp;mature,nbsp;innbsp;thenbsp;stocknbsp;analysisnbsp;ofnbsp;thenbsp;forecastnbsp;ofnbsp;timenbsp;seriesnbsp;analysisnbsp;hasnbsp;becomenbsp;anbsp;practicalnbsp;significance.nbsp;Fromnbsp;thenbsp;perspectivenbsp;ofnbsp;applications,nbsp;datanbsp;miningnbsp;onnbsp;thenbsp;relatednbsp;concepts,nbsp;throughnbsp;thenbsp;time-seriesnbsp;datanbsp;analysisnbsp;andnbsp;processing,nbsp;designednbsp;tonbsp;achievenbsp;anbsp;stocknbsp;transactionnbsp;pricenbsp;forecastnbsp;fornbsp;thenbsp;objectivesnbsp;ofnbsp;thenbsp;intelligentnbsp;datanbsp;miningnbsp;system.nbsp;Thenbsp;systemnbsp;backgroundnbsp;SQLnbsp;Servernbsp;2005nbsp;usingnbsp;thenbsp;availablenbsp;time-seriesnbsp;datanbsp;fornbsp;thenbsp;pretreatment,nbsp;andnbsp;thennbsp;buildnbsp;onnbsp;thesenbsp;time-seriesnbsp;datanbsp;miningnbsp;model.nbsp;Outlooknbsp;fornbsp;thenbsp;usenbsp;ofnbsp;Cnbsp;#nbsp;languagenbsp;designnbsp;systemnbsp;interface,nbsp;usersnbsp;neednbsp;onlynbsp;anbsp;simplenbsp;operationnbsp;cannbsp;viewnbsp;thenbsp;timenbsp;seriesnbsp;miningnbsp;model,nbsp;andnbsp;usenbsp;thenbsp;modelnbsp;tonbsp;predictnbsp;thenbsp;stocknbsp;transactionnbsp;price.nbsp;Thisnbsp;studynbsp;proposednbsp;thenbsp;adoptionnbsp;ofnbsp;ournbsp;historynbsp;tonbsp;predictnbsp;thenbsp;futurenbsp;providenbsp;anbsp;favourablenbsp;environmentnbsp;fornbsp;evidence.nbsp;Keyword:nbsp;datanbsp;mining,nbsp;timenbsp;seriesnbsp;analysis;nbsp;Microsoftnbsp;timingnbsp;algorithm;nbsp;timenbsp;seriesnbsp;miningnbsp;model;nbsp;Stocknbsp;pricesnbsp;werenbsp;forecast;

经济增长股票市场论文

对股票市场和经济增长之间关系的研究是一个涉及面比较多的复杂问题。那么,经济增长如何促进股票市场呢?

一、变量的因果关系分析

(一)单位根检验

采用ADF法进行单位根检验。

检验结果中,AIC是信息秩统计量,用以确定检验模型采用的滞后阶数k,AIC值越小则采用的滞后阶数越理想。

通过检验,可知LGDP、LCAP、LVAL、LTURN几个变量水平序列不稳定,而其一阶差分序列在不同显著水平下拒绝含有单位根的假设,因此为典型的I(1)时间序列。

(二)协整检验

Engle和Granger指出,协整关系是指属于同阶非零单整的两个或两个以上时间序列尽管是非平稳序列,但如果它们的某个线形组合可能构成零阶单整序列,则认为两个变量序列之间存在协整关系。

从协整的定义中可以看出其经济意义所在,两个变量虽然具有各自的长期波动规律,但是如果它们是协整的,那么它们之间就存在着一个长期稳定的比例关系。

传统的计量经济学模型是从已认知的经济理论出发选取变量,回归残差往往是非平稳的,不能排除伪回归的现象,而协整理论提供了一个新的检验模型变量选取是否合适的方法。

协整检验的方法较多,本文采用EG检验。

二、我国股票市场不稳定性分解与经济增长在流动性

过剩和经济增长乏力的大背景下,全球经济显现出了从潜在的不确定性向现实的不稳定性逐渐转化的趋势。

而金融危机爆发的频率加快和强度增加,更成为全球经济发展中无法回避的不稳定因素。

因此,对于金融稳定的研究与探讨得到了包括学术界、业界等社会各界的高度重视。

而历次金融危机的爆发都与股票市场密切相关,所以对于股票市场发展的不稳定性研究也备受关注。

总体分析,影响股票市场发展的因素主要包括两个方面:一是股票市场自身的影响因素,包括市值、成交金额、上市公司盈利和分红等;二是来自于宏观经济变量以及相关的宏观经济政策,包括产出、投资、消费、货币政策和财政政策等。

学术界对于股票市场发展与宏观经济的关联研究主要集中于两个领域:首先,由于股票市场具有经济“晴雨表”之称,所以对于其与经济增长之间的关系一直是人们研究的重点;其次,货币政策逐渐成为熨平经济波动的主要宏观政策,而作为经济“晴雨表”的股票市场与其之间的直接以及间接关联研究也同样得到了学者们的关注。

三、结论与政策建议

(一)经济增长对股票市场发展有显著影响

根据研究结果,经济增长是影响股票市场发展的重要原因。

经济增长能提高股票市场的资本化率、提升股票市场收益率,同时能提升股票市场的交易率。

这些研究结论也符合相关的`经济理论。

经济发展有利于企业在股票市场上进行融资,这正是股票市场筹资功能的体现。

同时,由于经济发展,增加了居民资本增值的渠道,这为投资者进行资本市场的交易奠定了一定的基础。

经济的发展为股票市场的运行提供了良好的外部环境,使得股票市场的发展有一个较好的宏观经济基本面,这对投资者来说是一个比较好的预期。

(二)股票市场发展对经济增长的影响较弱。

在本文的实证检验中,交易率、筹资率对经济增长有明显的作用。

这主要是因为股票市场规模的扩大对经济增长会有明显的作用,加大股票市场的容量,增加了市场流动性;另一方面,股票市场筹资率在一定程度上对经济发展有重要的影响,它关系着个人、企业等市场主体在资本市场的融资规模以及能为经济发展提供的资金。

此外,股票市场发展的其他选取指标对经济增长会产生干扰作用,造成一定的负面影响。

可以通过适当的方法来发展股票市场,培育股票市场的竞争力,以促进经济的增长(万正晓等,2008)。

之所以出现这样的情况,主要是由于我国多数投资主体投资理念缺乏且股票市场不完善。

这样,股票市场资源配置功能弱化,不能提供合适的机制引导社会资金的合理流动。

同时,股票市场不能降低投资者的流动性风险及为投资者提供风险分散,也不能通过股价表现市场信息和配置资源,更不要谈对企业的监控职能。

因此,股票市场对经济增长的影响作用较弱。

四、结语

对股票市场和经济增长之间关系的研究是一个涉及面比较多的复杂问题。

本文对股票市场和经济增长之间关系仅作初步探讨。

在本文研究的基础上,进一步值得研究的方向是利用最新的数据,结合计量经济学方法,对股票市场和经济增长之间关系进行建模分析,探讨二者之间的数量模型;同时,还可以结合模型探讨影响二者之间关系的主要因素,探讨股票市场的微观作用机制对经济增长的影响,或者探讨股票市场的伦理性对经济发展的影响(战颖,2008)等问题。

  • 索引序列
  • 毕业论文多元时间序列
  • 时间序列毕业论文题目
  • 时间序列论文格式
  • 金融时间序列分析毕业论文
  • 时间序列分析股票毕业论文
  • 返回顶部